• Aucun résultat trouvé

Generalized Wiener filtering for positive alpha-stable random variables

N/A
N/A
Protected

Academic year: 2021

Partager "Generalized Wiener filtering for positive alpha-stable random variables"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01340797

https://hal.archives-ouvertes.fr/hal-01340797

Submitted on 1 Jul 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Generalized Wiener filtering for positive alpha-stable

random variables

Paul Magron, Roland Badeau, Antoine Liutkus

To cite this version:

Paul Magron, Roland Badeau, Antoine Liutkus. Generalized Wiener filtering for positive alpha-stable

random variables. [Research Report] 2016D000, Télécom ParisTech. 2016. �hal-01340797�

(2)

Generalized Wiener filtering for positive

alpha-stable random variables

Filtrage de Wiener généralisé pour des

variables aléatoires positives alpha-stables

Paul Magron

Roland Badeau

Antoine Liutkus

Juin 2016

Département Traitement du Signal et des Images

Groupe AAO : Audio, Acoustique et Ondes

(3)

Generalized Wiener filtering for positive alpha-stable random

variables

Filtrage de Wiener généralisé pour des variables aléatoires positives

alpha-stables

Paul Magron

1

Roland Badeau

1

Antoine Liutkus

2

1

LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

<firstname>.<lastname>@telecom-paristech.fr

2

Inria, Speech processing team, Villers-lès-Nancy, France

<firstname>.<lastname>@inria.fr

Abstract

This report provides a mathematical proof of a result which is a generalization of Wiener filtering to Positive α-stable (PαS) distributions, a particular subclass of the α-stable distributions family whose sup-port is [0; +∞[. PαS distributions are useful to model nonnegative data and since they are heavy-tailed, they present a natural robustness to outliers. In applications such as nonnegative source separation, it is paramount to have a way of estimating the isolated components that constitute a mixture. To address this issue, we derive an estimator of the sources which is given by the conditional expectation of the sources knowing the mixture. It extends the validity of the generalized Wiener filtering to PαS distributions. This allows us to extract the underlying PαS sources from their mixture.

Key words

Stable distribution, Positive alpha-stable distributions, Wiener filtering, nonnegative source separation Résumé

Dans ce rapport, nous fournissons une preuve mathématique d’un résultat qui est une généralisation du filtrage de Wiener appliqué à des variables aléatoires distribuées selon une loi Positive α-stable (PαS). Ces distributions forment une sous-catégorie des distributions α-stables de support [0; +∞[. Elles sont utilisées pour la modélisation de données non-négatives, et leur queue lourde est un avantage en terme de robustesse aux valeurs aberrantes. Dans des applications telles que la séparation de sources non-négatives, il est primor-dial de pouvoir estimer les composantes qui constituent un mélange. Dans ce but, nous proposons d’utiliser comme estimateur l’espérance conditionnelle des sources sachant le mélange. Nous montrons asinsi que l’on peut généraliser le filtrage de Wiener en l’appliquant aux variables PαS, ce qui rend possible l’extraction de sources PαS à partir de leur mélange.

Mots clés

Distribution stable, Distributions positives alpha-stables, filtrage de Wiener, séparation de sources non-négatives

(4)

1

Introduction

This document features supplementary materials to the reference paper [1]. We consider a nonnegative data matrix X which is expressed as the sum of K components Xk, which follow a Positive α-stable (PαS) distribution.

PαS distributions are a subclass of the α-stable distributions family, with shape parameter α < 1, location parameter µ = 0, skewness parameter β = 1 and scale parameter σ > 0. Their probability density functions are supported by R+, which makes them useful to model nonnegative data. Since they are heavy-tailed, they

also present a natural robustness to outliers [2]. In particular, they have been shown appropriate for audio modeling [3]. In this paper, our goal is to prove that an estimator of the PαS-distributed sources Xk is given

by Wiener-like filtering: ˆ Xk= σα k X l σlα X, (1)

where (resp. the fraction bar) denotes the element-wise matrix multiplication (resp. division). A similar result has been demonstrated for Symetric α-stable (SαS) distributions [4], thus we propose to extend it to PαS distributions. This property is paramount to separate PαS processes from nonnegative mixtures.

2

Proof of the PαS Wiener filtering

Following the proof presented in [5], we first demonstrate (1) for K = 2 sources. Then we extend this result to any K and to matrices.

2.1

Case of two PαS variables

Let α ∈]0; 1[. Let s1 and s2 be two independent PαS random variables of scale parameters σ1 > 0 and

σ2> 0 respectively. A commonly used estimator of s1 is given by ˆs1= Es1|x(s1) if this conditional expectation

exists. Besides, this expectation do exist if and only if the characteristic function ϕs1|x(t1) = Es1|x(e

it1s1) is

differentiable at t1= 0. If so, then:

ˆ s1= Es1|x(s1) = 1 i dϕs1|x dt1 (0). (2)

Step 1: Characteristic function of s1|x. We first determine the characteristic function of s1|x. Using the

stability property of the PαS distributions, x also follows a PαS distribution of scale parameter σ such that σα= σα

1 + σα2. The characteristic function of a PαS distribution is:

∀tx∈ R, ϕx(tx) = Ex(eitxx) = e−σ

α|t

x|α+iΦσα|tx|αsg(tx), (3)

where sg(tx) denotes the sign of tx, and Φ is a constant equal to tan(πα2 ) if α 6= 1. Since α ∈]0; 1[, Φ > 0. The

characteristic function of the random vector (s1, x) is:

ϕs1,x(t1, tx) = E(e

i(t1s1+txx))

= E(ei(t1s1+tx(s1+s2)))

= E(ei((t1+tx)s1+txs2))

= ϕs1,s2(t1+ tx, tx).

Since s1 and s2 are independent, ϕs1,s2(t1+ tx, tx) = ϕs1(t1+ tx)ϕs2(tx). Then:

ϕs1,x(t1, tx) = e

−σα

1|t1+tx|α−σ2α|tx|α+iΦ(σα1|t1+tx|αsg(t1+tx)+σ2α|tx|αsg(tx)). (4)

(5)

ϕs1|x(t1) = Z R ϕs1,x(t1, tx)e −itxxdt x Z R ϕs1,x(0, tx)e −itxxdt x . (5)

Step 2: Differentiating the characteristic function. The first-order derivative of the conditional char-acteristic function is:

dϕs1|x dt1 (t1) = Z R ∂ϕs1,x ∂t1 (t1, tx)e−itxxdtx Z R ϕs1,x(0, tx)e −itxxdt x , (6)

which, applied at t1= 0, leads to:

dϕs1|x dt1 (0) = Z R ∂ϕs1,x ∂t1 (0, tx)e−itxxdtx Z R ϕs1,x(0, tx)e −itxxdt x . (7)

Note that (6) is well-defined only if it is possible to differentiate under the R sign in the numerator of the right member of (5), which we demonstrate below.

In (4) we distinguish two cases: • If t1> −tx, ϕs1,x(t1, tx) = e −σα 1(t1+tx)α−σα2|tx|α+iΦ(σα1(t1+tx)α+σα2|tx|αsg(tx)), then: ∂ϕs1,x ∂t1 (t1, tx) = [−ασ1α(t1+ tx)α−1+ iαΦσ1α(t1+ tx)α−1]ϕs1,x(t1, tx) (8) • If t1< −tx, ϕs1,x(t1, tx) = e −σα 1(−t1−tx)α−σα2|tx|α+iΦ(−σα1(−t1−tx)α+σα2|tx|αsg(tx)), then: ∂ϕs1,x ∂t1 (t1, tx) = [ασα1(−t1− tx)α−1+ iαΦσ1α(−t1− tx)α−1]ϕs1,x(t1, tx). (9)

In both cases, we obtain the same expression of the first-order derivative: ∂ϕs1,x

∂t1

(t1, tx) = ασ1α[−(t1+ tx)|t1+ tx|α−2+ iΦ|t1+ tx|α−1]ϕs1,x(t1, tx), (10)

which, applied to t1= 0, leads to:

∂ϕs1,x ∂t1 (0, tx) = ασα1[−tx|tx|α−2+ iΦ|tx|α−1]ϕs1,x(0, tx), (11) with ϕs1,x(0, tx) = e −σα 1|tx|α−σα2|tx|α+iΦ(σ1α|tx|αsg(tx)+σα2|tx|αsg(tx)) (12) = e−(σα1+σα2)|tx|α+iΦ(σ1α+σα2)|tx|αsg(tx). (13)

Let us now demonstrate that (7) is well-defined. To do so, we show that: ∂R R+ϕs1,x(t1, tx)e −itxxdt x ∂t1 (t1= 0) = Z R+ ∂ϕs1,x ∂t1 (0, tx)e−itxxdtx (14) ∂R R−ϕs1,x(t1, tx)e −itxxdt x ∂t1 (t1= 0) = Z R− ∂ϕs1,x ∂t1 (0, tx)e−itxxdtx. (15) 3

(6)

So let us prove equation (14) (the same proof will hold for (15)). Firstly, we have to upper bound ∂ϕs1,x ∂t1 (t1, tx)e −itxx

. Since α ∈]0, 1[, equations (4) and (10) yield: ∀t1∈ R+, ∀tx∈ R+\{0}, ∂ϕs1,x ∂t1 (t1, tx)e−itxx ≤ g(t1+ tx)h(tx) ≤ kgk∞h(tx), (16) with g(t) = ασα 1 √ 1 + Φ2e−σα 1|t| α ∈ L∞ (R+) and h(t) = |t|1−α1 e −σα 2|t| α ∈ L1

(R+). Since the upper bound (16) is

independent of t1 and Lebesgue integrable on R+\{0}, and since {0} is a negligible set, we conclude that

∀t1∈ R+, ∂R R+ϕs1,x(t1, tx)e −itxxdt x ∂t1 = Z R+ ∂ϕs1,x ∂t1 (t1, tx)e−itxxdtx. (17)

Therefore (14) is obtained by taking t1 = 0. Similarly, we prove equation (15), which concludes the proof

of (7)

Step 3: Integrating the numerator in (7). It is easy to calculate the first-order derivative of ˜ϕ(tx) =

ϕs1,x(0, tx). We can apply the same technique as above (split R into its positive and negative parts in order to

eliminate the absolute value) to (13) and we obtain: d ˜ϕ

dtx

(tx) = α(σ1α+ σ α

2)[−tx|tx|α−2+ iΦ|tx|α−1]ϕs1,x(0, tx). (18)

By combining (11) and (18), we obtain: ∂ϕs1,x ∂t1 (0, tx) = σα 1 σα 1 + σ2α d ˜ϕ dtx (tx). (19)

Equation (19) is useful since it allows us to calculate the numerator in (7). Indeed, Z R ∂ϕs1,x ∂t1 (0, tx)e−itxxdtx= σ1α σα 1 + σ2α Z R d ˜ϕ dtx (tx)e−itxxdtx, (20)

and an integration by parts leads to: Z R d ˜ϕ dtx (tx)e−itxxdtx= − Z R ˜ ϕ(tx) d(e−itxx) dtx dtx= ix Z R ˜ ϕ(tx)e−itxxdtx. (21)

Then, combining (7), (20) and (21) leads to: dϕs1|x dt1 (0) = i σ α 1 σα 1 + σα2 x. (22)

Step 4: Obtaining the estimator. Finally, we combine (22) with (2) in order to obtain the following estimator of s1: ˆ s1= σα 1 σα 1 + σα2 x. (23)

With the exact same technique, we obtain an estimator for s2. Then, if K = 2, we have the following result:

∀k ∈J1; K K, ˆsk = σα k K X l=1 σlα x. (24)

Remark: In fact, this property still holds for any value of β (which is assumed to be equal to 1 here), as long as α 6= 1. Indeed, under this condition, the characteristic function (3) becomes:

∀tx∈ R, ϕx(tx) = Ex(eitxx) = e−σ

α|t

(7)

Thus we simply need to replace the constant Φ by βΦ in the proof to demonstrate this result. The new constant βΦ can be null for β = 1, but in this case, the distribution becomes Symmetric α-stable (SαS), and the property still holds, as demonstrated in [4].

2.2

Extension to K random variables and matrices

We now prove that (24) still holds for any number of sources K. Let us consider a sum of K ≥ 2 components that follow a PαS distribution of parameter σk respectively. Then, ∀k ∈J1; K K, let ˜sk=

P

l6=ksl. We have:

sk+ ˜sk = X, (26)

and given the additive property of the PαS distributions, ˜sk is also PαS-distributed with parameter ˜σk such

that ˜σα k =

P

l6=kσ α

l. We can then use (24) with the two sources sk and ˜sk:

ˆ sk= σkα σα k + ˜σ α k x = σ α k σα k + X l6=k σαl x = σ α k X l σαl x. (27)

Since this result is valid for each k ∈J1; K K, then (24) is true for any K . Finally, this result can be extended to matrices. Since all TF bins are assumed independent, we can apply (24) in each TF bin, which proves (1).

3

Conclusion

In this report, we have proved that the use of the Wiener filtering technique, which provides an estimator of the underlying sources composing a mixture, can be extended to Positive α-stable distributions, according to (1). This result may be highly useful in applications that address the problem of nonnegative source separation.

References

[1] P. Magron, R. Badeau, and A. Liutkus, “Separation of nonnegative alpha-stable sources,” IEEE Signal Processing Letters, 2016, submitted for publication.

[2] J. P. Nolan, Stable Distributions - Models for Heavy Tailed Data. Boston: Birkhauser, 2015, in progress, Chapter 1 online at academic2.american.edu/∼jpnolan.

[3] N. Bassiou, C. Kotropoulos, and E. Koliopoulou, “Symmetric α-stable sparse linear regression for musical audio denoising,” in Proc. International Symposium on Image and Signal Processing and Analysis (ISPA). Trieste, Italy: IEEE, September 2013, pp. 382–387.

[4] A. Liutkus and R. Badeau, “Generalized Wiener filtering with fractional power spectrograms,” in Proc. the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, April 2015.

[5] R. Badeau and A. Liutkus, “Proof of Wiener-like linear regression of isotropic complex symmetric alpha-stable random variables,” Télécom ParisTech - INRIA Nancy, Tech. Rep. hal-01069612, September 2014. [6] G. Samoradnitsky and M. S. Taqqu, Stable non-Gaussian random processes: stochastic models with infinite

variance. CRC Press, 1994.

(8)

Dépôt légal : 2016 –2e trimestre Imprimé à Télécom ParisTech – Paris ISSN 0751-1345 ENST D (Paris) (France 1983-9999)

(9)

Télécom ParisTech

Institut Mines-Télécom - membre de ParisTech

46, rue Barrault - 75634 Paris Cedex 13 - Tél. + 33 (0)1 45 81 77 77 - www.telecom-paristech.fr

Département TSI © In stitu t M in e s -T é léco m -T é léco m P a ris T e c h 2 0 1 6

Références

Documents relatifs

means of objective measures, namely the standard Segmental Signal to Noise Ratio (SSNR) and the Modified Bark Spectral Distortion (MBSD). The SSNR is the average of the SNR values

On peut montrer que toute fonction F vérifiant les trois propriétés précédentes définit la fonction de répartition d’une certaine v.a.. Variable alátoire discrète,

Donner sa fonction de répartition et recalculer la probabilité pour que 0,5&lt;X&lt;0,7.. Mohamed

On tire à nouveau au hasard une boule, on note sa couleur puis on la remet dans l’urne avec une nouvelle boule de cette même couleur, et ainsi de suite.. Les tirages successifs

We derive two conjugate gradient algorithms for the computation of the filter coefficients and show improved audio source separation performance compared to the classical Wiener

As mentioned before, we develop our asymptotic expansion theory for a general class of random variables, which are not necessarily multiple stochastic integrals, although our

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We evaluate the performance of the proposed methods compared to classical Wiener filtering on two tasks: separation of concurrent speech by two speakers under oracle conditions,