• Aucun résultat trouvé

Thesis Research Aims

Since all eukaryotes and few prokaryotes keep their genomes in the form of linear DNA molecules, these organisms depend on an intact telomere structure both to maintain chromosome length due to the semi-conservative nature of DNA replication, as well as to differentiate the chromosome ends from the DSB repair machinery to prevent illicit repair events.

Though it is clear that the 32 telomeres of a haploid S. cerevisiae cell cluster in 2-8 foci at the nuclear periphery, a number of questions remained unanswered. It is unclear “who is where” among telomeric foci; that is whether telomeres always reside in a particular cluster, if some telomeres move freely outside of the clusters. My goal was to shed light on these questions using multicolor fluorescence microscopy to observe to differentially labeled telomeres in living cells. I aimed firstly to investigate the likelihood of a telomere residing within or outside of telomeric clusters, and secondly to see whether the composition of clusters is stable or stochastic. In other words, is telomere position in any given cluster reproducible amongst a population of cells? Alternatively, are telomere-telomere interactions random?

Furthermore, a major question that remained unclear is where the components of telomerase themselves are located within the nucleus, and the relationship between telomere position and telomere length regulation. At the beginning of my thesis it was known that there were at least two different pathways that recruit telomeres to the NE, one relying on the telomere bound

Sir complex and the peripheral protein Esc1, and the other involving the yKu heterodimer and a yet unknown anchoring partner yKu has been shown to interact with TLC1 (Stellwagen et al., 2003) and my goal was to investigate whether the interaction is involved in the positioning of telomeres at the NE.

Also in this context, I explored the relationship between telomere location and major aspects of telomere biology, namely capping and length regulation.

References

Akhtar, A., and S.M. Gasser. 2007. The nuclear envelope and transcriptional control.Nat Rev Genet. 8:507-17.

Antoniacci, L.M., M.A. Kenna, and R.V. Skibbens. 2007. The nuclear envelope and spindle pole body-associated Mps3 protein bind telomere regulators and function in telomere clustering. Cell Cycle.

6:75-9.

Antoniacci, L.M., M.A. Kenna, P. Uetz, S. Fields, and R.V. Skibbens. 2004.

The spindle pole body assembly component mps3p/nep98p functions in sister chromatid cohesion. J Biol Chem. 279:49542-50.

Arneric, M., and J. Lingner. 2007. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast.EMBO Rep. 8:1080-5.

Bateman, A.J. 1975. Letter: Simplification of palindromic telomere theory.

Nature. 253:379-80.

Bertuch, A.A., and V. Lundblad. 2003. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini.

Mol Cell Biol. 23:8202-15.

Bianchi, A., and D. Shore. 2007a. Early replication of short telomeres in budding yeast. Cell. 128:1051-62.

Bianchi, A., and D. Shore. 2007b. Increased association of telomerase with short telomeres in yeast. Genes Dev. 21:1726-30.

Blackburn, E.H., and J.G. Gall. 1978. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena.J Mol Biol. 120:33-53.

Bupp, J.M., A.E. Martin, E.S. Stensrud, and S.L. Jaspersen. 2007. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J Cell Biol.

Cavalier-Smith, T. 1974. Palindromic base sequences and replication of eukaryote chromosome ends. Nature. 250:467-70.

Chan, C.S., and B.K. Tye. 1983. Organization of DNA sequences and replication origins at yeast telomeres. Cell. 33:563-73.

Chan, S.W., J. Chang, J. Prescott, and E.H. Blackburn. 2001. Altering telomere structure allows telomerase to act in yeast lacking ATM kinases.Curr Biol. 11:1240-50.

Chang, M., M. Arneric, and J. Lingner. 2007. Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1-dependent manner in Saccharomyces cerevisiae. Genes Dev.

21:2485-94.

Cohen, H., and D.A. Sinclair. 2001. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc Natl Acad Sci U S A. 98:3174-9.

Conrad, M.N., C.Y. Lee, J.L. Wilkerson, and M.E. Dresser. 2007. MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae.

Proc Natl Acad Sci U S A. 104:8863-8.

Cooper, J.P. 2000. Telomere transitions in yeast: the end of the chromosome as we know it. Curr Opin Genet Dev. 10:169-77.

Craven, R.J., and T.D. Petes. 1999. Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae.Genetics. 152:1531-41.

D'Amours, D., and S.P. Jackson. 2002. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol. 3:317-27.

Diede, S.J., and D.E. Gottschling. 1999. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell. 99:723-33.

Diede, S.J., and D.E. Gottschling. 2001. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr Biol. 11:1336-40.

Dionne, I., and R.J. Wellinger. 1998. Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Res. 26:5365-71.

Downey, M., R. Houlsworth, L. Maringele, A. Rollie, M. Brehme, S. Galicia, S.

Guillard, M. Partington, M.K. Zubko, N.J. Krogan, A. Emili, J.F.

Greenblatt, L. Harrington, D. Lydall, and D. Durocher. 2006. A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell. 124:1155-68.

Evans, S.K., and V. Lundblad. 1999. Est1 and Cdc13 as comediators of telomerase access. Science. 286:117-20.

Fabre, E., H. Muller, P. Therizols, I. Lafontaine, B. Dujon, and C. Fairhead.

2005. Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol Biol Evol. 22:856-73.

Fisher, T.S., A.K. Taggart, and V.A. Zakian. 2004. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol. 11:1198-205.

Frank, C.J., M. Hyde, and C.W. Greider. 2006. Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol Cell. 24:423-32.

Gao, H., R.B. Cervantes, E.K. Mandell, J.H. Otero, and V. Lundblad. 2007.

RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol.

14:208-14.

Gell, D., and S.P. Jackson. 1999. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res.

27:3494-502.

Ghosal, G., and K. Muniyappa. 2007. The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity. J Mol Biol. 372:864-82.

Gotta, M., T. Laroche, A. Formenton, L. Maillet, H. Scherthan, and S.M.

Gasser. 1996. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae.J Cell Biol. 134:1349-63.

Gottschling, D.E., O.M. Aparicio, B.L. Billington, and V.A. Zakian. 1990.

Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 63:751-62.

Goudsouzian, L.K., C.T. Tuzon, and V.A. Zakian. 2006. S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association.Mol Cell. 24:603-10.

Greider, C.W., and E.H. Blackburn. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 43:405-13.

Griffith, J.D., L. Comeau, S. Rosenfield, R.M. Stansel, A. Bianchi, H. Moss, and T. de Lange. 1999. Mammalian telomeres end in a large duplex loop.Cell. 97:503-14.

Grossi, S., A. Bianchi, P. Damay, and D. Shore. 2001. Telomere formation by rap1p binding site arrays reveals end-specific length regulation requirements and active telomeric recombination. Mol Cell Biol.

21:8117-28.

Grossi, S., A. Puglisi, P.V. Dmitriev, M. Lopes, and D. Shore. 2004. Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes Dev. 18:992-1006.

Haque, F., D.J. Lloyd, D.T. Smallwood, C.L. Dent, C.M. Shanahan, A.M. Fry, R.C. Trembath, and S. Shackleton. 2006. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol.

26:3738-51.

Hector, R.E., R.L. Shtofman, A. Ray, B.R. Chen, T. Nyun, K.L. Berkner, and K.W. Runge. 2007. Tel1p preferentially associates with short telomeres to stimulate their elongation. Mol Cell. 27:851-8.

Hediger, F., A.S. Berthiau, G. van Houwe, E. Gilson, and S.M. Gasser. 2006.

Subtelomeric factors antagonize telomere anchoring and Tel1-independent telomere length regulation. EMBO J. 25:857-67.

Hediger, F., K. Dubrana, and S.M. Gasser. 2002a. Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. J Struct Biol. 140:79-91.

Hediger, F., F.R. Neumann, G. Van Houwe, K. Dubrana, and S.M. Gasser.

2002b. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr Biol. 12:2076-89.

Hiraga, S., E.D. Robertson, and A.D. Donaldson. 2006. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time.EMBO J. 25:1505-14.

Huang, P., F.E. Pryde, D. Lester, R.L. Maddison, R.H. Borts, I.D. Hickson, and E.J. Louis. 2001. SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol. 11:125-9.

Jaspersen, S.L., T.H. Giddings, Jr., and M. Winey. 2002. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J Cell Biol. 159:945-56.

Johnson, F.B., R.A. Marciniak, M. McVey, S.A. Stewart, W.C. Hahn, and L.

Guarente. 2001. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase.

EMBO J. 20:905-13.

Konig, P., R. Giraldo, L. Chapman, and D. Rhodes. 1996. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell. 85:125-36.

Konig, P., and D. Rhodes. 1997. Recognition of telomeric DNA. Trends Biochem Sci. 22:43-7.

Krauskopf, A., and E.H. Blackburn. 1996. Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats. Nature.

383:354-7.

Kyrion, G., K. Liu, C. Liu, and A.J. Lustig. 1993. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae.Genes Dev. 7:1146-59.

Laroche, T., S.G. Martin, M. Gotta, H.C. Gorham, F.E. Pryde, E.J. Louis, and S.M. Gasser. 1998. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol. 8:653-6.

Larose, S., N. Laterreur, G. Ghazal, J. Gagnon, R.J. Wellinger, and S.A.

Elela. 2007. RNase III-dependent regulation of yeast telomerase. J Biol Chem. 282:4373-81.

Larrivee, M., C. LeBel, and R.J. Wellinger. 2004. The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex.Genes Dev. 18:1391-6.

Leonardi, J., J.A. Box, J.T. Bunch, and P. Baumann. 2007. TER1, the RNA subunit of fission yeast telomerase. Nat Struct Mol Biol.

Lingner, J., T.R. Cech, T.R. Hughes, and V. Lundblad. 1997. Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci U S A. 94:11190-5.

Louis, E.J. 1995. The chromosome ends of Saccharomyces cerevisiae.

Yeast. 11:1553-73.

Louis, E.J., and J.E. Haber. 1992. The structure and evolution of subtelomeric Y' repeats in Saccharomyces cerevisiae.Genetics. 131:559-74.

Louis, E.J., E.S. Naumova, A. Lee, G. Naumov, and J.E. Haber. 1994. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics. 136:789-802.

Lundblad, V., and E.H. Blackburn. 1993. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell. 73:347-60.

Lustig, A.J. 1998. Mechanisms of silencing in Saccharomyces cerevisiae.

Curr Opin Genet Dev. 8:233-9.

Maillet, L., F. Gaden, V. Brevet, G. Fourel, S.G. Martin, K. Dubrana, S.M.

Gasser, and E. Gilson. 2001. Ku-deficient yeast strains exhibit alternative states of silencing competence. EMBO Rep. 2:203-10.

Marcand, S., D. Wotton, E. Gilson, and D. Shore. 1997. Rap1p and telomere length regulation in yeast. Ciba Found Symp. 211:76-93; discussion 93-103.

Maringele, L., and D. Lydall. 2002. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev. 16:1919-33.

McClintock, B. 1931. Cytological observations of deficiencies involving known genes, translocations and an inversion in Zea mays. Mo. Agric. Exp.

Res. Stn. Res. Bull. 163:4-30.

Muller, H.J. 1938. The remaking of chromosomes. The Collecting Net. 8:182-105.

Naumov, G.I., E.S. Naumova, H. Turakainen, and M. Korhola. 1996.

Identification of the alpha-galactosidase MEL genes in some populations of Saccharomyces cerevisiae: a new gene MEL11. Genet Res. 67:101-8.

Negrini, S., V. Ribaud, A. Bianchi, and D. Shore. 2007. DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes Dev. 21:292-302.

Osterhage, J.L., J.M. Talley, and K.L. Friedman. 2006. Proteasome-dependent degradation of Est1p regulates the cell cycle-restricted assembly of telomerase in Saccharomyces cerevisiae. Nat Struct Mol Biol. 13:720-8.

Paeschke, K., T. Simonsson, J. Postberg, D. Rhodes, and H.J. Lipps. 2005.

Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol. 12:847-54.

Palladino, F., T. Laroche, E. Gilson, A. Axelrod, L. Pillus, and S.M. Gasser.

1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell. 75:543-55.

Pardo, B., and S. Marcand. 2005. Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J. 24:3117-27.

Pardue, M.L., and P.G. DeBaryshe. 2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres.Annu Rev Genet. 37:485-511.

Qi, H., and V.A. Zakian. 2000. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev.

14:1777-88.

Ray, A., and K.W. Runge. 1999. Varying the number of telomere-bound proteins does not alter telomere length in tel1Delta cells. Proc Natl Acad Sci U S A. 96:15044-9.

Reichenbach, P., M. Hoss, C.M. Azzalin, M. Nabholz, P. Bucher, and J.

Lingner. 2003. A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr Biol. 13:568-74.

Ribes-Zamora, A., I. Mihalek, O. Lichtarge, and A.A. Bertuch. 2007. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions.Nat Struct Mol Biol. 14:301-7.

Ritchie, K.B., J.C. Mallory, and T.D. Petes. 1999. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 19:6065-75.

Sabourin, M., C.T. Tuzon, and V.A. Zakian. 2007. Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol Cell.

27:550-61.

Seto, A.G., A.J. Livengood, Y. Tzfati, E.H. Blackburn, and T.R. Cech. 2002. A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev. 16:2800-12.

Sexton, T., H. Schober, P. Fraser, and S.M. Gasser. 2007. Gene regulation through nuclear organization. Nat Struct Mol Biol. 14:1049-1055.

Shampay, J., J.W. Szostak, and E.H. Blackburn. 1984. DNA sequences of telomeres maintained in yeast. Nature. 310:154-7.

Singer, M.S., and D.E. Gottschling. 1994. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science. 266:404-9.

Snow, B.E., N. Erdmann, J. Cruickshank, H. Goldman, R.M. Gill, M.O.

Robinson, and L. Harrington. 2003. Functional conservation of the telomerase protein Est1p in humans. Curr Biol. 13:698-704.

Spector, D.L. 2003. The dynamics of chromosome organization and gene regulation.Annu Rev Biochem. 72:573-608.

Stellwagen, A.E., Z.W. Haimberger, J.R. Veatch, and D.E. Gottschling. 2003.

Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17:2384-95.

Taddei, A., F. Hediger, F.R. Neumann, C. Bauer, and S.M. Gasser. 2004a.

Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23:1301-12.

Taddei, A., F. Hediger, F.R. Neumann, and S.M. Gasser. 2004b. The function of nuclear architecture: a genetic approach. Annu Rev Genet. 38:305-45.

Taggart, A.K., S.C. Teng, and V.A. Zakian. 2002. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science. 297:1023-6.

Teng, S.C., and V.A. Zakian. 1999. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae.Mol Cell Biol. 19:8083-93.

Tham, W.H., and V.A. Zakian. 2002. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms.

Oncogene. 21:512-21.

Therizols, P., C. Fairhead, G.G. Cabal, A. Genovesio, J.C. Olivo-Marin, B.

Dujon, and E. Fabre. 2006. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region.J Cell Biol. 172:189-99.

Ting, N.S., Y. Yu, B. Pohorelic, S.P. Lees-Miller, and T.L. Beattie. 2005.

Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res. 33:2090-8.

Trujillo, K.M., D.H. Roh, L. Chen, S. Van Komen, A. Tomkinson, and P. Sung.

2003. Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends.J Biol Chem. 278:48957-64.

Tsai, Y.L., S.F. Tseng, S.H. Chang, C.C. Lin, and S.C. Teng. 2002.

Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol Cell Biol.

22:5679-87.

Tseng, S.F., J.J. Lin, and S.C. Teng. 2006. The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation.Nucleic Acids Res. 34:6327-36.

Turakainen, H., S. Aho, and M. Korhola. 1993a. MEL gene polymorphism in the genus Saccharomyces. Appl Environ Microbiol. 59:2622-30.

Turakainen, H., G. Naumov, E. Naumova, and M. Korhola. 1993a,b. Physical mapping of the MEL gene family in Saccharomyces cerevisiae. Curr Genet. 24:461-4.

Tzur, Y.B., K.L. Wilson, and Y. Gruenbaum. 2006. SUN-domain proteins:

'Velcro' that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol. 7:782-8.

Uetz, P., L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D.

Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y.

Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J.M. Rothberg. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

Nature. 403:623-7.

Virta-Pearlman, V., D.K. Morris, and V. Lundblad. 1996. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10:3094-104.

Vodenicharov, M.D., and R.J. Wellinger. 2006. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol Cell. 24:127-37.

Watson, J.D. 1972. Origin of concatemeric T7 DNA. Nat New Biol. 239:197-201.

Watson, J.D., and F.H. Crick. 1953. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 171:737-8.

Watt, P.M., I.D. Hickson, R.H. Borts, and E.J. Louis. 1996. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae.

Genetics. 144:935-45.

Webb, C.J., and V.A. Zakian. 2007. Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat Struct Mol Biol.

Wellinger, R.J., A.J. Wolf, and V.A. Zakian. 1993. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell. 72:51-60.

Zappulla, D.C., and T.R. Cech. 2004. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc Natl Acad Sci U S A. 101:10024-9.

Zhu, X.D., B. Kuster, M. Mann, J.H. Petrini, and T. de Lange. 2000. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet. 25:347-52.

Controlled exchange of chromosomal arms reveals principles