• Aucun résultat trouvé

Towards regenerative and positive impact architecture: A comparison of two net zero energy buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Towards regenerative and positive impact architecture: A comparison of two net zero energy buildings"

Copied!
14
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Sustainable

Cities

and

Society

j o ur n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c s

Towards

regenerative

and

positive

impact

architecture:

A

comparison

of

two

net

zero

energy

buildings

Shady

Attia

SustainableBuildingsDesignLab,DepartmentArGEnCo,FacultyofAppliedSciences,UniveristédeLiège,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16February2016

Receivedinrevisedform23April2016

Accepted23April2016

Availableonline7May2016

Keywords:

Sustainablebuildings

Climatechange

Net-zeroenergy

Embodiedcarbon

Lifecycleassessment(LCA)

a

b

s

t

r

a

c

t

Regenerativedesignholdsgreatpromiseforaneweraofsustainableandpositiveimpactarchitecture, sparkingconsiderableinterestamongarchitects,buildingprofessionalsandtheirclients.However,the translationalarmofregenerativedesigninpracticeisinarelativelyprimitivestate.Althougha num-beroftheoreticaldefinitionsandstudieshavebeeninitiated,theearlyreturnspointtoseveralinherent applicationproblems.Inthisregard,theprofessionalandscientificpotentialofregenerativearchitecture canonlybefullyrealizedbytheidentificationofthekeybarrierstoprojectsdesign,constructionand operation.Inthispaper,wecomparetwostateoftheartbuildingstoaddressthecriticalstepsinthe transitionfromthenegativeimpactreductionarchitecturetothepositiveimpactregenerative architec-ture,utilizinglifecycleanalysis.Thecasestudiesanalysisandcomparisoncanserveasaninspiringeye openerandprovideavisionforarchitectsandbuildingprofessionalsinthefieldsofhighperformance buildingsandregenerativearchitecture.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Theecologicalandeconomiccriseshavebeenpresentformany

yearsnow.Theeconomicsystemisshowingitsweakpointsina

dramaticfashion,unemploymentisgrowingatafastrate,theend

ofourfossilenergyandotherresourcesareapparent.Thereare

morepeoplewhoarebecomingawareoftheconsequencesofthe

climatechangeandthespeedatwhichthebiodiversityis

dimin-ishingisfarbeyondhumanimagination.Historically,buildingsand

architectureinparticularhadacentralmeaningforthesustainable

developmentofthesociety.Remnantsofthebuiltenvironmentof

manyculturessuggestthatarchitectureplayedanimportantrolein

thesocial,economicandenvironmentallife,butareviewofthelast

centuryrevealsthatarchitecturetendedtodiminishinimportance

whileotherformsofdiscourse,suchasthepolitical,economic,

tech-nological,mediahadamoredefinitiveimpactonculture.Looking

todaytothechallengesforplanninganddesignofsustainablebuilt

environmentincluding,carbonemissions,climatechange,human

health,waterproblems,biodiversity,scarcityofresources,

deple-tionoffossilfuel,populationgrowthandurbanization;sustainable

architecturewillplayakeyroleforthesustainabledevelopment

∗ Correspondenceto:UniveristédeLiège,SustainableBuildingsDesignLab,Office

+0/542,AlléedelaDécouverte9,4000Liège,Belgium.

E-mailaddress:shady.attia@ulg.ac.be

ofsocietyasawhole.Citiesandbuildingscanbeseenas

micro-cosms,apotentialtestinggroundformodelsoftheecologicaland

economicrenewalofthesociety.

Buildingconstructionandoperationcontributegreatlytothe

resourceconsumptions andemissionsofthesociety.In Europe,

buildingacclimatizationaloneaccountsforroughly40%ofthetotal

energyconsumption(Huovila,2007).Whentheeffortrequiredfor

construction,maintenance and demolitionaddsup,itis safeto

assumethatroughlyhalfoftheoverallenergyconsumptioncanbe

attributeddirectlyorindirectlytobuildings.Accordingtoestimates

nearlyhalfoftheallrawmaterialsareemployedinbuildings,anda

staggering60%ofallwasteistheresultofconstructionand

demoli-tion.Thegreatsignificanceofbuildingsanddwellingsisevidentin

thewaythebuildingsectoroccupiesinnationaleconomies.Private

householdsspendroughlyonethirdoftheirdisposableincomeon

housing(Eurostat,2012).InWesternEurope,75%offixedassetsare

investedinrealestate(Serrano&Martin,2009).

Thustheresources(land,water,energy,materialsandair)we

needtoprovide fordecenthousingand highquality lifein the

built environment are in decline because they are being used,

exhaustedor damaged fasterthan naturecanregeneratethem.

In the same time, our demand for these resources is growing.

Theindustrialisationexhaustedtheplanet’scarryingcapacityand

destroyedecosystemfunctionsandservices.Populatinggrowthin

manyregionsoftheplanethasbroughtwithittheneedfordecent

housingwithlowgreenhouseemissions,whileinthosecountries

http://dx.doi.org/10.1016/j.scs.2016.04.017

(2)

Nomenclature

AIA Americaninstituteofarchitects

ASES Americansocietyenergysociety

ASHRAE Americansocietyforheatingandrefrigerationand

air-conditioningengineers

BPS Buildingperformancesimulation

DOE U.S.departmentofenergy

EU Europeanunion

EUI Energyuseintensity

GWP Globalwarmingpotential

HVAC Heating,ventilationandairconditioning

IEA Internationalenergyagency

IDP Integrateddesignprocess

IPCC Internationalpanelforclimatechange

LCA Life-Cycleassessment

LCI Life-Cycleinventory

LEED Leadershipinenergyandenvironmentaldesign

MINERGIE-ECO

NRE Non-renewableenergy

NREL Nationalrenewablesenergylaboratory

NZEB Netzeroenergybuildings

PE Primaryenergy

PLEA Passiveandlowenergyarchitecture

PV Photovoltaic

RSF Researchsupportfacility

SHGC Solarheatgaincoefficient

Vlt Visibletransmittance

WWR Windowtowallratio

USGBC UnitedStatesgreenbuildingcouncil

U-value Thermalconductivity

withconsolidatedurbandevelopmentprocessitistheexistingbuilt

environmentthatdemandstransformation.Whensettingoutthe

issueofsatisfyingtheseneeds,wemustconsiderbothlocaland

globalenvironmentallimitations.However,duringthelast50years

architectsandbuildingprofessionalshavebeenmainlyconcerned

byonlyreducingtheenvironmentalimpactofthebuilt

environ-ment(Meadows,Meadows,Randers,&Behrens,1972).Eventoday

thedominantoperatingparadigmtofacetheeconomicand

ecolog-icalcrisisremainsthesamereductionsresourceefficiencybased

paradigm.

Inthiscontext,itisnotenoughtoaspiretomitigatetheeffects

ofhumanactivity.Ontheoppositeweneedtoincreasethecarrying

capacitybeyondpre-industrialconditionstogenerateecosystems

functionsand servicestoreversethe ecologicalfootprint. This

approach is promotedthrough theregenerative paradigm that

seekstodeveloprenewable resourcesinfrastructure anddesign

buildingwith a positive environmental impact. Therefore, this

researchexploresthetwoparadigmsandpresentstwostateofthe

artcasestudiesthatrepresenteachtheefficiencyandregeneration

paradigm.Thepurposeofthestudyistoprovidean

understand-ingofbothparadigmsthroughpracticalexamplesanddemonstrate

tobuildingdesignerstheiradequacyinmeetingthechallengesof

thedesignandoperationofthebuiltenvironment.Theresearch

methodologyisbasedonthelifecycleanalysisandevaluationof

twocasesstudiesthroughcomparison.Comparisonis the

high-est cognitivelevel analysis involving synthesis and evaluation.

ThefirstcasestudyistheResearchSupportFacility(RSF)ofthe

NationalRenewableEnergyLab(NREL) representingthe

reduc-tionistparadigm.ThesecondcasestudyistheGreenOfficeshigh

performancebuildingrepresentativetheregenerativeparadigm.

Thepaperexploresthedifferencebetweentwodifferentparadigms

regardingtheirembodiedenergyandmonitoredperformance.The

comparisonoftwostateofthearthighperformancebuildingsis

valuablebecauseitpermitsresearchestomeasureconstructsmore

accuratelyandasaconsequenceshapeaneffectivetheory-building

ofsustainablearchitecture.Ithelpsustoanswerthemainresearch

questionofthisstudy:Cantheresourceefficiencyandimpact

neu-tralityparadigms help us tosolvetheeconomic and ecological

crisisweareliving?Thejuxtapositionofbothbuildingperformance

resultsallowedtheresearchintoa morecreative,frame

break-ingmodeofthinking.Theresultwasadeeperinsightintoboth

paradigms.Thesignificanceofthestudydocumentsaparadigm

shiftanditsincreasinginfluenceonthearchitecturaland

build-ingdesignandconstructionpracticethroughtwostateoftheart

examples.

Theresultsofthisstudyareconsideredasaneyeopenerand

guidelinesforbuildingprofessionalsincludingdesigners,owners

andarchitects.Theaccurateandspecificdeterminationof

regen-erative characteristicsof buildings can help designersto make

fundamental choicesin thedesign and construction of

sustain-ablearchitecture.Choicesthatachievethermalcomfort,occupant’s

wellbeingsenhancesustainabilitybyworkingtogethertowarda

positivefootprint.Onthelongtermthisarticlecanleadto

refor-mulatingandrethinkingthedefinitionofsustainablearchitecture

whileincreasetheuptakeofpositiveimpactbuildingsinpractice

andconsequentlyleadtoaparadigmshift.Thepaperisdividedinto

sectionsections.Thefirsttwosectionsintroducetheresearch

prob-lemandexplorethehistoricalbackgroundofsustainabilityinthe

architecturalpracticeduringthelastcenturywhilesettinga

defini-tionfornegativeandpositiveimpactbuiltenvironment.Thethird

sectionexplainsthecomparisonmethodologyandtheassumption

usedforthelifecycleassessment(LCA).Then,sectionfourandfive

presentthetwocasestudiesandtheircomparisonresults.Finally,

sectionsixprovidesanextendeddiscussionandconclusiononthe

paperfindings.

2. Definitionsandparadigmshift

Inordertounderstandthechangesthataccruedinthefieldof

architectural,buildingdesignandurbanisationpracticesduringthe

lasthundredyearswemustfollowthehistoryofsustainabilityin

thebuiltenvironment.Wecanclassifythishistoryunderfivemajor

phasesthatshapedthearchitecturaldiscourseandpracticeweare

witnessingtoday.Fouroutoffiveofthosephaseswereinfluenced

mainlybyamajorreductionistparadigmthatdefinedsustainability

forarchitectureandbuildingsdesign.Thereductionistparadigmis

seekingmainlythereductionofnegativebuildingimpactthrough

environmentalefficiency.However,weareonavergeofaparadigm

shiftthatoperatesfromadifferentparadigm.Thefollowing

sec-tionsdescribethehistoricalprogressandphasesofthemodern

sustainablearchitectureandexplorethesustainabilityparadigms

associatedwiththosephases.

2.1. Historicalbackground

Fromthebeginningofthe20thcenturytherehavebeenfive

influentialparadigmsthatshapedsustainabilityinarchitectureand

thebuiltenvironment.Areviewofthelast120yearsrevealsthat

thearchitecturaldiscoursewasinfluencedsignificantlybythe

eco-nomicandecologicalcrisisassociatedwithindustrialisation(see

Table1).Thisclassificationisnotrigidandshouldnotbeinterpreted

asarigidclassificationthatcreatesbordersitisatrialof

categori-sationofthoughtsthataimstoprovideabetterunderstandingof

theevolutionandrelationbetweensustainabilityandthecreation

ofthebuiltenvironment.Thusforthinkingonsustainabilitywe

(3)

Table1

SustainabilityParadigmsinfluencingArchitecturein20thand21thcentury.

Paradigm Years Influencer Paradigm

BioclimaticArchitecture 1908–1968 Olgay,Wright,Neutra Discovery

EnvironmentalArchitecture 1969–1972 IanMcHarg Harmony

EnergyConsciousArchitecture 1973–1983 AIA,Balcomb,ASES,PLEA EnergyEfficiency SustainableArchitecture 1984–1993 Brundtland,IEA,Faust ResourceEfficiency

GreenArchitecture 1993–2006 USGBC,VanderRyn Neutrality

CarbonNeutralArchitecture 2006–2015 UNIPCC,Mazria Resilience

RegenerativeArchitecture 2016–Future Lyle,Braungart,Benyus Recovery

ThefirstparadigmnamedBioclimaticArchitecture was domi-natedbyideasofFrankLloydWright(1906)onorganicarchitecture (Uechi, 2009), Corbusier and Breuer (1906) on sun shading (Braham, 2000), Atkinson on hygiene (Banham, 1984), Meyer

(1926) on thebiological model (Mertins,2007), Neutra (1929)

onbioregionalism(Porteous, 2013), Aalto(1935)onhealth and

precautionaryprinciple(Anderson,2010)untilformulationofthe

Bioclimatic Architecture paradigm by theOlgay Brothers (1949)

(Olgyay,1953).Buildingsofthosearchitectsshowedatendencyof

rationalismandfunctionalismwhilebeingfascinatedbythebeauty

ofnature.Bioclimaticadaptation,hygiene,safetyandthenotionof

experimentalandempiricaldesignwasnotdeveloped.Untilthe

brothersOlgaysetupthefirstarchitecturelabinthe1950ies

com-biningacademicresearchandpractice.Thisiswasamajorchange

thatmovedarchitectureintothescientificworld.

Thesecond paradigmnamed Environmental Architecturewas

dominated by theideas of Ian McHarg (1963) on design with

nature(McHarg&Mumford,1969),Ehrenkrantz(1963)onsystems

design (Ehrenkrantz, 1989), Schumacher (1972)on appropriate

technology (Stewart, 1974) and Ron Mace (1972) onuniversal

design(Thompson,Johnston,&Thurlow,2002).Buildingsofthose

architectsshowedatendencyofinclusivenessofenvironmentand

biologyfromthebuildinginteriortourbanandplanningscale.

Thethirdparadigmfollowedthefirstenergycrisisandwas

dom-inatedbytheideasoftheAmericanInstituteofArchitecture(AIA)

(1972)onenergyconsciousarchitecture(Villecco,1977),the

Amer-icanSolarEnergySociety(ASES)includingtheworkofBalcomb

(Balcomb(1972)onpassiveandactivesolararchitecture(Balcomb,

1992), thePassive and Low EnergyArchitecture (PLEA) society

(1980)andThomasHerzog(1980)(Herzog,Flagge,Herzog-Loibl,

&Meseure,2001).Buildingsofthosearchitectsshowedatendency

ofinclusivenessofsolarandenergysavingdesignstrategies.The

firstideasofenergyneutralbuildingsandrenewableenergy

inte-gratedsystemswereintroducedinseveralbuildingprototypesand

concepts.Theuseof empiricalsimulation andmeasuringbased

techniquetoquantifybuildingperformancewasbasedonenergy

codesandstandardsthatwerecreatedinthisphase.

ThefourthparadigmnamedSustainableArchitecturewas

dom-inatedbytheideasofBrundtland(1987),rangingfromBakeron

sustainabledesigns(Bhatia,1991),Fathy’scongruentwithnature

designstobuildarchitecturefromwhatbeneathourfeet(Fathy,

1973)toSamMockbee.Alongwithmanyothers,theyexpandedthe

purviewofsustainabledesignbyembracingaestheticsandhuman

experienceinadditiontoenvironmentalperformance.

ThefifthparadigmnamedGreenArchitecturewasdominatedby

theideasoftheUSGreenBuildingCouncil(1993)ongreenand

smartdesign,VanderRyn(1995)onecologicalcommunitydesign

(VanderRyn&Calthorpe,1991),ARUP(1996)onintegrateddesign (Uihlein,2014)andFaust(1996)onPassiveHausConcept(Feist

etal.,1999).Withtheemergenceofthisparadigmthegreeningof

architectureproliferatedgloballywithmorecomplexandbroader

environmentalconsiderations(Deviren&Tabb,2014).

Thesix’sparadigmnamedCarbonNeutralArchitecturewas

domi-natedbytheideasoftheKyotoProtocol(1997)oncarbonneutrality

(Protocol,1997)andUNIPCCreport(2006)onclimatechange.The

workofBillDunsteronZeroEnergyDevelopmentandEdMazriaon

the2030Challengehadastrongimpactonarchitecturalresearch

and practice. With theEU 2020 nearly zeroenergy targetsfor

28 memberstates,energy neutralarchitecturebecameareality

embracingresilience,dynamism,andintegration.

In thecoming20 years wewillbe onthevergeofthe

sev-enthparadigmnamedRegenerativeArchitecture.Thisparadigmwill

bedominatedbytheideasofLyle(1996)onregenerativedesign

(Lyle,1996), MichaelBraungartand DonaldMcDonough(2002) (McDonough&Braungart,2010)oncradle tocradledesign and

Benyus(2002)onBiomimicry(Benyus,2002).Weareonaverge

ofaparadigmshiftthatoperatesfromapositiveimpactcreation

throughenvironmentallyeffectivesustainablebuildings.Oneofthe

presentedcasesstudiesinthisreachisashowcaseforapositive

impactcreation.

Inconclusionthisclassificationallowsusidentifytheideasand

trendsinthefieldofsustainabilityofarchitectureandthebuilt

environment.Inthelasthundredyearsarchitecturewasinfluenced

bythesustainabilitydiscourseandmanyarchitecturaland

build-inginnovationsweretiedtoprogressofideaslistedearlier.The

influenceofthesevenphaseswasprofoundonarchitectural

prac-tice,drivenbynewconstructiontechnologiessuchasinsulation

materials,renewable systems and efficient heating and cooling

technologies.Sustainabilityrepresentedavisionfornewpractice

andperformancedrivenarchitectureandresultedinnew

produc-tion and performance calculation indices and methods. Several

paradigmsdominatedthearchitecturalandbuildingpractice.The

mostrecenttwoare:ultra-efficiencyandeffectiveness.Beingin

a transitionalvergebetweenbothparadigms thefollowingtwo

sectionsexplainthedifferentbetweenbothparadigms.

2.2. Negativeimpactreductionviaincreasedefficiency

With the emergence of the ecological and economic crises

duringthelasthundredyearsthearchitectural,engineeringand

constructioncommunityrealizedthenegativeimpactofthe

indus-trializationofthebuiltenvironmentontheplanet.Buildingsare

responsiblefor40%ofcarbonemission,14%ofwaterconsumption

and60%ofwasteproductionworldwide(Petersdorff,Boermans,&

Harnisch,2006).AccordingtotheEuropeanUnionDirective,land

isthescarcestresourceonearth,makinglanddevelopmenta

fun-damentalcomponentineffectivesustainablebuildingpractice(EU,

2003;EEA,2002).Worldwideover50%ofthehumanpopulationis

urban.Environmentaldamagecausedbyurbansprawland

build-ingconstructionissevereandwearedevelopinglandataspeed

thattheearthcannotcompensate.Buildingsaffectecosystemsin

avarietyofwaysandtheyincreasinglyovertakeagriculturallands

andwetlandsorbodiesofwaterandcompromiseexistingwildlife.

Energyisthebuildingresourcethathasgainedthemost

atten-tionwithinthebuiltenvironmentresearchcommunity.Building

materialsareanotherlimitedresourcewithinabuilding’slifecycle.

Incontrasttoenergyandwater,materialscirculatewithinanear

(4)

Fig.1. EvolutionofbuildingenergyperformancerequirementsintheEUandUS.

incurrentbuildingconstructionisextremelylongsincetheywere

millionsofyearsinthemaking.Waterisakeyresourcethat

lubri-catesthebuildingsectoras muchasoildoes. Buildingsrequire

waterduringconstructionandduringoccupancy.Theenormous

negativeimpactsofecologyandthedeterioratingecosystem

func-tionsandservicesandthelargeecologicalfootprint,duetofossil

fuelconsumption andpollution resultedinlargeenvironmental

deterioration.

Asaresultoftheseproblemstheresourcesefficiencyparadigm

dominatedthepracticeaimingtothereduction ofthenegative

impactofthebuiltenvironment.Forexample,theenergycrisisin

1973resultedinthedevelopmentofenergyefficiencymeasures

inthebuiltenvironment.TheInternationalEnergyAgency(IEA),

EuropeanUnion(EU)andtheAmericanSociety forHeatingand

RefrigerationandAir-conditioningEngineers(ASHRAE)legalized

andpublishedstandardsandperformancetargetsfortheenergy

consumptionofbuildingshaveimprovedbyafactoroffivetoten

since1984(seeFig.1)(EU-Directive,2005).Intryingtoachievean

environmentalfriendlybuiltenvironmentthroughreduction,the

sustainablearchitecturalandbuildingpracticeforaresource

effi-ciencygoalsmeaningtoreducetheconsumptionanduseresources

efficiently.However,thechangesthatinfluencedthefieldemerged

allfromanefficiencyparadigmfocusingonthereductionofthe

useofdepletingorpollutingresources.Eventhezeroenergy

build-ingsandzerocarbonbuildingsgoalsthatseekmaximumefficiency

derivefromthenotionofneutralizingtheresourceconsumption

anddefinethisaszeroenergyconsumption(Marszal&Heiselberg,

2009).Infact,the“breakeven”approachisverylimited.Restricting

thebuildingimpactboundariesto‘zero’or“netzero’ismisguided,

the‘zero’goallimitsachievinglong-termsustainablebuilding

prac-tices.Ifenergygeneratedonsiteprovetobeanabundantresource,

whythenshouldwelimitourobjectivestozero?Moreover,the

efficiencyparadigmdiscouragesthepotentialtoreachfossilfuel

independentbuildings. Thedeclineintheavailability ofoil,gas

andcoalandthedangerofnuclearenergymeansthatthecostof

blackfuelswillbecomeincreasinglyvolatile.Peakoilwillhavea

hugeimpactthroughouttheeconomy.Thustheenergyefficiency

paradigmhasreacheditslimitbyproposingzeroenergyorzero

emissionsasthe‘holygrail”,becausethisreductionist approach

operateswithinablackfossilfuelparadigmthatdoesnotrecognize

theimportanceofrenewable,regenerativeresourcesandbuilding

designmechanismthatcanreversetheclimatechangerootcause.

Withtheadventofthe2013IPCCreportitbecameevidentto

thescientificandpubliccommunitythattheefficiencyparadigm

isfailingtosolvetheproblem.Eveninarchitecturewewitnessed

severalmanifestationsregardingitschangingroleandcrucial

char-actertooursurvival(seeTable1).Theacceleratedimpactofclimate

changeandtheincreasingnegativeimpactofthebuiltenvironment

areexceedingtheplanetscapacitybysixtimes(Stevenson,2012).

Theefficiencyparadigmcannolongerfacetheproblem.Weneedto

reversethenegativeimpactofthebuiltenvironmentandgobeyond

theefficiencyparadigm.

2.3. Positiveimpactviaincreasedregenerativeeffectiveness

Fromthediscussionabovewecanconcludethattheincreasing

populationgrowthandecologicaldestructionrequiresincreasing

theecologicalcarryingcapacitybeyondpre-industrialconditions.

Wearelookingforsustainablepositivedevelopmentthat

incorpo-ratemaximizingtheviabilityofharnessingrenewableresources

andbecomeindependentfromdepletingandpollutingresources.

Inorder,toachievepositivebuildingfootprintwemustmovefrom

thecradletograveparadigmthataimstoreduce,avoid,minimize

orpreventtheuseoffossilenergytoaregenerativeparadigmthat

aimstoincrease,support,andoptimizetheuseofrenewable(Lyle,

1996).AsshowninFig.2,thepreviousefficiencystrategieshave

beenoperatingwithinacarbonnegativeorneutralapproachthat

willneverreachapositiveandbeneficialbuildingfootprint.Even

theexistingnetbalanceapproachassumesafundamental

depen-denceonfossilfuels.Therefore,wedefinethepositiveimpactof

thebuiltenvironmentfromarenewableself-efficiencyparadigm.

Aregenerativesustainablebuildingseeksthehighestefficiency

inthemanagement of combinedresourcesand maximum

gen-erationofrenewableresources.Itseekspositivedevelopmentto

increasethecarryingcapacitytoreverseecologicalfootprint(see

Fig.3).Thebuilding’sresourcemanagementemphasizesthe

viabil-ityofharnessingrenewableresourcesandallowsenergyexchange

andmicrogenerationwithinurbanboundaries(Attia&DeHerde,

2010,2011).Overthepastyears,regenerativepositive

develop-ment paradigmhasbeengarnering increasing influenceonthe

evolutionof architecture.Theprogress isdramatic:plusenergy

plus,earthbuildings,healthybuildings,positiveimpactbuildings.

Thisnewwayofthinkingentails theintegrationofnatural and

humanlivingsystemstocreateandsustaingreaterhealthforboth

accompaniedtechnologicalprogress.

3. Methodology

Inordertoanswertheresearchquestioninbroadtermsonthe

effectivenessoftheefficiencyparadigmversustheeffectiveness

regenerativeparadigmitisimportanttobuildtheoryfromcase

studies.Twospecificcasestudieswereselectedtorepresentthe

paradigms.Welookedforselectingtwoappropriatehigh

perfor-mancebuildingswithextraneousvariationstodefinethelimitfor

generalisingthefindings.Thetwoselectedbuildingsprovide

exam-plesoftwopolartypesclassifiedasstateofthearthighperformance

buildingsinUSandSwitzerland.Thegoaloftheselectiontochoose

caseswhicharelikelytoreplicate.IndeedtheUScaseisLEED

Plat-inumzeroenergybuildingandtheSwisscaseisaMINERGIE-ECO

ecologicalbuilding.Thecomparisonfocusedmainlyonenergy

dur-ingthephaseofconstruction,operationanddemolitioninorderto

avoidtheoverwhelmingvolumeofdata.Thetwocasesweremeant

tobeusedasasourceforafirmerempiricalgroundingforanswer

(5)

Fig.2. Paradigmshifttowardsabeneficialpositiveimpactfootprintofthebuilt.

Fig.3. Aregenerativesustainablebuildingseeksthehighestefficiencyinthemanagementofcombinedresourcesandamaximumgenerationofrenewableresources.

• Screeningandanalysingbothbuildingsothat wecanseethe

magnitudeofimpacts.

• PerformingadetailedLCAespeciallyforcarbonemissionsand

primaryenergy.

Forthefirstpartofthestudymultipledatacollectionmethods

werecombinedtocomparethetwocasesstudies.Thedata

col-lectionincludedliteraturereviews,interviews,observations,field

studiesand accesstosimulationmodelsand monitored

perfor-mancedata.Theresearcherhadthechancetointerviewthedesign

teamsand visitbothbuildingsand performforbothbuildingsa

modellinganalysisandpostoccupancyevaluation.

3.1. Lifecyclestandardsandsystemboundary

Thesecondpartofthestudycomprisedalifecycleassessment

analysis.Theinterestinevaluatingenergyuse,consumptionof

nat-uralresourcesandpollutantemissions,especiallyfornewandlow

energybuildingsisincreasing(Hernandez&Kenny,2010;Leckner

(6)

impactsofbuildingsismaterialsandresources.Accordingtothe

USGBCProjectsDatabasematerialscountfor35%ofthetotalenergy

consumedduringthebuildinglifecycle(Turner,Frankel,&Council,

2008).Amorerecentstudypointedoutthatembodiedenergycan

beupto60%ofthebuildinglifecycle(Huberman&Pearlmutter,

2008).Therefore,weoptedforalifecycleassessmenttocompare

theenergyconsumption,materialembodiedenergyandCO2

emis-sionsaccordingtoISO14040and14044standards(ISO14040ISO,

2006;ISO14044ISO,2006;Vogtländer,2010).

TheCEN/TC350“SustainabilityofConstructionworks”standard

recommendsconsiderationoffourlifecyclestagesforbuilding:

productstage(rawmaterialssupply,transportandmanufacturing),

constructionstage(transportandconstructioninstallationonsite

process),usestage(maintenance,repairandreplacement,

refur-bishment,operationalenergyuse:heatingcooling,ventilation,hot

waterandlightingandoperationalwateruse)andend-lifestage

(deconstruction,transport,recycling/re-useanddisposal)(Blengini

&DiCarlo,2010;CEN,2005).Table2illustratesthelifecycle

sub-systemsconductedforthisstudy.Tofacilitatethecomparisonof

resourcesforarchitectsweclassifiedouranalysisunderenergyuse

(operationalenergy)materials(embodiedenergy).

3.2. Functionalunit,year,toolsandindicators

Thefunctionalunittocomparebothbuildingswas1m2/year.

Forthecalculationmodelweexpectedtheoccupancyfor100years.

InSwitzerlandtheusualvalueofLCAlifetimeis100years.

Numer-ousexamplesofusingLCAfor100yearscanbefound(Fay,Treloar,

&Iyer-Raniga,2000;Bribián,Capilla,&Usón,2011;Pajchrowski, Noskowiak,Lewandowska,&Strykowski,2014).Alsoglobal

warm-ingpotentialareavailablefordifferenttimehorizons,andachoice

of100yearsisusuallyassessedonthisbasis(Forsteretal.,2007).

ThecradletograveLCAwasmadeonthebasisofdirectlycollected

datafromthedesign-buildteamsandintegratedwithliterature

data.Aninventorydatasetformaterialswasdevelopedand

com-pletedusingtheEcoinvent2database.Thelifecycleinventorywas

performedusingtheSimaPro7softwareapplications.Inorderto

calculatetheenvironmentalimpactresultedfromthebiogenicCO2

circulation,anapproach ofCO2storageinthebuildingsfor100

yearswasused.Thenegativevaluesoftheglobalwarming

indica-torresultswereobtainedforacradle(forest)andpositiveonesfor

thefinaldisposalstageofwoodenwaster(incinerationandreuse).

TheLCAindicatorsweresummarizedinagroupofthreeenergy

andenvironmentalindicatorsasfollow:

• Primaryenergy(PE),asanindicatoroflifecycleenergyuse

• Non-renewableenergy(NRE),asthenon-renewablepartofPE

Globalwarmingpotential(GWP),asanindicatorofgreenhouse

emissions,includingthecontributionofbiogeniccarbondioxide.

BiogenicCO2iscapturedinbiomassduringthegrowthofaplant

ortreeand,consequently,inabiologically-basedproduct.

3.3. Lifecycleinventory

Within the scope of the LCA an inventory have been

cre-ated,which referred tobuildingmaterialsofthefourlife cycle

stagesmentionedearlier.Duringdatacollection,theexpertiseof

architectsandbuildingengineershavebeenusedextensivelyas

describedinTable2.FortheCaseStudy1and2theasbuilt

draw-ingswereusedtosizemostbuildingfeaturesandtheirsizeand

weight.Theenergyconsumption wascollectedfrommonitored

databetween2010and2014andsimulatedintwomodelswith

thesamelegislativerequirements(inSwitzerlandandtheUS)of

envelopeandHVACsystemstoneutralizetheclimaticvariability

andestimateaverageoperationenergyusingEnergyUseIntensity

(EUI)Index.Themaindifferencebetweenbothcasestudiesisthose

relevanttothebuildingmaterial,envelopethicknessandtypeof

insulationandglazing.AlsotheHVACsystemsareverydifferent

andthefueltypehasdifferentassociatedcarbonemissions.The

simulationmodelshelpedinelaboratingthebuildingcomponents

andweightsandlaterfeedintheEcoinventdatainventory.

Table3listsdataconcerningtheweightofmajorbuilding

mate-rialsforbothbuildings.Byinspectingthematerialstructureofthe

RSFwecanseethatconcreteisdominatingthetotalbuildingweight

reachingalmost80%oftheweightshare.Theprecastpanelsthat

makeuptheexteriorwallsoftheRSFwerefabricatedinDenver

usingconcreteandaggregatefromColoradosources.Thebuilding

cores,basementthermallabyrinthandbasementandfloorslabs

areresponsibleforthishighvalue.Thisincludesrecycledrunway

materialsfromDenver’sclosedStapletonAirportusedfor

aggre-gateinfoundationsandslabs).Metalsrepresent4%andinclude

steelbarsforconcretereinforcementandreclaimedsteelgaspiping

usedasstructuralcolumns.InthecaseoftheGreenOffices

build-ingmaterialsarealsodominatedbyconcreteproducedfromalocal

concretemixingplant30km fromthesite.Concretehasalmost

thehighestweightshareconstitutingmainlyfoundations.Wood

isthesecondmostcommonmaterialreachingalmost14%.Table4

presentsthebasicassumptionsrelatedtothedurabilityofelements

subjecttoreplacementandrepairs.Flooringandfinishingiscarried

outwiththehighestfrequencybutitwasassumedthatthe

previ-ousfinishinglayersarenotremovedbeforesubsequentpainting.

Woodendoorsandwindowsaresubjecttoreplacementandare

calculatedwithintheusestage.Theassumptionsincludethe

cal-culatedmassflowsofmaterialsandwastegeneratedin100year

periodandresultingfromthereplacementandrepair.

3.4. Limitations

AlthoughISO14040recommendsthatLCAsendwithasetof

mid-pointenvironmentalindicatorsweproposedthenarrowset

ofindicatorslistedabove.Architectsoftenexpresstheirneedfor

practicalandsimple performanceindicatorsthatmightsimplify

thedecisionmaking.TheLCAscopewaslimitedtothesubsystems

mentionedinTable2.Alsowehadlimitedquantitative

informa-tionontheactualdemolitionprocess.Therefore,wereferredto

few studiesthat containsomequantitativeand methodological

informationontheroleofend-of-lifeinbuildingsintheUSand

Switzerland(BAFU,2016;Thormark,2002,2006;Werner&Richter,

2007;Spoerri,Lang,Binder,&Scholz,2009;Boschmann&Gabriel, 2013;Spiegel&Meadows,2010).

For this study we excluded water installations and sewage

installation including roof gutter systems were excluded from

the study. Also the damage categories such as human health,

ecosystemquality,climatechange,resourcesandimpactcategories

(carcinogens,non-carcinogens, respiratory inorganics, ionising

radiation, ozone layer depletion, respiratory organics,

aquter-restrial ecotoxicity, terrestrial acidification/nitrification, land

occupation, aquatic acidification, aquatic eutrophication, global

warming,atic ecotoxicity) wereexcluded. Needless to say,the

energymixofbothbuildingswastakenintoaccountforcalculations

inregardtotheelectricitymixandwillbeelaboratedinfollowing

casestudiessections.

4. Casestudies

The selection of both case studies was based on their

sim-ilar office function and the awards they received in the USA

and Switzerland.Both projectsrepresentthe excellencein

sus-tainable architecture and green construction in their countries

(7)

Table2

Lifecyclephasesanddatasources.

Lifecyclephase Subsystem Casestudy1 CaseStudy2

ProductStage −Shellandbuildingservicesmaterials production

−Quantitiesestimatedfrombuildingdrawings −Quantitiesestimatedfrombuildingdrawings −Analysisincludegrossamount,i.e.including

themateriallossduringbuildingprocess

−Literaturedata(Guggemosetal.,2010) −UnpublisheddatafromUniversityde

Lausanne(Lehmann,2011)

−Inventoryinformationprocessformost

materialshasbeencollectedfromecoinvent

database.

−Inventoryinformationprocessformost

materialshasbeencollectedfromecoinvent

databasewithexceptionofwoodandcellulose

insulationforwhichspecificdatahavebeen

available.

−TransportationandBuildingProcess −Informationaboutthetypeofmeansof

transportusedfortransportingindividual

typesofbuildingmaterialshasbeenbasedon

personalcommunicationwithDesign-Build

team

−UnpublisheddatafromUniversityde

Lausanne(Lehmann,2011)

−Distancesfromtheproductionlocationfor

themainmaterialstothebuildinglocation

basedoncalculatedweight

−Distanceshavebeencalculated −Distanceshavebeencalculated

−Typeoftransportandmeansoftransport −Informationaboutthetypeofmeansof

transportusedfortransportingindividual

typesofbuildingmaterialshasbeenrevised

throughapresentationofthearchitect

ConstructionStage −Constructionofbuildingcomponentsand

constructionofthewholebuilding

−Assumptionsaboutconstructionmachinery

havebeenmadebasedontheliterature

−Assumptionsaboutconstructionmachinery

havebeenmadebasedonconsultationwith

architect

−Energyconsumptionbyconstruction

machinery

−Calculatedwiththesoftwareapplication

SimaPro

−Calculatedwiththesoftwareapplication

SimaPro

UseStage −EnergyuseforHVAC −Literature(USDOE,2012)andmonitored

datafromNREL(CarpenterandDeru.,2010)

−Literature(Lehmann,2011)andmonitored

datafromarchitectConradLutzbetween2010

and2014

−Energyuseforlightingandplugloads −DataconcerningHVAChavebeencollected

between2010–2014

−Asimplesimulationmodelwascreatedto

assesstheenergyconsumptionandfuel

breakdownandneutralizetheclimate

varaiablity

−Asimplesimulationmodelwascreatedto

assesstheenergyconsumptionandfuel

breakdownandneutralizetheclimate

varaiablity

End-of-lifeStage −Dismantling,demolition,

recycling/reuse/landfill

−Literaturedata(CarpenterandDeru.,2010) −Literature[(BAFU,2016)]andunpublished

datafromUniversitydeLausanne(Lehmann,

2011)

−Typeofwastedisposal −Typeodmeansoftransportusedfor

transportingbuildingmaterialshasbeenbased

onliterature

−Typeodmeansoftransportusedfor

transportingbuildingmaterialshasbeenbased

onliterature

−Distancesfromdemolitionsitetothefinal

disposalsites

−Typeoftransportandmeansoftransport

Table3

Weightshareofmaterialgroupsintheanalysedbuildings.

BuildingMaterialCategory RSF GreenOfficea

Amount[kg] Share[%] Amount[kg] Share[%]

Concrete 32500000 79 788650 73.4

Brick – – 10890 1

Gravel 6000000 14.6 50000 4.6

Ceramics 84000 0.2 – 0

Mineralbindingmaterials 82600 0.2 2000 0.1

Woodandwoodbasedmaterials 10000 0.2 144200 13.5

Insulationmaterials 110000 0.3 55000 5.1

Metals 1904762 4.7 12600 1

Glass 53460 0.1 5680 0.05

PaintsandPreservatives 48240 0.1 1340 0.1

PlasterandGypsumboard 229680 0.5 2000 0.1

aAnnex1.1Lehmann(2011).

Minergie-P-ECO. The RSF received the award of Excellence for

GreenConstructionfromtheAmericanConcreteInstituteAIA.Also

itreceivedthe2011AIA/COTETopTenGreenProjectAward.The

GreenOfficereceivedtheWattd’Or2008andPrixLignumHolzpreis

2009inSwitzerland.Moreinterestingly,bothprojectsrepresent

thereductionistandregenerativeparadigmandareseenaspilot

projectsbytheprofessionalcommunitiesintwodifferent

(8)

Table4

Durabilityofelementssubjecttoreplacementandrepairsin100years.

Building RSF GreenOffice

Inventoryelement Durability[years] Numberofreplacements Durability[years] Numberofreplacements

Constructionelements 100 0 100 0 Windows 25 3 25 3 Internaldoors 30 3 30 3 Externaldoors 30 3 30 3 Woodflooring – – 50 1 HeatingInstallations 30 3 30 3 Ceramictiles 20 4 20 4 Electricinstallations 50 1 50 1 Ventilationsystem 25 3 25 3 Roofing 50 1 50 1 Roofinsulation 50 1 50 1 Wallsinsulation 60 1 30 2 BuildingFacade 60 1 60 1

Paintinginternalwalls 5 19 5 19

Paintingexternalwalls 25 3 25 3

VarnishingofFloors 25 3 25 3

PVpanels 30 2 30 2

4.1. Casestudy1:efficiencyparadigm

Theresearchsupportfacility(RSF)isa stateof theart office buildingtohost researchers of theNational RenewableEnergy (NREL)Lab.TheRSFinGolden,Coloradowasdesignedand con-structedbetween2006and2010,afteraprocessofproposalscalls andselection.Thevisionoftheselectedprojectoperateswithinthe energyefficiencyparadigmaimingtobuildanenergyneutraloffice buildingor aNZEB.The designbriefemphasizedan integrative designapproachtodesign,buildandoperatethemostenergy effi-cientbuildingintheworld.Thecallhadadesign-buildacquisition strategythatconnectsthebuildingtotheelectricitygridforenergy balancethroughapowerpurchaseagreement.TheDesign-Build TeamcomprisesHaseldenConstruction,RNLArchitectand Stan-tecasSustainabilityConsultantandMEPengineering.Thedesign processinvolvedanintegrativeapproachlookingto:

1avoidneedsforenergybyintegratingpassiveheatingandcooling andventilation;

2improveenergyefficiencyand

3incorporaterenewableenergyandgreenpower.

Thebuildingislocatedinlatitude39.74andlongitude−105.17 andis151mabovesealevel.Thesitereceives660mmofrainper yearwithanaveragesnowfallof1371mm.Thenumberofdays withanymeasurableprecipitationis73.Onaverage,thereare242 sunnydaysperyearinGolden,Colorado.TheJulyhighisaround 30◦andJanuarylowis−8whilehumidityduringthehotmonths,is a58outof100.Thebuildingisa20.400squaremeterhosting800 person.Thebuildingenergyuseintensityhadtoperformlessthan 80kWh/m2/yearandadditional20kWh/m2peryearwasallowed foralargedatacentrethatservestheentireNRELCampus.TheRSF facilityhadtoperform50%betterthatASHRAE90.1-2007energy performancerequirements.Theprojectisanetzeroenergy build-ingandobtainedtheLEEDPlatinumCertificate(V.2)andEnergy StarPluscertification.Thedesignbriefalsorequiredmaximumuse ofnaturalventilationand90%offloorspacefullydaylit.

Withthehelpofbuildingperformancesimulation(BPS)several passivedesignstrategieswereoptimized.Thebuildingformand masswasshapedtohostthemainbuildingfunctionsinfluenceby anenergysavingapproach.TheRSFbuildinghastwowingssized andpositionedtoallownaturalventilationandlighting.The orien-tationofthetwowingsiselongatedontheeast-westaxetoallow aneasycontrolofsolaraccessduringsummer.Toachieveenergy

performancegoals,theworkspacelayoutisopen,withlowcubicle wallsandlight-colouredfurniturethatallowairtocirculateand daylighttopenetrateintothespace.Theaspectratiois13.5andthe windowtowallratiois25%withalow-etriplevisionglazing (U-value0.17,SHGC0.22).Thedaylightglassisalow-edoublepaneday lightingglazing(U-value0.27,SHGC0.38,Vlt65%).Theenvelope comprisesmodularstructuralinsulatedpanelsof2.5cmexterior concretewithrigidfoaminsulation(polyisocyanurateR-13)and aninternalthermalmassof15cminteriorconcrete.

Regardingactivesystemsthebuildinghasahybridoperating system.Thevisionglassismanuallyoperableandgets automati-callycontrolleddependingonindoorandoutdoorenvironment.A radiantheatingandcoolingsystemisinstalledintheroofslab. Nat-uralventilationisachievedduringdaythroughmanualwindows controlandduringnightthroughautomatedcontrolfornight cool-ingandthermalmassactivation.Mechanicalventilationisdemand basedandairisdisplacedthroughanunderfloorairdistribution system.Aheatrecoverysystemisinstalledonoutsideairintake andexhaustfromrestroomsandelectricalrooms.Thewhole build-ingenergyuseis283continuouswattsperoccupant.Laptopsof 60Wwith35Wthinscreensareusedinworkspaces.Theartificial lightingsystemisbasedonmotionanddaylightintensitysensors. SensorcontrolledLEDtasklightof15Wareusedforworkstations lighting.AthirdpartyownedpowerpurchaseagreementPPA pro-videdfullrooftoparrayof1.7MWofmono-crystallinepanelsof17% efficiency.Thecurrentpowerpurchasedfromafossilmix(60%coal, 22%fromnaturalgas,and18%fromrenewableenergyresources (EIA,2014)).

The construction life-cycle stage included the full

construc-tionofthebuilding.FortheLCAdatafromaproprietaryAthena

Institutedatabasewasusedfortheconstructionofsimilar

commer-cialstructuralsystems(precastconcrete, cast-in-placeconcrete,

andstructuralsteel),aswellaslayersofvariousenvelope

mate-rialsand interior partitions. Annual energy usewas calculated

usingNREL monitoringresults. Themaintenance stageincludes

repairandreplacementofassembliesandcomponentsof

assem-blies throughout the study building’s service life. The primary

sourceofinformationwastheAthenareport,Maintenance,Repair

and Replacement Effects for Envelope Materials (2002).

Stan-dardrecommendationsarebasedondecadesofbuildingenvelope

experience,manufacturers’installationinstructions,material

war-ranties,andindustrybestpractice.Genericindustryassociations’

dataandpublicationsandNorthAmericanindustrypracticeswere

(9)

AliteraturereviewandInternetsearchwasconductedbutlittle

detailedinformationregardingconstructionanddemolitionwaste

management practices inDenver urban centrewere foundand

furtherconsideredinthis study.End-of-lifescenarios arebeing

forecastupto100years.Amorecomprehensivedescriptionofthe

productionprocessesandtablesfortheothervarietiescanbefound

in(Guggemos,Plaut,&Bergstrom,2010).Thedetailedcarbon

foot-printaswellasenvironmentalimpactofthevariousprocessesfor

producingtheconcreteconstructionsystemisprovided.

4.2. Casestudy2:regenerativeparadigm

Thevisionoftheselectedprojectwastobuildthemost

eco-logicalandregenerativeofficebuilding.ApproachedbytheFrench

StatethearchitectConradLutzwasaskedtodesignandconstruct

anecologicallyoptimalbuildingwithapositiveimpact.TheGreen

OfficebuildinglocatedinGivisiez,Switzerlandwasdesignedand

constructedbetween2005and2007.Thebuildingislocatedin

lat-itude46.81andlongitude7.12andis99mabovesealevel.The

sitereceives1075mmofrainperyearwithanaveragesnowfallof

627mm.TheJulyhighisaround25◦andJanuarylowis−1while

humidityduringthehotmonths,isa69outof100.Thebuilding

pro-videscommercialofficespacesforcompaniesworkinginthefield

ofsustainabledevelopment.Thebuildinghasthreefloorswitha

totalareaof5391squaremeterandisthefirstMINERGIE-P-ECOin

Switzerland.Thebuildingenergyuseintensityhadtoperformless

than25kWh/m2/yearand10W/m2forthermalairheatingshould

notexceed.Thedesignprocessinvolvedanintegrativeapproach

lookingto:

1avoidneedsforenergybyintegratingpassiveheatingandcooling

andventilationwithafocusoncompactness;

2improve energy efficiency and trace the impact of energy

resources

3SequestrationthecaptureandstorageofCO2inthe

construc-tionmaterial

Thehighthermalinsulationofwalls,ceilingsandfloorandtriple

glazing wasthearchitect’s passivestrategy toreduce theneed

forbuildingheating.Thevalueu-valueoftheroofis0.10W/m2K,

fac¸ade 0.11W/m2K,windows0.5W/m2Kandfloors 0.10W/m2K

achievedthroughwoodfibreinsulation.Thebuildingformis

opti-misedtoincreasecompactnessandreducetheenvelopesurface

areaandreduceheatlosses.Thebuildingresemblesacubewith

avolumeof5291m3andcomprisesinternalpartitionsthatallow

severalcompaniestosettle,shareandgrow.Naturallightwas

opti-mizedusingdaylightsimulationforoptimalnaturallightingand

avoidanceofoverheatingduringsummer.Theheatingsystemisa

pelletstovewithunderfloorheating.Freecoolingusingan

under-groundtubethatworksaspassiveheatexchanger(puitscanadien)

isusedinsummerthroughventilation.Thehotwaterisproduced

withsolarthermalpanelsandthecurrentpowerpurchasedfroma

renewablemix(60%wind,37%hydro,solar3%(Lehmann,2011)).

However,theroofispreparedforelectricityproductionandwillget

equippedwith270m2Photovoltaic.Theexpectedenergy

genera-tionshouldexceed30%ofthebuildingelectricalenergyneedsand

exporttheadditional305tothegrid.Theplugloadsarecontrolled

buyelectricitycutoffpolicyandallusedequipmentandappliances

includingflatscreensareenergystarrated.

Theconstructionlife-cyclestageincludedthefullconstruction

ofthebuilding. FortheLCAdatafromeconinventdatabasewas

usedfortheconstructionofsimilarcommercialstructuralsystems

(timberand cast-in-placeconcrete),aswellaslayersofvarious

envelopematerialsandinteriorpartitions.Woodwascutin

Sem-sales Region. The raw wood was transported on a direct path

toGivisiez,whilethelaminated timbermade alongthewayto

Burgdorf.ThedistanceshavebeencalculatedfromSwitzerland’s

maps.Mostmaterialsourceswerelocatedbasedonthearchitect’s

identificationofproductsnamesandtheirmanufacturer.Annual

energyusewascalculatedusingGreenOfficesmonitoringresults

(Lehmann,2011).Today,mostmaterialsareburiedattheendof

lifeofabuildinginSwitzerland.ForGreenOffices,thetimber

con-structionandcelluloseinsulationwasassumedtobeburnedina

municipalincineratorforelectricitygeneration,andtheother

dis-trictheating.In100years,theefficiencyofenergyrecoverymaybe

increasedbyreusingtimberaschipsorpelletsinheaters.Concrete

wasassumedtobeburiedintheground,orbecrushedforreuse

asgravelunderroadsorunderconstruction.Manufacturers

indi-catedthatglasspanesarenotrecycledinSwitzerland,butburied

withotherconstructionwaste.Genericindustryassociations’data

andpublicationsandSwissindustrypracticesweretakenin

con-siderationtomodel theend-of-life stagescenarios. Aliterature

reviewandInternetsearchwasconductedbutlittledetailed

infor-mationregardingconstructionanddemolitionwastemanagement

practicesintheSwissurbancentreswerefoundandfurther

con-sideredinthisstudy.End-of-lifescenariosarebeingforecastup

to100years. Amorecomprehensivedescriptionofthe

produc-tionprocessesandtablesfortheothervarietiescanbefoundin

(Lehmann,2011).Thedetailedcarbonfootprintaswellas

environ-mentalimpactofthevariousprocessesforproducingthetimber

constructionsystemisprovided.

5. Results

TheresultsoftheLCAappliedtotwohighperformancebuildings

intheUSandSwitzerlandishighlightedbelow.Whenassessing

thesustainabilityandenvironmentalperformanceofhigh

perfor-mancebuildingsitisveryimportanttouseuniversalindicatorsand

considercarefullyalllifecyclephasesandsubsystems.

5.1. Casestudy1:efficiencyparadigm

TheResearchSupportFacilitiesBuilding(RSF)attheNational

RenewableEnergyLaboratory(NREL)inGolden,Coloradoachieved

a67%reduction inenergyuse(excludingthesolarPVoffset)at

zeroextra costfor theefficiency measures,asthedesign team

wascontractuallyobligedtodeliveralow-energybuildingatno

extracost(Torcellini,Pless,Lobato,&Hootman,2010).Torcellini

andPless(Pless&Torcellini,2012)presentmanyopportunitiesfor

costsavingssuchthatlow-energybuildingscanoftenbedelivered

atnoextracost.Otherexamplesoflow-energybuildings(50–60%

savingsrelativetostandardsatthetime)thatcostlessthan

conven-tionalbuildingsaregiveninMcDonell(2003)andIFE(2005).New

Buildings Institute(2012) reports examples of net-zero-energy

buildingsthatcostnomorethanconventionalbuildings.Evenwhen

low-energybuildingscostmore,theincrementalcostsareoften

smallenoughthattheycanbepaidbackinenergycostsavings

withinafewyearsorless(Harvey,2013).Thekeystodelivering

low-energybuildingsatzeroorlittleadditionalcostarethrough

implementationof theIntegrated Design Process(IDP) and the

design-bid-buildprocess.Vaidyaetal.(2009)discusshowthe

tra-ditional,lineardesign processleadstomissedopportunitiesfor

energysavingsandcostreduction,oftenleadingtotherejection

ofhighlyattractiveenergysavingsmeasures.

5.1.1. Energy

The building energy consumption and production has been

monitoredsinceitsconstruction.Theaverageannualconsumption

is109kWh/m2/yearincludingdatacentreserving1325occupant.

(10)

5.1.2. Materials

Materials used in the RSF contain recycled content, rapidly

renewableproducts,orwereregional,meaningtheywereprocured

withina500-mileradiusofGolden(DOE,2012).Theprecastpanels

thatmakeuptheexteriorwallsoftheRSFconsistoftwoinchesof

rigidinsulation(R-14)sandwichedbetweenthreeinchesof

archi-tecturalprecastconcreteontheoutsideandsixinchesofconcrete

ontheinside.Thepanels,whichwerefabricatedinDenverusing

concreteandaggregatefromColoradosources,constitutethe

fin-ishedsurfaceonboththeinsideandoutsideofthewallexceptthat

theinteriorisprimedandpainted.Woodoriginatesfrompinetrees

killedbybeetlesusedforthelobbyentry.Recycledrunway

mate-rialsfromDenver’sclosedStapletonAirportareusedforaggregate

infoundationsandslabs.Reclaimedsteelgaspipingwasusedas

structuralcolumns.About75%ofconstructionwastematerialshave

beendivertedfromlandfills(DOE,2012).Table4summariesthe

mid-pointenvironmentalindicatorsrelevant tothelife cycleof

theRSF.Preuseandmaintenanceimpactsarehigherthanthose

relevanttotheusephase.

5.2. Casestudy2:regenerativeparadigm

The building complies with the MINERGIE-ECO® certificate

which is a complementarystandard tothat of MINERGIE® and

MINERGIE-P®seekingtoensure,inadditiontoabuilding

satisfy-ingtheenergyefficiencyrequirements,ansoundenvironmentally

friendlyconstruction.

5.2.1. Energy

The building energy consumption and production has been

monitoredsinceitsconstruction.Theaverageannualconsumption

is8forheatingplus28kWh/m2/yearforelectricity.Abuildingof

thesamesizewouldhavetherighttoconsume25kWh/m2/yearfor

heatingaccordingtoMINERGIE-P®standard.Thetotalimpactofthe

buildingwouldberelativelylowwhencomparedwithother

build-ingssamefunctionalunit.Buildingmaterialsandrenewablesource

ofheatingdecreasemainlytheimpactonresourcesandclimate

change.

5.2.2. Materials

Therequirementsforhumanhealthandtheimmaterialimpact

ontheenvironmentareobligatory.Thereforethearchitectused

woodasrawmaterialsthatiswidelyavailableandwiththeleast

possibleimpactontheenvironment.450cubicmeterofwoodwere

transportedfroma20kmclosewoodforest.Theforestwoodis

sus-tainablymanagedandeachtreewasselectedexplicitlywiththe

lowerpossiblemoisturecontenttoreducetheenergyofthewood

kiln.AsshowninFig.4,theuseofwoodresultedinacarbon

nega-tivefootprint.Bycarbonnegativewemeananegativeoutcomeof

thecarbonfootprintofwood,i.e.whencarboncreditsthrough

car-bonsequestrationandenergyproductionattheendoflifephaseare

higherthantheemissionscausedbyproductionandtransport.The

architectdesignprefabricatedwoodenpanelsfilledwithwoodfibre

insulation.Thestructuralelementsweremainlygluedlaminated

timbertrussesandbeams.Thewholeconstructionwasdesignedto

beeasilydismantledeasilyandinadditiontomaterialsthatcould

beforthemostpart,reusedorrecycled.Thecompactnessofthe

buildingspacewasnotonlystrategicallyachievedheatloss

reduc-tionbutalsotoreducethematerialtotalquantityandreducethe

embodiedenergyofbuildingmaterials.MINERGIE-ECO®required

theuseofanexclusionlistthatpreventsmaterialsthatendupin

thelandfillandarenotcompatiblewithahealthyindoor

environ-ment.Concretewasusedinthefoundationfromacementfactory

100kmawayandothermaterialsweretransportedfrommaximum

1000kmdistance.Allmaterialsfromadistancelessthan500km

weretransportedwith3.5–20ttrucksmaterialstransportedfrom

furtherawaycameon32ttrucks.Amorecomprehensive

descrip-tionoftheproductionprocessesandtablesfortheothervarieties

canbefoundinVanderLugt(2008)andvanderLugtetal.(2009a,

2009b).Thetotalscores(carbonfootprintaswellaseco-costs)of

thevariousprocessesforproducingtheindustrialbambooproducts

areprovidedinChapter6.Fig.4showstheimportantcontribution

ofthebuildinglifecyclewhichcorrespondstothetwodifferent

designobjectivesandparadigms(Table5).

5.3. Casestudiescomparison

Theresultsinthemostgeneralviewarepresented inFig.4

andTable6.Theimpactshownhererelatestothefunctionalunit,

thereforetheproduction andtransport of theamountof

mate-rialsnecessaryconstructbothbuildingsandusethem,including

replacementsrepairs,demolition,aswellastransportanddisposal

ofthedemolitionwasterafter100years.

InTable6,thederivedbreakdownofembodiedenergy,

oper-ationalenergy andcarbon emission values duringthedifferent

lifecyclesarecomparedforbothbuildingcomponentsconsidered

intheanalysis.Theseindicatorsarelistedintermsofenergyper

squarearea(MJ/m2)ofthegivenmaterial,aswellasunitmassper

squarearea(kgCO2/m2)toaccountforvaryingassociatedmaterial

emissions.Table6presentstheembodiedenergy(pre-usephase)in

materialsoftheentirebuildingbasedontheasbuiltdrawings.The

GreenOfficesbuildingmaterialsareatleast85%lessenergy

inten-siveintheirproductionastheRSF.Thesereductionsaremainlydue

tothewoodenconstructioncomparedtothereinforcedconcrete

andsteelconstructionsystem.Itisinterestingtonotethateven

thoughtheembodiedenergyiscalculatedoveranassumed

100-yearlifespan,thebuildingembodiedenergyremainssignificant

intheRSF(23%)andGreenOffices(10%).Thisisduetothelarge

energyconsumptionduringthecomplicatedproductionprocessof

buildingmaterialsthathappenindoors.

Ontheotherside,thetablerevealedsurprisingfindings

regard-ingoperationalenergy.Twodifferentanalyseswereperformedin

ordertovalidatethefinalresults.Theoperationalenergyoutcomes

werebasedonthemonitoreddatatrackingandthecalculationof

theenergymixinbothstates/cantons.Sincebothbuildingswere

on-gridandachieveda netzeroenergyannualbalancewe had

totakeintoaccounttheprimaryenergyoftheimportedenergy.

The RSF (66%of primary energy is due to operationalenergy)

dependsonnaturalgasforheatingandelectricitytomeetother

loadsandGreenOffices(86%ofprimaryenergyisdueto

opera-tionalenergy)dependonpelletfurnaceandelectricity.Themost

prominentdifferenceseenbetweenbothbuildingswasthe

rela-tivelyhighoperationalenergyconsumptionofRSF,whichexceeds

thatofGreenOfficesbyover7timesifcalculatetheenduseenergy

andbyover40 timesifcalculatetheprimaryenergy.Thereare

tworeasonsforthisremarkableperformancedifferences.Firstof

all,theGreenOfficesiscomplyingwiththeMINERGIE−ECOone

ofthemoststringentbuildingperformancestandardsandcould

becomparedtothePassiveHouseStandard.Thesecondreasonis

thattheimportedenergyfortheRSFoverthecourseoftheyear

iscomingfromablackenergymix,whileGreenOfficesimported

energyisoriginatingfromagreenenergymix.Despitethatboth

facilitiesarerecentlybuiltashighperformancezeroenergy

build-ingssharingthesamefunctionasofficebuildings,however,the

performancelevelandoperationalenergyconsumptiondifference

isunjustifiable.

AnotherrepresentationoftheLCAresultscanfoundinFig.4,

wheretheweightedresultsofimpactcategoryindicatorshavebeen

presentedbasedonTable6.Theprimaryenergyandcarbon

emis-sionscalculationsandprovideanewperspectivefortheoveralllife

cycleassessmentofbothbuildings.Whilebothbuildingssucceeded

(11)

Table5

ComparisonofmonitoredperformanceoftheRSFandGreenOfficesbuildings.

RSF GreenOffice

EstimatedAnnualEnergyConsumption 100kWh/m2/yearincludingdatacentre 25kWh/m2/year AnnualEnergyConsumptionMonitored 109kWh/m2/yearincludingdatacentre 36kWh/m2/year

Occupants/Surface 1325/20400m2 50/1299m2

Table6

Mid-pointenvironmentalindicatorsrelevanttothelifecycleoftheRSFandGreenOfficesbuildings.

CaseStudy1 CarbonSequest. Pre-use Operation Endoflife Lifecycle

PEMJ/m2/a / 274(23%) 785(66%) 131(11%) 1190 NREMJ/m2/a / 274 785 131 880 GWPkgCO2equiv./m2/a / 5620(%) 197(71%) 25(9%) 275 CaseStudy2 PEMJ/m2/a / 27(10%) 168(86%) −14(4%) 181 NREMJ/m2/a / 27 56 5 88 GWPkgCO2equiv./m2/a −5.9(−13%) 6.5(14%) 40(90%) 3.4(7%) 44

Fig.4.Comparisonoftheprimaryenergybalanceandglobalwarmingpotentialforbothcasestudies.

associatedwiththegenerationandimportingofenergywas posi-tive.Thismeansthatatthisdegreeofresultsaggregationevenifa benefitexists,itisneutralizedbythedominatingnegativeimpacts. Asmentionedbefore,themainreasonisduetocarbonemissions associatedwiththeenergyimportedfromthegrid.Eventhough GreenOfficesimportedgreenenergymainlyproducedfrom renew-ables,theuseofpelletsforheating,maintenanceandnumberof replacements(seeTable4)areexpectedtogenerate90%ofthe

car-bonemissionsofthe100yearbuildinglifecycle.Theuseofcellulose

insulationwillrequire2timesreplacement,whichincreasedthe

operationalenergy.Eventheuseofbiobasedconstruction

mate-rialslikewoodorwoodfiberswasnotenough(-13%)tocreatea

carbonnegativeoutcome.However,ifwetakeintoaccountthe

biogenicCO2capturedinwoodandwoodfibersandmakesureto

haveazerocarbonoperationalenergywemightyreachatotal

neg-ativebalanceofcarbon.Thisshowstheimportanceanddominance

ofoperationalenergy(usestage)ontheoverallcarbonemissions

impact.OntheothersidetheRSFisexpectedtogenerate71%ofthe

carbonemissionsduringoperation.

Inthecaseoftotallifecycle,carbonemissionsintensity

consti-tutingabout275kgCO2equivalent/m2/annumfortheRSFbuilding

andabout44kgCO2 equivalent/m2/annumfortheGreenOffices

building,thereisverysignificantdifference.Attentionshouldbe

paidtothefactthattheuseofconcreteandsteelhasaveryhigh

environmentalimpact oncarbon emissions.Even in the Green

Officesbuilding, whichhasverylowemissionvalue,theimpact

offoundationsandconcretewalls(average1400kg/m2)hasbeen

thehighest(73%accordingtoTable3).However,reaching44kgCO2

equivalent/m2/annumfortheGreenOfficesbuildingisaverygood

recordbecauseiftheemissionsassociatedwithoperationcouldbe

neutralizedthroughagreenergridenergymixwherethetotal

car-bonemissionsmightreachanegativebalancetakingintoaccount

thecarbon sequestration or biogeneration ofwood. Therefore,

buildingefficiency improvements(on thelevel of

MINERGIE-P-ECO)andrenewableenergiesmustbeintroducedinthegridand

duringthepre-useandendlifephase.Theroleofreachinga

nega-tiveCO2balanceoverthewholebuildinglifecycleshouldbecome

increasinglyprominent.

6. Discussionandconclusion

6.1. Summaryofmainfindings

Theregenerativeparadigmwasfoundclosertoreversethe

eco-logicalfootprintandprovideapositiveimpactbuilding.Thanksto

thebiogenicCo2calculationapproachthelifecyclestages

responsi-bleforcreatingthepositiveandthenegativeenvironmentalimpact

relatedtoglobalwarmingarepresented,eventhoughthereisno

consensusinliteratureorpracticetousedcarbonsequestration

or carbon bio generation.The regenerative paradigm increased

knowledgeaboutthematerialsandembodiedenergy,generated

amoreconsciousattitudetomaterialsandenergyresources

selec-tionandalmosteliminatedthereductionistparadigmindesign.

(12)

ofknowledgeonmaterialsandresources’environmentalimpacts,

succeededtocreateanalmostregenerativebuildingwithapositive

impact.Inorder tocreatea positive impactbuildingthe

build-inghad to producemore than itsrequirementsto compensate

theemissionsreleasedduringfor heatingand DHW.Moreover,

thebuildinghastobebuiltwiththemaximumpossibleamount

ofplantorbiobasedconstructionmaterials.Theuseofplantor

biobasedconstructionmaterialscanhelptooffsetthe

environ-mentaleffectsofclimatechange,providedthewoodisharvested

fromanaturalforestoraplantationcreatedtoimprovedegraded

landsandisprocessedusingrenewableenergy(duringthepre-use

phase).Aftersuccessionofmultiplereusesanddowncycling

cas-cadethemaininsulationandconstructionmaterialwillbefired.

Ontheotherside,thezeroenergyobjectivesachievedthe

environ-mentalneutralityonlyforoperationalenergyandcouldnotguide

thedesignteamtofocusontheoverallenvironmentalimpactof

thebuilding.AfteroneyearoffullmonitoringoftheRSFthebet

zeroenergybalancewasnotachievedandanewparkinglotwas

constructedtohostnewarraysof668kW.Theroofwascovered

withPVpanelsthataremorethan17%efficient.Therooftoparray

alonecouldnotoffsettheRSF’senergyneeds,soseveraladjacent

parkingstructureswerecoveredwithadditionalPV.Moreover,the

reboundeffectassociatedwiththeincreaseofplugloadsand

pan-els’efficiencydegradationfactorof0.7%peryeareradicatedthe

efficiencyandimpactneutralityparadigms.Theresultsarein

accor-dancewithpreviousstudies(Jordan&Kurtz,2013;Phinikarides,

Kindyni,Makrides,&Georghiou,2014).

Thezeroenergyclaimshavepotentialconsequencesof

unsus-tainableapproachestobuildingandplanning.Thisclaimofannual

buildingoperationcarbonfootprintneutralityofzerocarbon

emis-sions/yearfortheRSFbuildingis misleading.Bothcase studies

couldnot overcomethelimitationgiven bya non100% carbon

neutralgridinfrastructureorenergysupply.Therefore,

maintain-ingsuchobjectiveontheshortandlongtermcannotincreasethe

carryingcapacityofnatureandreverseourfootprint.

Bytracingtheenvironmentalimpactofoperationalenergyand

embodiedenergyover 100years fortwo casestudieswecould

proofthatthechoiceofbuildingmaterialscomesinthesecond

place of importance and relevance after the operation energy.

DespitetheslightlydifferentclimaticconditionsbetweenGolden,

ColoradoandGivisiez,Fribourgandthedifferentneedsfor

heat-ing,coolingand DHW,it is worthwhiletoconsideroperational

energyandthesustainabilityofgridenergysupply followedby

building materials when building high performance buildings.

With the mandatory performance requirements of nearly zero

energybuildingsby2020intheEUwecannotremainoperating

underthecurrentefficiencyorenergyneutralityparadigm(Sartori,

Napolitano,&Voss,2012;Attia,Mlecnik,&VanLoon,2011).

There-fore,thisstudyhasdemonstratedthatthesettingtherightgoals

(MINERGIE-ECOasanexample)canplayinmitigatingtheeffects

ofclimatechangeandhelpingarchitectstocreateapositiveimpact

ofthebuiltenvironmentontheirsurroundings. Byhighlighting

thepotentialofregenerativedesignparadigmitcancontributeto

sustainablebuildingpractices,wealsohopetoincreasethe

aware-nessaboutitsimpactofoperationalenergyandembodiedenergy

offoundationandconcreteconstruction.Regenerativedesigncan

leadtobeneficialfootprintandpositiveimpactbuildingsandcan

informarchitectsandbuildingdesignersinaccordancewiththe

UnitedNationsFrameworkConventiononClimateChange.

How-ever,in order tomaximise itsimpact, and benefitthe greatest

numberofcommunicates,itsuseneedstobepromotedamongst

thepublicandbuildingsprofessionals.Theregenerativeapproach

shouldbebasedonmaximumefficiencycoupledwithrenewable

dominatedenergymix.Creatingacirculareconomymeans

shap-ingthebuildingregulatoryandmarketframeworkstostrengthen

regenerativefinanceanddelivery,andtosupportarchitectsand

buildingengineerswithsimpleenvironmentalindicators,

calcu-lationmethodologiesandnationalimplementationstandardsand

strategies.

6.2. Comparisonwithexistingliterature

Thisresearch builds onearlier studiesthat have considered

themitigationof globaland local resource depletionand

envi-ronmental degradation(McHarg &Mumford, 1969; Lyle, 1996;

Cole,2012).Regenerativedesignanddevelopment,aspreviously

notedinthecaseofGreenOffices,hasconsistentlybeenshownto

deliverinnovativebuildingswithbeneficialqualities.Withrespect

to Cole who stated the scarcity to find similar built projects

can show the capability of expanding our environmental

per-formancetargets(Cole,2012;Waldron,Cayuela,&Miller,2013;

Wolpensinger&nachhaltigesBauen,2016).Thisstudyis inline

environmental assessments made for plant based construction

materials(VanderLugt,2008;Prétot,Collet,&Garnier,2014;Ip

&Miller,2012;Wolpensinger&nachhaltigesBauen,2016;Waugh, Wells,&Lindegar,2010).Despitethesmallsampleofcasestudies,

theauthortriedtogointobuildingswithawell-definedfocusand

tocollectspecificbuildingperformancedatasystematically.

6.3. Implicationsforresearchandarchitecturaldesignpractice

Thecontroversysurroundingefficiencyparadigmhasrecently

been reignited by several studies, published simultaneously

(Ankrah,Manu,Hammond,&Kim,2013).Thelargecontribution

ofbuildingtoresourceconsumptionishighlyrelevant,notleast

becauseoptimisationpotentialisequallygreatinthesamesector.

Whatevertheoutcomeofthetechnocraticreductionistefficiency

debate, the fact remains that the resources efficiency and the

reductionsapproachhavesignificantlimitations.Thosearchitects,

buildingdesignersand owners seekingsustainable architecture

in theirpractice requirevaluable informationin order tomake

informeddecisions.Itisestimatedthatbuildingsdesigncost1%

ofthepercentofthelifecyclecostbutitcanreduceover90%oflife

cycleenergycost(Lovins,Lovins,&Hawken,1999).Whileduring

earlydesignphases20%ofthedesigndecisionstakensubsequently,

influence80%ofalldesigndecisions(Bogenstätter,2000).However,

effortspenttopredictorreducebuildingsenvironmentalimpact

shouldbereplacedbyhighqualityregenerative design support

metrics,indicators,tools,strategiesandframeworkfornetpositive

development.Theyneedinformationonhowtoreplacefossilfuel

basedsystemandcomponentswithpassiveornatural/renewable

sourcesonthebuildingandgridlevel.Thisinformationwillneed

tobeeasilyaccessible,and,asshowninthisstudy,basedonwell

establishpredictsandmaterialslifecycleanalysis.

Thisstudy used Life-Cycle Assessment and carbon footprint

calculations toanalysethe environmentalimpactof two states

ofart buildings. Themain limitationofLCA remains inits

cra-dletograveapproachthatmainlymeasurestheenvironmentally

damagingfootprint.TheGreenOfficesconceptwasdesignedfor

disassemblyandadaptationtochangeoffunction.Thestructure

hadmodulardimensionsystems,theskinismadeofdemountable

facadesandtheinternalspacesallowmovableseparationwalls.

Issuessuchasadjustability,versatility,movabilityandscalability

areofgreataddedvalueallowinghighqualityfuturereuse.

How-ever,theLCAapproachcouldnotquantifythosebeneficialdesign

qualities.Therefore,newtoolsand indicatorsareneededinthe

future toassess building’sfunctionallyand which

environmen-tal,social,andhealthbenefitsthatcanbeachievedinparticular

at theend-of-use phase (reuse,recycling, incineration, landfill)

(Boretal.,2011)(Geldermans&Rosen-Jacobsen,2015).Needless

tosaythestudywaslimitedtoonlythreeenergyand

Figure

Fig. 1. Evolution of building energy performance requirements in the EU and US.
Fig. 2. Paradigm shift towards a beneficial positive impact footprint of the built.

Références

Documents relatifs

ﺮﻳﺭﺎﻘﺘﻟﺍ ﻦﻣ ﺔﻋﻮﻤ ﺺﺨﻠﻣ ﻦﻋ ﺓﺭﺎﺒﻋ ﺔﻴـﺼﻔﻘﻟﺍ ﺪﻴﻟﺎﻘﺘﻟﺍ ﻭﺫ ﱵﻴﻟﻮﻴﻨﻟﺎﺑ ﺔﺻﺎﳋﺍ ﺔﻳﺮﺛﻷﺍ ﲏﻃﻮـﻟﺍ ﺪـﻬﻌﻤﻠﻟ ﺍﺮﻳﺪﻣ ﻙﺍﺬﻧﺁ ﻥﺎﻛ ﻱﺬﻟﺍ ﺲﺒﻣﺎﻛ ﻝﺎﻳﺮﺑﺎﻏ ﺎﻬﻌﲨ ، ﺔﻳﺮﺋﺍﺰﳉﺍ ﺀﺍﺮﺤﺼﻟﺎﺑ

We prove that there exists an equivalence of categories of coherent D-modules when you consider the arithmetic D-modules introduced by Berthelot on a projective smooth formal scheme X

This article discusses the comparison of the thermal comfort levels obtained in the same building located in Australia and Reunion Island for different climatic

Whatever the chosen option, the right sizing of energy production and storage systems is always a compromise between minimizing the energy impact of a given building

The subjective model provides a fuzzy relationship between a number of soil properties, perceived as the most significant contributors to the corrosion of cast and ductile iron

the following topics were discussed and are of a common inter- est between chile and Belgium: Adaptive thermal comfort, timber construction, passive house standard, heating

surge depth is low, reducing the magnitude of hydrostatic pressure and lowering the size of the applied moment. The building loss results indicate that class A0 buildings are

The propriety of three different design methods are con- cluded in table IV resting on four aspects: processing rate (area), performance, power consumption and configuration