• Aucun résultat trouvé

Thermochemical conversion routes of lignocellulosic biomass

N/A
N/A
Protected

Academic year: 2021

Partager "Thermochemical conversion routes of lignocellulosic biomass"

Copied!
35
0
0

Texte intégral

(1)

Thermochemical conversion

routes of lignocellulosic biomass

University of Liège

LABORATORY of CHEMICAL ENGINEERING

Processes and Sustainable development

1

S. GERBINET and A. LEONARD

saicha.gerbinet@ulg.ac.be

(2)

Introduction

Ligno-cellulosic

biomass

Biological

conversion

Thermochemical

conversion

Ethanol

Lignin

Cellulose +

Hemicellulose

Sugars

fermentation hydrolysis

Bio-oil

Charcoal

Gas

CO+ H

2 pyrolysis

Hydrogen

Diesel

Methanol

Ethylene

Propylene

DME

Fuels

(3)

Introduction

Ligno-cellulosic

biomass

Biological

conversion

Thermochemical

conversion

Ethanol

Lignin

Cellulose +

Hemicellulose

Sugars

fermentation hydrolysis

Bio-oil

Charcoal

Gas

CO+ H

2 pyrolysis

Hydrogen

Diesel

Methanol

Ethylene

Propylene

DME

Fuels

(4)

Goals

Determine the environmental impact of the different

routes of lignocellulosic biomass valorisation by

thermochemical conversion (gasification)

(5)

The LCA methodology

5

(6)

The LCA methodology

 Studying and understanding the processes

 Review of previous studies

(7)

The Processes

7

 Size reduction and drying

particle size betwenn 20 and 80 mm

water content < 20%

Hammermill [1]

(8)

The Processes

Biomass + Oxidizing agent  Syngaz

Component

% (volume)

CO

28-36

H

2

22-32

CO

2

21-30

CH

4

8-11

(9)

The Processes

9

(10)

The Processes

Biomass + Oxidizing agent  Syngaz

-

Air

-

Oxygen (gas with higher LHV)

-

Steam (gas with more H

2

)

(11)

The Processes

11

(12)

The Processes

Biomass + Oxidizing agent

Syngaz

1. T: 600 – 1000 °C

Heat supply:

-

Allothermal or autothermal

(13)

The Processes

13

(14)

The Processes

Biomass + Oxidizing agent

Syngaz

(15)

The Processes

15

Reactor type :

Fixed-bed updraft

http://www.greenstone.org/greenstone3/nzdl%3Bjsessionid=07001AC50F490ADE7B6F119FBC17633F?a=d&c=cdl&d=HA SH10b0eb9f4e955c5d59180b.10.1.np&sib=1&p.s=ClassifierBrowse&p.sa=&p.a=b

(16)

The Processes

Reactor type:

Fixed-bed downdraft

http://www.greenstone.org/greenstone3/nzdl%3Bjsessionid=07001AC50F490ADE7B6F119FBC17633F?a=d&c=cdl&d=HA SH10b0eb9f4e955c5d59180b.10.1.np&sib=1&p.s=ClassifierBrowse&p.sa=&p.a=b

(17)

The Processes

17

Reactor type:

Fixed-bed multistage (Xylowatt)

(18)

The Processes

Reactor type:

Fluidized-bed circulating

(19)

The Processes

19

-

Nitrogen and sullfur compounds

-

Particule removal

-

Alkali removal

-

Tar elimination

-

Reformage

(20)

The Processes

-

Particule :

biomass (ash and char)+ bed

plugging

Cyclone (larger particules)

+ wet scrubbers, barrier filters or electostatic precipitators

[1]

(21)

The Processes

21

-

Alkali removal :

Cooling and passing barriers filters

(22)

The Processes

-

Tar elimination

Primary technologies: in gasifier

Secondary technologies

wet : water and venturi scrubbing

condense tar compounds

(23)

The Processes

23

-

Reformage

(24)

The Processes

Ligno-cellulosic

biomass

CO+ H

2 gasification

Diesel

Methanol

Ethylene

Propylene

DME

Fuels

(25)

The Processes

25

Ligno-cellulosic

biomass

CO+ H

2 gasification

Diesel

Methanol

Ethylene

Propylene

DME

Fuels

(26)

The Processes

gas

Methanol

Heavy olefins

Light olefins

MTO: methanol to olefin

Olefin - craking

T= 180- 270°C

P= 50 – 100 bar

Catalyst: Cu/Zn

Reactor: fixed-bed

(Lurgi or ICI)

Ethylene

Propylene

(27)

The Processes

27

Ligno-cellulosic

biomass

CO+ H

2 gasification

Diesel

Methanol

Ethylene

Propylene

DME

Fuels

(28)

The Processes

Diesel

Gas

Lubricating oil and paraffin wax

Fischer- Tropsch process Hydrocracking C4 and lower : recycling or gas turbine T: 200 – 250 °C Catalyst: Co or Fe Reactor: fluidized or

(29)

The Processes

29

DME

Gas

Methanol

T: 250  365 °C Catalyst: alumin T 240 °C P > 30 Mpa catalyst

Diesel motor or

mixed with LPG

(30)

Previous studies

Many studies on the technological aspects of lignocellulosic biomass

gasification, but

few on the environmental aspects

(LCA )

 Results:

Lignocellulosic biomass >< fossil fuels

-

Better

: Global Warning Potential

Emissions

-

Worst

: Energy Consumption

Cost

(31)

Previous studies

31

This studies present generally

some lacks

:

No study about propylene and ethylene

No study relative to the Belgian situation

But also:

- Fuel type

- Impact of Land Use Change (direct or indirect)

- No Well-to-wheel

- Impact categories

- Economic aspects

- Comparison with fossil fuel or biofuel

- Sensitivity analysis

(32)

Conclusions and perspectives

Promising processes for substituting fossil fuels.

BUT their environmental impact remains uncertain

LCA methodology

LCA adapted to include land use change effect.

Practical example: miscanthus culture in Belgium

Economic viability assessed

(33)

Thank you for your attention

University of Liège

LABORATORY of CHEMICAL ENGINEERING

Processes and Sustainable development

33

(34)

Bibliography

1. Cummer, K.R. and R.C. Brown, Ancillary equipment for biomass gasification. Biomass and bioenergy, 2002. 23.

2. Liu, G., et al., Making Fischer-Tropsch Fuels and Electricity from Coal and Biomass: Performance and Cost Analysis. Energy & Fuels, 2011. 25.

3. van Vliet, O.P.R., A.P.C. Faaij, and W.C. Turkenburg, Fischer-Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Conversion and

Management, 2009. 50(4): p. 855-876.

4. Gill, S.S., et al., Combustion characteristics and emissions of Fischer-Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science, 2011. 37(4): p. 503-523.

5. Kalnes, T.N., et al., A Technoeconomic and Environmental Life Cycle Comparison of Green

Diesel to Biodiesel and Syndiesel. Environmental Progress & Sustainable Energy, 2009. 28(1): p. 111-120.

6. Sunde, K., A. Brekke, and B. Solberg, Environmental Impacts and Costs of Hydrotreated

Vegetable Oils, Transesterified Lipids and Woody BTL-A Review. Energies, 2011. 4(6): p. 845-877. 7. Grillo Reno, M.L., et al., A LCA (life cycle assessment) of the methanol production from

sugarcane bagasse. Energy, 2011. 36(6): p. 3716-3726.

8. Kumabe, K., et al., Environmental and economic analysis of methanol production process via biomass gasification. Fuel, 2008. 87(7): p. 1422-1427.

9. Komiyama, H., et al., Assessment of energy systems by using biomass plantation. Fuel, 2001.

(35)

Bibliography

35

10. Wu, M., Y. Wu, and M. Wang, Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: A fuel life cycle assessment. Biotechnology Progress, 2006.

22(4): p. 1012-1024.

11. 10. Fleming, J.S., S. Habibi, and H.L. MacLean, Investigating the sustainability of

lignocellulose-derived fuels for light-duty vehicles. Transportation Research Part D: Transport and Environment, 2006. 11(2): p. 146-159.

12. Reinhardt, G.A. and E.v. Falkenstein, Environmental assessment of biofuels for transport and the aspects of land use Competition. Biomass & Bioenergy, 2011. 35.

13. ISO, ISO 14040 : Management environnemental - Analyse du cycle de vie - Principes et cadre, ISO, Editor. 2006.

14. ISO, ISO 14044 : Management environnemental - Analyse du cycle de vie - Exigences et lignes directrices, ISO, Editor. 2006.

15. Kumar, A., D.D. Jones, and M.A. Hanna, Thermochemical Biomass Gasifiction: A Review of the Current Status of Thechnology. Energies, 2009. 2

16. Warnecke, R., Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass & Bioenergy, 2000. 18.

Références

Documents relatifs

Certains éléments relèvent de nécessités liées au savoir (analyser pour identifier les éléments à construire, définir un ordre permettant la construction),

A substantial increase in the ethanol conversion yield and in specific ethanol productivity was obtained through a combination of metabolic engineering of yeast strains and

ةﺬﺗﺎﺳﻷا ﻦﯿﺑ نوﺎﻌﺗو ﻖﯿﺴﻨﺗ ﺔﻗﻼﻋ ضﺮﻔﯾ 34 1.16 .( ﻢﻠﻌﺘﻟا ﻮﺤﻧ ﺔﯿﻌﻓاﺪﻟا ) ةﺪﯾﺪﺟ ﺔﯿﺑﺎﺠﯾا ﺎﻤﯿﻗ ﺬﯿﻣﻼﺘﻟا ﻲﻓ عرﺰﯾ 35.. ﺬﯿﻣﻼﺘﻟا ﻦﯿﺑ ﻒﻨﻌﻟا ﺬﺒﻧو ﺢﻣﺎﺴﺘﻟا ﺔﻓﺎﻘﺛ

The data for bond percolation are closer to the asymptotic regime as can be seen from the error bars and the curvature in a plot log(σ n n t/ν ) against n −ω.. bond percolation

Je voulais parler de mon expérience algérienne de façon romancée, mais entre temps des choses beaucoup plus importantes que mon expérience algérienne se sont déroulées : le

Reliable solls and permafrost inforrnation on Northern Canadlan tovunsites ls often difficult and costly to obtain, and can selclom be gathered on short notice. The

L’échantillon qui a été grenaillé avant d’être traité thermiquement (SMAT + TT) présente un diffractogramme très similaire au brut, à l’inverse de l’échantillon