• Aucun résultat trouvé

Thermal analysis in Ti-6Al-4V drilling

N/A
N/A
Protected

Academic year: 2021

Partager "Thermal analysis in Ti-6Al-4V drilling"

Copied!
5
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

https://sam.ensam.eu

Handle ID: .

http://hdl.handle.net/10985/11882

To cite this version :

Ismaïl LAZOGLU, Gérard POULACHON, Christophe RAMIREZ, Mohammad AKMAL, Bertrand

MARCON, Frédéric ROSSI, José OUTEIRO, Michael KREBS - Thermal analysis in Ti-6Al-4V

drilling - CIRP Annals - Manufacturing Technology p.1-4 - 2017

Any correspondence concerning this service should be sent to the repository

(2)

Thermal

analysis

in

Ti-6Al-4V

drilling

Ismail

Lazoglu

(2)

a,

*

,

Ge´rard

Poulachon

(2)

b

,

Christophe

Ramirez

b

,

Mohammad

Akmal

a

,

Bertrand

Marcon

b

,

Fre´de´ric

Rossi

b

,

Jose´ Outeiro

(2)

b

,

Michae¨l

Krebs

b

a

KocUniversity,ManufacturingandAutomationResearchCenter,Istanbul,Turkey b

ArtsetMetiersParisTech,LaBoMaP,Cluny,France

1. Introduction

Severalthermalmeasurementdevicesdedicatedformachining arealreadyavailableonthemarket[1].Outofthoseapparatus,the infraredCCDcameratogetherwiththethermocouple(TC)based techniquesarethemostwell-knownandefficientwaystomeasure thetemperatureinturning[2,3].Usually,knowingpreciselythe cutting temperature is mandatory to understand the thermal phenomena involved in the cutting zone and moreover for simulation’svalidationpurposes[4].Thefirst studiesin drilling wereinitiatedbyRumford[5]andSchmidtandRoubik[6]byusing acalorimetrictesttodeterminetheheatgeneration.Morerecently, AgapiouandStephenson[7]andRamirezetal.[8]haveusedtwo differentdevices tomeasure the temperatureduring a drilling operation.Respectively,thefirstoneconsistsofinsertingtwo K-typethermocouplewiresthroughthelubricationholesclosetothe cuttingedge.Thesecondmethodconvertsthetooltoanactual thermocouplebypositioningintheworkpieceaninsulatedwire. Whilethecuttingedgecutsthewire,itgeneratesa suddenhot junctionproducing a potentialdifference and thus, allowingto measurethetemperatureatthatspecificpositionandtime.

Since the early 2000, temperature measurements during drillingoperationsaremoreandmoreinvestigated.LeCozetal.

[9] and Kerrigan et al. [10] performed measurements with thermocouplesembeddedinsidethedrill.Thedataaretransferred totheacquisitionchainthankstoanon-boardwireless system located in the tool holder. Beno and Hulling [11] used a bichromaticpyrometerreceivingradiantlightthroughanoptical fiberlocatedintheworkpiece,inadirectionparalleltothedrillaxis tomeasurethetemperatureofthecuttingedge.Thesamekindof experimentalset-uphasbeenusedbyUedaetal.[12]for alloy steel,castironandaluminumalloysmachining.

Theabilitytosimulate,analyticallyornumerically,thephysics oftheprocessgivestremendouscontroltowardfurther improve-mentanddevelopmentofnewvista.Earlieryearsproducedanalytical models for cutting temperatures on simple tool geometries, nevertheless, latterprogressin computationalsciences, numerical techniquesweredevelopedforestimatingtemperaturesoncomplex tool geometries and processes. Komanduri and Hou [13] used differentheatsourcemodelstoestimatetemperaturedistributions. LazogluandAltintas[14]usedafinitedifferencenumericalmodelfor predictingtemperaturedistributioninchipandtoolforcontinuous andinterruptedmachiningoperations.LaterLazogluandIslam[15]

extended thesameapproach tooblique machiningoperationsfor temperatureprediction.Theunderstandingofthe thermo-mechani-cal phenomenawas furtherimproved with theintroduction ofa modelforthetransientheatpartitioncoefficientbetweenchipand toolrakefacebyIslametal.[16].

The present article will describe a newly designed device, namedRotaryToolTemperature(RTT),allowingtomeasurethe drilling temperature close to thecutting edge. This innovative devicehastheadvantagetobeeasilyassociatedwitharotating multi-component dynamometer for drilling and milling opera-tions.Comparisonsin-betweenexperimentsandsimulationsare presented.Asemianalyticalhybridapproachis adoptedforthe simulation of temperature fields on thedrilling tool. The heat generationsourceis estimatedusingthecuttingconditionsand materialmechanicalproperties,whereasthemechanicsofcutting provided the size of heat generation zone from the tool/chip contactlength.Finally,finiteelementanalysiswasemployedto achievethetemperaturedistributionprediction.

2. RotaryToolTemperaturedevice

Fig.1showsthenewmeasurementdevice,integratedtothe rotarydynamometerandtoolholderforsimultaneously measur-ing the temperature as well as forces and torques during the

* Correspondingauthor.

E-mailaddress:ilazoglu@ku.edu.tr(I.Lazoglu). ARTICLE INFO Keywords: Drilling Temperature Titanium ABSTRACT

Ti-6Al-4Viscommonlyusedespeciallyinaerospaceandbiomedicalindustries.Thisalloyisknownasa difficult-to-cut material. Dueto itspoor thermalproperties,the heatgeneratedduring machining processestrapsnearmaterialdeformationzones.Thiscausesdetrimentalhightemperaturesforthe cutting tools. This article combines the analytical and FEM modeling techniques to estimate the temperatureevolutionofcarbidetoolsinTi-6Al-4Vdrilling.Inthisarticle,anovelthermocouplebased temperaturemeasurementsetupisalsointroduced.Moreover,thesimulatedandmeasuredtemperatures undervariouscuttingconditionsforthedrillingofTi-6Al-4Varepresentedforthevalidation.

(3)

drillingoperations.ThisRTTdeviceconsistsof connectorswith coldjunctioncompensationstoacquiresignaluptosix thermo-couples,aninternalmemorytostorethesignalasafunctionof timeduringmachining,anon-boardlithiumbattery(3.6V,3.6Ah, anda maximum recommendedcontinuouscurrent of 130mA), andaninternalclocktosynchronizeallthesignals.TheRTTdevice can be mounted on a standard tool holder to measure the temperatureinbothdrillingandmillingoperations.Thesystem hastwoparts:theRTTitselfassembledandspinningtogetherwith the drill, and an external module in charge of the data communicationtothe computerthankstoanRJ45 connection. Theexternal moduleincludes an independent clock;this clock pulseisessential whenasimultaneousmeasurementofcutting forcesandtemperatureisnecessary.

Indeed,inthispeculiarcase,itisnecessarytosynchronizethe differentsignals;tothisend,itrequirestolaunchthetwoclocks withthesamepulserateandtriggeredsimultaneously.Whenthe clocksynchronizationiscomplete,thetwoacquisitionsystemsare unpluggedandthemachiningisperformed.Thecuttingforcesand theexternalclocksignalarerecordedindependently;afterwhich the temperature data are downloaded from the RTT on-board memoryandpost-synchronizedtotheothersignals.Inthepresent study, the RTT device is used to register signal from two thermocouples.Forthispurpose,thedrillisfirstlypreparedwith

two holes, obtained by electrical discharge machining (EDM), startingfromthebackofflutetoendeitherclosetothedrillcorner foronesideoratthemiddleofthecuttinglipfortheothersideof thedrill;thosetwotemperaturelocationsarelabeledasTCcorner andTCliprespectively.Thetwothermocouplewiresconnectedto theRTTdevicearethenslippedinside thelubricantcanalsand insidethepreviouslymentionedEDMholesasshowninFig.2.

Thetwothermocouplesaresecuredtothedrillbodyusingtwo different hightemperature ceramic glues: one is chargedwith silverparticles,asaresultimprovingitsthermalconductivityand used at the bottom of the EDM hole to connect the two thermocouplewireswiththedrillbody,theotheroneisusedto secure the wires to the drill permanently avoiding any signal disruptionwhenthetoolisturningduringthemachiningmotion. ThemaincharacteristicsoftheRTTdevicepresentedandusedin thisworkaresummarizedinTable1.

The thermocouples are used in a specific configuration to enableaninstantaneoustimeresponse.AsrepresentedinFig.2, thetwothermocouplewiresareindirectelectricalcontactwith thebottomofthe0.5mmdiameterholeinthetool.Therearetwo hotjunctions:K+/WCCoandWCCo/K.Asthetoolmaterialispart ofthehotjunction,theSeebeck’seffectresponseisinstantaneous. Theonlymeasurementtimedelaycomesfromthedataacquisition frequency.The exactlocationof themeasurement isat theK+/ WCCojunctionsince theelectromotive forcesgenerated bythe WCCo/K is close tozero. The RTT calibration was conducted undertheFDX07-029-2standard,andthethermaldriftchecked andresultedasnon-significantuntil708CinsidetheRTTforboth temperaturemeasurementandfortheclockgenerator.

3. Thermalmodeling

Thermal modeling requires the modeling of force field to estimatetheheatingloadforthedrillingsimulations.Thecutting forcesforthedrillingprocesswereestimatedusingthediscretized orthogonal to oblique transformation model as described by Altintas [17]. The geometry of the helical drill used for the developmentoftheobliquemodelisshowninFig.3.

dFtðzÞ¼KtcðzÞdAþ

D

bKte dFfðzÞ¼KfcðzÞdAþ

D

bKfe dFrðzÞ¼KrcðzÞdAþ

D

bKre 9 = ; (1) h¼c 2sin

k

t;

D

D

z cos

k

t

Fig.1.Experimentalsetupandschemeofthetemperatureacquisition.

Fig.2.Illustrationofthecornerandlipthermocouplelocationsinthedrill.

Table1

RTTdevicespecifications.

Memorycapacity 64MB

Acquisitionfrequency Upto2.25KHz

Accuracy 0.18K

Tool-holder Bodyof50mmdiameter

(4)

Eq. (1) determines the discrete force components along the tangential(dFt),feed(dFf)andradial(dFr)directionforaselected diskwiththedifferentialchipload(dA)of(

D

bh).Here,(Ktc,Kfc,Krc) and(Kte,Kfe,Kre)arethecuttingforceandedgeforcecoefficientsfor thetangential,feedandradialdirectionrespectively.Thecutting coefficientscalculatedandusedtopredictthecuttingforcesfor theseexperimentsareprovidedinTable2.

Themechanicalpropertiesoftheworkpiecematerialrequired by the transformation model for the cutting forces analytical modeling,andfora

D

zthickdiscretedisk(asshowninFig.3),were takenfromtheTi-6Al-4Valloymaterialdatabasereproducedin

[17].Theanalyticalcalculationofthetransitiontorquerequiredfor the selectedcutting conditions is in good agreement with the experimentallymeasuredtorqueasshowninFig.4.

Theexperimentdrillchiseledgewidthwandchiseledgeangle

c

was2mmand1318respectively.Thedrillgeometryiscomplex andchangesalongthecuttinglip.Thecriticalparameterssuchas chipflowangle

h

,effectiverakeangle

af

,obliqueshearangle

fi

, normal shearangle

fn

,localhelix angle

bz

vary andaffect the differentialcuttingforcesonthecuttinglip.Thevariationofthose anglesareillustratedinFig.5.

Theresultantcuttingforce(dFR)onadifferentialchiploadcan bedeterminedasthefollowing:

dFRðzÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dF2 tðzÞþdFf2ðzÞþdFr2ðzÞ q (2)

The resultant cutting forces were then dissolved into their friction(dFu)andnormalcomponents(dFv)usingthefrictionangle (

ba

)inEqs.(3)and(4)asfollows:

dFuðzÞ¼dFcðzÞsinð

b

aÞ (3)

dFvðzÞ¼dFcðzÞcosð

b

aÞ (4)

Furthermore,thesameparameterswereusedtoestablishthe chipcontactlengthlcandchipvelocityVcasdescribedin[15]using Eqs.(5)and(6).

lc¼

hsec

h

sinð

f

u

sin

f

nðcos

a

ncos

u

nsin

a

nsin

u

nÞ (5)

Vc¼

VsiniðzÞsin

f

nðzÞsec

h

ðzÞ

tan

f

iðzÞcos

a

nðzÞþsin

f

nðzÞtan

h

ðzÞ

(6) The power lost to friction for the discrete section along the cuttingedgeofthedrillingtoolistheproductofthedifferential friction force and the instantaneous chip velocity, given by Eq.(7).

dPuðzÞ¼dFuVcðzÞ (7)

Thesecondstepusedtheinformationproducedintheprevious steptodefinetheheatingloadandarea whichisactive onthe drillingtool.Theheatingloadinthiscaseforthetoolistheheat partition coefficient corrected sum of all products of the differentialfrictionforceandtheinstantaneouschipvelocityfor a discrete element along the cutting edge of the drilling tool, calculatedusingthefollowingequation:

Pu¼

X

dPuðzÞ; Pf¼

l

Pu (8)

Theheatpartitioncoefficientforthetool(

l

)wasselectedas 0.85and0.60correspondingtothetwocuttingspeedsasreported in[18].

Force,torqueandtemperaturemeasurementswereobtainedin drillingofTi-6Al-4Vtitaniumalloywitha12mmdiameterand308 nominal helix angle, uncoated, two fluted carbide drill in dry cuttingconditionsasgiveninTable3.Drillingdepthwaskeptat 20mminalltests.

Thefiniteelementsmodel(FEM)wasdevelopedforblindhole drilling.Thetetrahedraltypeelementswereselectedtomeshthe complexgeometryofthetool.Themeshdensitywasvariable,but tocapture thetemperaturedistributionaccurately itwasmade surethattheheatloadareashadveryfinemesh.Thetotalnumber oftetrahedralelementwas447,267withaminimumelementsize of2

m

m.Theboundaryconditionsonthetoolandworkpieceare selectedtoreflecttheexperimentalconditionsclosely. Thermo-dependentthermalconductivitywasusedforboththeworkpiece andthedrillmaterials.Thecuttingprocessissimulatedasatime dependentheattransfermodel,wheretheheatloadwillremain activeforthedurationofthecutasitwasintheexperiment.The heatload,ascalculatedearlier,isdefinedtobeactiveonlyatthe tool chipcontactzoneon thetool (Fig.6). ComsolMultiphysics software wasused for the FEManalysis on an Intel Xeon CPU W5590@3.33GHz,8coressystemformodelingthetemperature distributiononthedrillbit.Simulationtimeforeachconditionwas lessthan30min.

Table2

Cuttingcoefficientscalculatedandusedtopredictthecuttingforcesduringdrilling; KteandKfeare24and43Nmm1,respectivelyinallregions.

Cuttingforcecoefficients [Nmm2]

Region1 Region2 Region3 Region4

Ktc 2445 2154 1953 1815

Kfc 1523 1042 774 606

Krc 892 649 481 372

Fig.4.Torquepredictionarecomparedwiththeexperimentaldataforthetwo feedrates.

Fig.5.Variationofanglesalongthedrillcuttinglip.

Table3

Cuttingspeedandfeedratevalues.

Test# Rotational speed[rpm] Cuttingspeed (Vc)[mmin1] Feedrate(f) [mmrev1] 1 266 10 0.1 2 266 10 0.2 3 796 30 0.1 4 796 30 0.2

(5)

4. Experimentalvalidations

The drilling tests were performed on a DMC DMG 65 CNC machiningcenter.Testsateachconditionwereperformedthree timestoverifytherepeatability.Onlyonedrillhadbeenusedfor thewholeexperimentalcampaigntoavoiddispersion;aprevious campaignensurednotoolwearcanappearduringthetests.Axial forceFzandtorqueMzwerealsomeasuredbyusingarotarytype 9123CKistlerdynamometer(Fig.4).Forceandtemperaturesignals weresampledatthefrequenciesof2kHzand256Hz,respectively. During the drilling tests, the tool temperature at the two thermocouple locations specified previously were recorded. Simulatedandmeasured tooltemperaturesatthespecifiedtool cornerandtoollippointsarepresentedinFig.7.Asseeninthis figure, the simulation results and experimental measurements withthelipandcornerthermocouplesarematchingquitewellin trendsaswellasamplitudeswithlessthan10%differencesatthe maximum temperature points. For the cutting speed of 10mmin1andfeedrate of0.1mmrev1,temperatureisabout 3708Catthethermocouplelocations.Whenthecuttingspeedis increased to 30mmin1 and feedrate of 0.2mmrev1, tool temperatureat thethermocouplepointsare increasedtoabout 5008C.Simulationresultsshowthatthelocaltemperaturenearthe outercornerofthecuttinglip,thetooltemperaturecanbeeven higherasshowninFig.8.

5. Conclusion

Temperatureremainstobeoneofthemajorlimiting factors towardimprovingproductivityofadvancedengineeringmaterials liketitaniumalloys.Thermalanalysisofdrillingiscriticalforbetter understandingoftheprocess.Thisarticlecombinedtheanalytical and FEM modeling techniques to estimate the temperature evolution ofcarbide toolsin Ti-6Al-4Vdrilling.In thearticle,a new thermocouple based temperature measurement system, namedasRotaryToolTemperature(RTT)device,wasintroduced. Moreover, the simulated and measured temperatures under various cutting conditions for the drilling of Ti-6Al-4V were presentedasvalidationsforthethermalmodel.

References

[1]DaviesMA,UedaT,M’SaoubiR,MullanyB,CookeAL(2007)Onthe Measure-mentofTemperatureinMaterialRemovalProcesses.CIRPAnnals- Manufactur-ingTechnology56(2):581–604.

[2]KusiakA,BattagliaJ-L,RechJ(2005)ToolCoatingsInfluenceontheHeat Transfer in the Tool DuringMachining. Surface and Coatings Technology 195(1):29–40.

[3]M’SaoubiR,LeCalvezC,ChangeuxB,LebrunJL(2002)Thermaland Micro-structuralAnalysisofOrthogonalCuttingofaLowAlloyedCarbonSteelusing an Infrared-Charge-Coupled DeviceCameraTechnique. Proceedingsof the InstitutionofMechanicalEngineersPartBJournalofEngineeringManufacture 216(2):153–165.

[4]LazogluI,BugdayciB(2014)ThermalModelingofEndMilling.CIRPAnnals -ManufacturingTechnology63(1):113–116.

[5]RumfordCB(1804)AnInquiryConcerningtheNatureofHeatandItsModeof Communication. Philosophical Transactions of the Royal Society of London 94:77–182.

[6]SchmidtAO,RoubikJR(1949)DistributionofHeatGenerated inDrilling. TransactionsofASME71(3):245–252.

[7]AgapiouJS,StephensonDA(1994)AnalyticalandExperimentalStudiesofDrill Temperatures.JournalofEngineeringforIndustry116(1):54.

[8]Ramirez C, Poulachon G, Rossi F, M’Saoubi R (2014) Tool Wear MonitoringandHoleSurfaceQualityDuringCFRPDrilling.ProcediaCIRP 13:163–168.

[9]LeCozG,MarinescuM,DevillezA,DudzinskiD,VelnomL(2012)Measuring TemperatureofRotatingCuttingTools:ApplicationtoMQLDrillingandDry MillingofAerospaceAlloys.AppliedThermalEngineering36:434–441.

[10]KerriganK,ThilJ,HewisonR,O’DonnellGE(2012)AnIntegratedTelemetric ThermocoupleSensorforProcess MonitoringofCFRPMillingOperations. ProcediaCIRP1(1):449–454.

[11]BenoT,Hulling U(2012) Measurement ofCuttingEdge Temperature in Drilling.ProcediaCIRP3(1):531–536.

[12]UedaT,NozakiR,HosokawaA(2007)TemperatureMeasurementofCutting EdgeinDrilling–EffectofOilMist.CIRPAnnals-ManufacturingTechnology 56(1):93–96.

[13]KomanduriR,HouZB(2000)ThermalModelingoftheMetalCuttingProcess. PartI.TemperatureRiseDistributionduetoShearPlaneHeatSource. Interna-tionalJournalofMechanicalSciences42(9):1715–1752.

[14]LazogluI, AltintasY(2002) PredictionofTooland ChipTemperature in ContinuousandInterruptedMachining.InternationalJournalofMachineTools andManufacture42(9):1011–1022.

[15]LazogluI,IslamC(2012)Modelingof3DTemperatureFieldsforOblique Machining.CIRPAnnals-ManufacturingTechnology61(1):127–130.

[16]IslamC,LazogluI,AltintasY(2016)AThree-DimensionalTransientThermal Model for Machining. Journal of Manufacturing Science and Engineering 138(2):21003.

[17]AltintasY(2012)ManufacturingAutomation:MetalCuttingMechanics,Machine ToolVibrations,andCNCDesign,CambridgeUniversityPress.

[18]RechJ,ArrazolaPJ,ClaudinC,CourbonC,PusavecF(2013)Characterisationof FrictionandHeatPartitionCoefficientsattheTool-WorkMaterialInterfacein Cutting.CIRPAnnals-ManufacturingTechnology62(1):79–82.

Fig.6.Chipcontactzonedividedintofourdiscreteregionsforthemechanicaland thermalsimulations.

Fig.7.Simulatedandmeasuredtooltemperatures:(a)forthethermocoupleatthe lippoint(atTClip)and(b)forthethermocoupleatthecornerpoint(atTCcorner)inthe drillingofTi-6Al-4VundertheconditionsgiveninTable3.

Fig. 8. Temperaturedistribution onthe drill cuttingedgeand toolbody for Vc=10mmin1andf=0.2mmrev1.

Figure

Fig. 2. Illustration of the corner and lip thermocouple locations in the drill.
Fig. 4. Torque prediction are compared with the experimental data for the two feedrates.
Fig. 8. Temperature distribution on the drill cutting edge and tool body for V c = 10 m min 1 and f = 0.2 mm rev 1 .

Références

Documents relatifs

The solar wind pressure increase caused a brightening of the dayside auroral oval, and poleward moving au- roral forms (rayed arcs) developed in the pre-noon sec- tor at 74–76 ◦

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Les minéraux smectites diffèrent selon que les substitutions isomorphiques sont prédominantes dans les couches tétraédriques et/ou octaédriques ainsi que selon la composition

Cette étude vise à renforcer le curriculum médical actuel de l’Université d’Ottawa de manière à améliorer la préparation à l’externat en s’attardant

We emphasize that the baseline rates in pp, pA and AA collisions are large enough for high statistics studies of all quarkonium and heavy quark states.. Thus a complete physics

J’imaginai immédiatement la svelte silhouette d’Audrey parée de sous-vêtements conçus pour le corps d’une adolescente, et je dus admettre, avec une pointe de

A l’aide des droites num´eriques, classifiez chaque s´erie de fractions ci-dessous en ordre croissant... Classification de Fractions

A comparison of the thermal conductivity as a function of field perpendicular to the easy axis to the results of this model is presented for MnCR2-4H20 in Fig.. Results for