• Aucun résultat trouvé

UEE Day 2019 - Investigating gas transfers processes in argillaceous media in the framework of nuclear waste disposal

N/A
N/A
Protected

Academic year: 2021

Partager "UEE Day 2019 - Investigating gas transfers processes in argillaceous media in the framework of nuclear waste disposal"

Copied!
1
0
0

Texte intégral

(1)

Contextualisation

Investigating gas transfer processes in argillaceous media

in the framework of nuclear waste disposal

G. CORMAN

1∗

, F. COLLIN

1

Service de Géomécanique et Géologie de l’Ingénieur, Secteur GEO

3

, Département

UEE, Université de Liège

gilles.corman@uliege.be

Phase I – Principle

Structural support Concrete backfill Disposal container Radioactive waste Concrete buffer Corrosion 𝑯𝟐 migrations Drift lining

Fractured rock (EDZ)

Phase I: gas transfers through the EDZ

Phase II: gas transfers in the sound rock layers

Host rock

1000 yr. 10 000 yr. 100 000 yr. 1 000 000 yr.

Phase I – Balance equations & constitutive model Phase I – Numerical modelling

Balance of momentum for the mixture

Microstructure effects

Kinematic constraint

Water mass balance

Air mass balance

Mixture energy balance:

Elasto-plastic internal friction model

1 2

3 4

30 days

100 days

1000 days

Conclusion

Development of a multi-scale model of gas flows in low permeable soils

Current models: macroscopic approach

complex laws

FE

2

method:

𝑯

𝟐

𝒎 − 𝒅𝒎 𝒅𝒎

Scale of the storage gallery

Macro-scale

Micro-scale

Phase II – Methodology

complexity

+

HM effects

of the microstructure

simplified laws

1. Hydraulic microscopic model

2. Hydro-mechanical microscopic model

3. Hydro-mechanical macroscopic model

4. Applications

REV: Capillary network model

No mechanical influence

Deep geological nuclear waste storage

Multiphysics porous medium

Strain localisation [2]

2

nd

gradient model: kinematics

enriched with microstructure effects

Multi-barriers confinement concept

Goal: gas transfers modelling i

n

Excavation Damaged Zone

Sound rock layers

𝐏𝐡𝐚𝐬𝐞 𝐈

𝐏𝐡𝐚𝐬𝐞 𝐈𝐈

Advection

Darcy

s law

(1)

Diffusion

Fick

s law

(2)

Conduction

Fourier

s law

(3)

Convection (4)

Drucker-Prager yield surface,

with

𝜑 hardening and 𝑐 softening

2D plane strain state, HM simulations: Excavation of the Callovo-Oxfordian claystone

Total deviatoric strain

(up), plasticity zone

(down), in situ [3]

measurments (right)

Localisation

bands

during

excavation:

Chevron

fractures

concentrated around the gallery due to the anisotropic stress state

Fracturing pattern

as in situ

Gaz transfer processes in low-permeable media [4]

Preferential gas pathways

Poro-elastic

Macro fissures

𝝁𝒎

Barrier function of the host rock is affected

Numerical implementation

Comparison to existing models

REV: Influence of mechanics

Hydro-mechanical couplings

Numerical implementation

Sensitivity analysis

Experimental campaign: influence of

capillary network on gas migrations

Implementation of the model through the

FE

2

method

Experimental validation

Modelling of in situ gas injection tests

Modelling of a nuclear waste storage

gallery

Phase II – Principle

References

The impact of gas migration on the repository components is a crucial issue

In the fractured zone: development of a 2

𝑛𝑑

gradient THM model to reproduce

simultaneously the fluid flows mechanisms and the strain localisation process

In the low-permeable sound rock: development of a multi-scale model to take

into account the effects of the microstructure on the macroscopic flow

1

2

3

[1] F. Collin, Couplages thermo-hydro-mecaniques dans les sols et les roches tendres partiellement saturés, thèse / mémoire, University of Liege, 2003.

[2] B. Pardoen, S. Levasseur, and F. Collin, Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone, Rock Mech. Rock Eng., 48(2):691-714, 2015.

[3] G. Armand, F. Leveau, C. Nussbaum, R. de La Vaissiere, A. Noiret,D. Jaeggi, P. Landrein, and C. Righini, Geometry and properties of the excavation-induced fractures at the Meuse/Haute-Marne URL drifts, Rock Mech Rock Eng, 47(1):21–41, 2014

[4] P. Marschall, S. Horseman, and T. Gimmi, Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal, Oil & Gas Science and Technology, Vol. 60, No. 1, pp. 121-139, 2005

Thermo-hydro-mechanical couplings [1]

1 ∗

Liquid

Biphasic

Gaseous

State

Defo.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The phenomenon illustrated in the previous two examples is what is called the First Part of the Fundamental Theorem of Calculus.. The Second Part of the Fundamental Theorem of

Two phase partially miscible flow and transport modeling in porous media ; application to gas migration in a nuclear waste repository.. Alain Bourgeat · Mladen Jurak ·

For a fixed temperature under a critical value, a coexistence line is obtained in the plane of neutron and proton chemical potentials.. Along this line, the grand potential presents

While the breakthrough curve is unaffected by the presence of an outlet filter when the column is homogeneous, this is no longer true for macroporous columns, especially when

Un « cyclage » du transplant (30 flexions/extensions sont réalisées en tendant le transplant manuellement grâce au fil tracteur tibial) est nécessaire. Ceci permet de contraindre

Il sera alors peut être nécessaire de vous reposer une sonde pour «» votre vessie, et très rarement de vous opérer pour arrêter le saignement.. ▪