• Aucun résultat trouvé

Transcriptomics and Proteomics of a Secondary Green Alga.

N/A
N/A
Protected

Academic year: 2021

Partager "Transcriptomics and Proteomics of a Secondary Green Alga."

Copied!
1
0
0

Texte intégral

(1)

T

RANSCRIPTOMICS AND

P

ROTEOMICS

OF A

S

ECONDARY

G

REEN

A

LGA

Emilie P

EREZ

1,2,3

, Marie L

APAILLE

2

, Hervé D

EGAND

4

, Laura C

ILIBRASI

2

,

Maxime G

ILSOUL

1

, Pierre M

ORSOMME

4

, Mark C. F

IELD

5

, Claire R

EMACLE

2,3

,

Pierre C

ARDOL

2,3

, Denis B

AURAIN

1,3

1

Eukaryotic Phylogenomics, University of Liège, Belgium

2

Genetics and Physiology of Microalgae, University of Liège, Belgium

3

PhytoSYSTEMS, University of Liège, Belgium

4

SST/ISV, Institut des Sciences de la Vie, Université Catholique de Louvain, Belgium

5

Division of Biological Chemistry and Drug Discovery, University of Dundee, Scotland, UK

Abstract

Euglena gracilis is a secondary green alga related to

Trypanoso-matidae. It derives from a secondary endosymbiosis between

a phagotrophic ancestor and a prasinophycean green alga.

Our general objective is to study the interactions established

be-tween the chloroplast and the mitochondrion following the

en-dosymbiotic event and to determine the phylogenetic origins of

the genes encoding the proteins involved in these interactions.

We sequenced the complete transcriptome of E. gracilis,

assem-bled the transcripts and predicted the corresponding proteins.

We analysed the mitochrondrial respiratory chain composition

of E. gracilis and assessed its similitude with the chain described

in Trypanosomatidae. Finally, we performed a high-throughput

analysis of the mitochondrial proteome of E. gracilis.

Taxonomic affiliation of

Euglena gracilis transcripts

0

20

40

60

80

100

1e-50

1e-20

1e-03

1

% transcripts

E-value

unclassified

Archaea

Bacteria

Unikonta

Excavata

CCTH

SAR

Plantae

11361

14897

29256

28649

1e-50:

E-value <= 1e-50, 1e-20:

1e-50 < E-value <= 1e-20,

1e-03: 1e-20 < E-value <= 1e-03, and 1: 1e-03 < E-value <= 1.

T

HE

proportion of Euglenozoan origins increases with

E-value significance. However, we observe a large

fraction of hits corresponding to other phyla over the

whole E-value spectrum, which reflects the diverse

phylogenetic sources of E. gracilis genes.

Mitochondrial respiratory chain

subunit composition

#,$: Not identified in bioinformatic analyses. Underlined: Found

in proteomic analyses. Bold and italics: Specific to Euglenozoa.

*: Found in diplonemids (D. papillatum).

$: Not homologous

to the canonical QCR9.

Red: Found in E. gracilis complete

transcriptome.

W

E

demonstrate that the secondary green alga

shares many additional subunits with

Trypanoso-matidae. In addition, our transcriptome allows us to

identify 30% more proteins than public ESTs (missing

proteins were identified using genomic reads).

Subcellular localization of

protein fragments

0

10

20

30

40

50

60

70

80

90

100

1e-100

1e-50

1e-20

1e-03

1

# identified protein fragments

E-value

others

n.i.

mitochondrion

cytoplasm

100: E-value <= 100, 50: 100 <= E-value <=

1e-50, 1e-20: 1e-50 < E-value <= 1e-20, 1e-03: 1e-20 < E-value <=

1e-03, and 1: 1e-03 < E-value <= 1.

T

HE

subcellular localization of the protein fragments is

mainly the mitochondrion. It indicates that our

mi-tochondrial extracts are relatively pure.

Taxonomic affiliation of

protein fragments

0

20

40

60

80

100

1e-100

1e-50

1e-20

1e-03

1

% identified protein fragments

E-value

Archaea

Bacteria

Unikonta

Excavata

CCTH

SAR

Plantae

94

57

44

38

15

100: E-value <= 100, 50: 100 <= E-value <=

1e-50, 1e-20: 1e-50 < E-value <= 1e-20, 1e-03: 1e-20 < E-value <=

1e-03, and 1: 1e-03 < E-value <= 1.

T

HE

results are inconclusive, probably due to the

re-duced set of proteins examined (248 mitochondrial

proteins vs. 84,163 transcripts). However, the diverse

origins of E. gracilis mitochondrial proteins is obvious.

Coverage of the mitochondrial

metabolic pathways

respiration

& ATP biosynthesis

36

Krebs &

glyoxylate

cycles

14

fatty acid

& lipid

metabolisms

18

pyruvate

metabolism

7

intermembrane space

matrix

inner membrane

outer membrane

amino acid

metabolism

12

cellular

protection

mechanisms

9

translation &

transcription

8

other

pathways

5

indeterminate

pathways

12

transport

10

W

E

identify a total of 131 mitochondrial proteins

in-volved in about 10 different metabolic pathways,

including energy producing pathways.

Relative abundance of mitochondrial

proteins across different conditions

)HFS

)HFX

EDFX

EDFS

)LFX

)LFS

)DFS

)DFX

xjvBO||fatty_acid_metabolism||fatty−acyl− o)_synthase xOjgO||transport||carrier_protein BvOvI||respiration|| )G xSOXjFS||transport||)DPV)TP_translocase KjgBx||translation||RPLBj xOIBK||stress_response||DnaJ KgxKB||fatty_acid_metabolism||trans−S−enoyl− o)_reductase xSIXS||respiration||NDUFVX KBgjg||respiration|| OXj KKSBS||translation||RPLXS xXBIg||microtubule||)lpha−tubulin KxKvj||nFiF||unnamed_protein KIBOx||respiration||NDUF)Xj KKjxj||transcription||factor_Tu KBSIB||transport||carrier_protein xXBxI||respiration||NDUFSX KjIvx|| ell−junction||Tw X xSXSS||respiration|| )G KBjOX||nFiF||hypothetical_protein KgBSg||nFiF||dynamin xBvOI||Krebs_cycle||L−S−hydroxyglutarate_dehydrogenase xSBXx||fatty_acid_metabolismVgluconeogenesis||pyruvate_carboxylase xKOOK||pyruvate_metabolism||pyruvate_carboxylase KgxXg||transcription||regulator_IclR KvBBj||respiration||SDHT x KOgKv||transport||facilitator xSOXjFX||transport||)DPV)TP_translocase BIgXx||respiration||NDUF)K BIgjj||stress_response||HSPXO xjjKO||stress_response||HSPxO BIOjB||respiration||SDHT j xSggx||pyruvate_metabolism||pyruvate_dehydrogenase_ES xSvIO||alcohol_metabolism||)LDH KxxSg||amino_acid_metabolism||betaine−aldehyde_dehydrogenase xOOgj||pyruvate_metabolism||pyruvate_dehydrogenase_Ej xjxBx||respiration||Q RX KIxBX||stress_response||DnaK xjjXj||pyruvate_metabolism||pyruvate_dehydrogenase_EX KXKXg||respiration||Q Rx xXIgK||respiration||NDUF)x KKIKS||respiration||SDHS xKOxK||pyruvate_metabolism||pyruvateQ_N)DPu_oxidoreductase KgxxO||)TP_biosynthesis||)FGj BggXx||fatty_acid_metabolism||carnitine_O−acetyltransferase xOvKB||respiration||Q RS BgXOS||signal||histidine_kinase xSOgK||Pentose−P_metabolism||x−phosphogluconate_dehydrogenase KIvBS||respiration|| OXK xBIvS||nFiF||hypothetical_protein KIvOB||Krebs_cycle||fumarate_hydratase xBjKS||alcohol_metabolism||alcohol_dehydrogenase xjSgx||respiration||NDTwXS xjxjX||pyruvate_metabolism||pyruvate_decarboxylase KXIXg||transcription||pSS xXIjI||respiration||SDHX KgIIx||respiration||RIPX KBjxB||nFiF||uncharacterized_protein KKXOS||stress_response||peroxiredoxin BIjgj||respiration|| YTX KgKOx||nucleotide_metabolism||thymidylate_kinase xjXSK||fatty_acid_metabolism||trans−S−enoyl− o)_reductase BvXgx||respiration||Q Rx KjKBj||alcohol_metabolism||dehydrogenaseVreductase_SDR KOXSO||RN)_silencing||RN)_dependent_RN)_polymerase Kvvxx||fatty_acid_metabolism||enoyl− o)_hydratase KISXB||respiration||ETFw xSjgx||fatty_acid_metabolism||acetyl− o)_acetyltransferase KSKvj||transcription||regulator_LysR xXxgv||transport||N)D5PR_transhydrogenase xXXvj||transport||porin KXOBj||fatty_acid_metabolism||acetyl− o)_acetyltransferase KxvOx||fatty_acid_metabolism||Hydroxyacyl−co)_dehydrogenase KSBBK||transport||carnitine_carrier xBOOI||amino_acid_metabolism||glutamine_synthetase_III KxOxK||fatty_acid_metabolism||L−j−hydroxyacyl− o)_dehydrogenase xBgxx||fatty_acid_metabolism||acyl− o)_dehydrogenase KISgx||amino_acid_metabolism||succinate−semialdehyde_dehdyrogenase KjIxx||amino_acid_metabolism||succinate−semialdehyde_dehydrogenase Kggjg||nucleotide_metabolism||adenylate_kinase KxgKK||stress_response||peptidylprolyl_isomerase KvgSX||fatty_acid_metabolism||Propionyl−co)_carboxylase xSjvB||Krebs_cycle||citrate_synthase BvvjI||stress_response||peroxiredoxin KxjgB||Krebs_cycle||succinyl− o)_synthetase xOBgg||Krebs_cycle||isocitrate_dehydrogenase KxSIX||Krebs_cycle||malate_dehydrogenase xBKBI||fatty_acid_metabolism||propionyl− o)_carboxylase xSxIX||fatty_acid_metabolism||acetyl− o)_acetyltransferase KIIgS||malate_metabolism||malic_enzyme xSSvj||fatty_acid_metabolism||acyl− o)_dehydrogenase KvBOg||stress_response||superoxide_dismutase xBSjO||Krebs_cycle||aconitate_hydratase_S xBOBg||glyoxylate_cycle||malate_synthase−isocitrate_lyase xjxvK||fatty_acid_metabolism||propionyl− o)_carboxylase xBSSI||malate_metabolism||malic_enzyme KKgjS||)TP_biosynthesis||delta xjOgK||translation||factor_EfG xjxSg||amino_acid_metabolism||isopropylmalate_dehydratase KXjjv||post−translation_process||glycosyltransferase KxjSB||amino_acid_metabolism||S−isopropylmalate_synthase xjxxB||fatty_acid_metabolism||hydroxymethylglutaryl− o)_synthase xBxXK||amino_acid_metabolism||acetolactate_synthase BKIIS||amino_acid_metabolism||glycine_decarboxylase xXIvK||nFiF||clavaminate_synthase xSKOj||amino_acid_metabolism||ornithine_aminotransferase KIKII||amino_acid_metabolism||ketol−acid_reductoisomerase xBxIS||stress_response||HSPgO xXSXK||fatty_acid_metabolism||sterol_XB−demethylase BvvBK||nFiF||unknown_protein xSvOO||transport||transporter BKvSK||carotenoid_metabolism||geranylgeranyl_pyrophosphate_synthase KjvgK||respiration|| )G KBgOS||respiration||NDUF)I KKgXK||respiration||NDUFSS KIxgv||peptide_synthesis||peptide_synthetase BvBjg||)TP_biosynthesis||)TPTwx KSIvO||)TP_biosynthesis||gamma KxIvI||transport||carrier_protein xSSOj||amino_acid_metabolism||glycine_dehydrogenase KxKIg||respiration||pXv xjSjj||)TP_biosynthesis||alpha KIgjv||)TP_biosynthesis||beta xSSBv||)TP_biosynthesis||)TPTwX xKOjO||nFiF||co)_binding_protein KxggI||)TP_biosynthesis||OS P xBOgI||nFiF||hypothetical_protein Bxxvj||nFiF||hypothetical_protein xXISS||amino_acid_metabolism||sulfate_adenylyltransferase BKxIx||)TP_biosynthesis||)TPTwXS jvxxS||)TP_biosynthesis||)TPTwB BBSXj||respiration||epsilon j B K x g v I Value O KO XOO XKO SOO SKO olor7Key and7Histogram ount

AD: Acetate 60mM Dark, AL: Acetate 60mM Low Light, AH:

Ac-etate 60mM High Light, and ED: Ethanol 1% Dark.

S

OME

patterns can be observed. Components of

Krebs and glyoxylate cycles are more abundant in

AH and ED conditions, components of fatty acid/lipid

metabolisms in ED and AL conditions, and

compo-nents of the amino acid metabolism in ED, AD and AH

conditions. Finally, components of the respiration/ATP

synthesis are more abundant in AD condition, while

one half (ATP synthesis) is more abundant in ED

con-dition and the other half (respiration) in AL concon-dition.

Références

Documents relatifs

842 Martineau, R., C. Effects of Lasalocid or Monensin Supplementation on Digestion, 844 Ruminal Fermentation, Blood Metabolites, and Milk Production of Lactating

If environmental and housing conditions are responsible for these differences, the effect on performance are partly associated to the stimulation of the immune system

A total of 6 distinct optical groups were resolved during the whole transect, and the high frequency sampling (15 min) provided evidence for the cellular cycle (based on cyclic

Amino Acid and Fatty Acid Profile of Twenty Wild Plants Used as Spices in Cameroon.. Armand Abdou Bouba 1,* , Roger Ponka 2 , Goudoum Augustin 2 , Nicolas Njintang Yanou 3 ,

Les ressources administratives, patrimoniales, culturelles et scientifiques à l’Université de Genève : définition d’une politique de Ainsi, plusieurs types d’archives

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

La première sélection avait pour intention d’obtenir une large palette d’outils à tester qui correspondent aux critères de sélection, la seconde concernait les

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des