• Aucun résultat trouvé

CHAPITRE IV : METHODOLOGIE

IV- 2 Méthode

IV.2.2 Test statistique

Les données de RT-qPCR et de test luciférasique ont été ont été analysées à l’aide du test de Mann-Whitney avec une valeur de p inférieure à 0,05 considérée comme

statistiquement significative. Ces analyses ont été effectuées apartir des données provenant de deux ou trois expériences indépendantes poolées.

144

145

Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C., De Robertis, E. M., 2000. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development. 127, 1173-83.

Akhtar, W., Veenstra, G. J., 2011. TBP-related factors: a paradigm of diversity in transcription initiation. Cell Biosci. 1, 23.

Akkers, R. C., van Heeringen, S. J., Jacobi, U. G., Janssen-Megens, E. M., Francoijs, K. J., Stunnenberg, H. G., Veenstra, G. J., 2009. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell. 17, 425-34. Ali, R. G., Bellchambers, H. M., Arkell, R. M., 2012. Zinc fingers of the cerebellum (Zic):

transcription factors and co-factors. Int J Biochem Cell Biol. 44, 2065-8.

Allis, C. D., Jenuwein, T., 2016. The molecular hallmarks of epigenetic control. Nat Rev Genet. 17, 487-500.

Amaya, E., Musci, T. J., Kirschner, M. W., 1991. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell. 66, 257-70. Anand, M., Lai, R., Gelebart, P., 2011. beta-catenin is constitutively active and increases

STAT3 expression/activation in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 96, 253-61.

Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., Fauvet, F., Puisieux, I., Doglioni, C., Piccinin, S., Maestro, R., Voeltzel, T., Selmi, A., Valsesia-Wittmann, S., Caron de Fromentel, C., Puisieux, A., 2008. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 14, 79-89.

Aruga, J., 2004. The role of Zic genes in neural development. Mol Cell Neurosci. 26, 205-21. Aruga, J., 2018. Zic Family Proteins in Emerging Biomedical Studies. Adv Exp Med Biol.

7311-3_12.

Aruga, J., Kamiya, A., Takahashi, H., Fujimi, T. J., Shimizu, Y., Ohkawa, K., Yazawa, S., Umesono, Y., Noguchi, H., Shimizu, T., Saitou, N., Mikoshiba, K., Sakaki, Y., Agata, K., Toyoda, A., 2006. A wide-range phylogenetic analysis of Zic proteins: implications for correlations between protein structure conservation and body plan complexity. Genomics. 87, 783-92.

Aruga, J., Yokota, N., Hashimoto, M., Furuichi, T., Fukuda, M., Mikoshiba, K., 1994. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem. 63, 1880-90.

146

Ataliotis, P., Symes, K., Chou, M. M., Ho, L., Mercola, M., 1995. PDGF signalling is required for gastrulation of Xenopus laevis. Development. 121, 3099-110.

Audic, Y., Garbrecht, M., Fritz, B., Sheets, M. D., Hartley, R. S., 2002. Zygotic control of maternal cyclin A1 translation and mRNA stability. Dev Dyn. 225, 511-21.

Babb, S. G., Marrs, J. A., 2004. E-cadherin regulates cell movements and tissue formation in early zebrafish embryos. Dev Dyn. 230, 263-77.

Bae, S., Reid, C. D., Kessler, D. S., 2011. Siamois and Twin are redundant and essential in formation of the Spemann organizer. Dev Biol. 352, 367-81.

Banach, M., Edholm, E. S., Robert, J., 2017. Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system. Dev Biol. 426, 261-269. Barrallo-Gimeno, A., Nieto, M. A., 2005. The Snail genes as inducers of cell movement and

survival: implications in development and cancer. Development. 132, 3151-61.

Barratt, K. S., Arkell, R. M., 2018. ZIC2 in Holoprosencephaly. Adv Exp Med Biol. 1046, 269-299.

Barratt, K. S., Glanville-Jones, H. C., Arkell, R. M., 2014. The Zic2 gene directs the formation and function of node cilia to control cardiac situs. Genesis. 52, 626-35.

Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., Garcia De Herreros, A., 2000. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2, 84-9.

Bauer, D. V., Huang, S., Moody, S. A., 1994. The cleavage stage origin of Spemann's Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development. 120, 1179-89.

Baum, B., Settleman, J., Quinlan, M. P., 2008. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol. 19, 294-308.

Bawa, P. S., Ravi, S., Paul, S., Chaudhary, B., Srinivasan, S., 2018. A novel molecular mechanism for a long non-coding RNA PCAT92 implicated in prostate cancer. Oncotarget. 9, 32419-32434.

Bedard, J. E., Purnell, J. D., Ware, S. M., 2007. Nuclear import and export signals are essential for proper cellular trafficking and function of ZIC3. Hum Mol Genet. 16, 187-98. Bellipanni, G., Varga, M., Maegawa, S., Imai, Y., Kelly, C., Myers, A. P., Chu, F., Talbot, W.

S., Weinberg, E. S., 2006. Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm. Development. 133, 1299-309.

147

Benedyk, M. J., Mullen, J. R., DiNardo, S., 1994. odd-paired: a zinc finger pair-rule protein required for the timely activation of engrailed and wingless in Drosophila embryos. Genes Dev. 8, 105-17.

Bensch, R., Song, S., Ronneberger, O., Driever, W., 2013. Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly. Biol Open. 2, 845-54.

Bentaya, S., Ghogomu, S. M., Vanhomwegen, J., Van Campenhout, C., Thelie, A., Dhainaut, M., Bellefroid, E. J., Souopgui, J., 2012. The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus. Dev Biol. 363, 362-72.

Berger, S. L., Kouzarides, T., Shiekhattar, R., Shilatifard, A., 2009. An operational definition of epigenetics. Genes Dev. 23, 781-3.

Bernard, D. J., Lee, K. B., Santos, M. M., 2006. Activin B can signal through both ALK4 and ALK7 in gonadotrope cells. Reprod Biol Endocrinol. 4, 1477-7827.

Bhangu, A., Wood, G., Mirnezami, A., Darzi, A., Tekkis, P., Goldin, R., 2012. Epithelial mesenchymal transition in colorectal cancer: Seminal role in promoting disease progression and resistance to neoadjuvant therapy. Surg Oncol. 21, 316-23.

Bhatia, N., Spiegelman, V. S., 2005. Activation of Wnt/beta-catenin/Tcf signaling in mouse skin carcinogenesis. Mol Carcinog. 42, 213-21.

Bhaumik, S. R., Smith, E., Shilatifard, A., 2007. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol. 14, 1008-16.

Birsoy, B., Kofron, M., Schaible, K., Wylie, C., Heasman, J., 2006. Vg 1 is an essential signaling molecule in Xenopus development. Development. 133, 15-20.

Blitz, I. L., Andelfinger, G., Horb, M. E., 2006. Germ layers to organs: using Xenopus to study "later" development. Semin Cell Dev Biol. 17, 133-45.

Blum, M., De Robertis, E. M., Wallingford, J. B., Niehrs, C., 2015. Morpholinos: Antisense and Sensibility. Dev Cell. 35, 145-9.

Blum, M., Ott, T., 2018. Xenopus: An Undervalued Model Organism to Study and Model Human Genetic Disease. Cells Tissues Organs. 1-11.

Blythe, S. A., Cha, S. W., Tadjuidje, E., Heasman, J., Klein, P. S., 2010. beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell. 19, 220-31.

Blythe, S. A., Reid, C. D., Kessler, D. S., Klein, P. S., 2009. Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev Dyn. 238, 1422-32.

148

Bogdanovic, O., van Heeringen, S. J., Veenstra, G. J., 2012. The epigenome in early vertebrate development. Genesis. 50, 192-206.

Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., Cano, A., 2003. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 116, 499-511.

Bouwmeester, T., 2001. The Spemann-Mangold organizer: the control of fate specification and morphogenetic rearrangements during gastrulation in Xenopus. Int J Dev Biol. 45, 251-8.

Bouwmeester, T., Kim, S., Sasai, Y., Lu, B., De Robertis, E. M., 1996. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature. 382, 595-601.

Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T., Kimelman, D., 1997. A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359-70.

Brewster, R., Lee, J., Ruiz i Altaba, A., 1998. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature. 393, 579-83.

Brickman, M. C., Gerhart, J. C., 1994. Heparitinase inhibition of mesoderm induction and gastrulation in Xenopus laevis embryos. Dev Biol. 164, 484-501.

Brown, L., Paraso, M., Arkell, R., Brown, S., 2005. In vitro analysis of partial loss-of-function ZIC2 mutations in holoprosencephaly: alanine tract expansion modulates DNA binding and transactivation. Hum Mol Genet. 14, 411-20.

Brown, L. Y., Odent, S., David, V., Blayau, M., Dubourg, C., Apacik, C., Delgado, M. A., Hall, B. D., Reynolds, J. F., Sommer, A., Wieczorek, D., Brown, S. A., Muenke, M., 2001. Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet. 10, 791-6.

Brown, S. A., Warburton, D., Brown, L. Y., Yu, C. Y., Roeder, E. R., Stengel-Rutkowski, S., Hennekam, R. C., Muenke, M., 1998. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet. 20, 180-3.

Bushati, N., Stark, A., Brennecke, J., Cohen, S. M., 2008. Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol. 18, 501-6.

Campbell, K., 2018. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol. 55, 30-35.

149

Campbell, K., Casanova, J., 2015. A role for E-cadherin in ensuring cohesive migration of a heterogeneous population of non-epithelial cells. Nat Commun. 6, 7998.

Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., Portillo, F., Nieto, M. A., 2000. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2, 76-83. Cao, H., Xu, E., Liu, H., Wan, L., Lai, M., 2015. Epithelial-mesenchymal transition in

colorectal cancer metastasis: A system review. Pathol Res Pract. 211, 557-69.

Carethers, J. M., 2009. Intersection of transforming growth factor-beta and Wnt signaling pathways in colorectal cancer and metastasis. Gastroenterology. 137, 33-6.

Carrera, I., Janody, F., Leeds, N., Duveau, F., Treisman, J. E., 2008. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Natl Acad Sci U S A. 105, 6644-9.

Carver, E. A., Jiang, R., Lan, Y., Oram, K. F., Gridley, T., 2001. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol. 21, 8184-8. Cast, A. E., Gao, C., Amack, J. D., Ware, S. M., 2012. An essential and highly conserved role

for Zic3 in left-right patterning, gastrulation and convergent extension morphogenesis. Dev Biol. 364, 22-31.

Chabchoub, E., Willekens, D., Vermeesch, J. R., Fryns, J. P., 2012. Holoprosencephaly and ZIC2 microdeletions: novel clinical and epidemiological specificities delineated. Clin Genet. 81, 584-9.

Chan, D. W., Liu, V. W., Leung, L. Y., Yao, K. M., Chan, K. K., Cheung, A. N., Ngan, H. Y., 2011. Zic2 synergistically enhances Hedgehog signalling through nuclear retention of Gli1 in cervical cancer cells. J Pathol. 225, 525-34.

Chang, C., Wilson, P. A., Mathews, L. S., Hemmati-Brivanlou, A., 1997. A Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis. Development. 124, 827-37.

Chang, P., Perez-Mongiovi, D., Houliston, E., 1999. Organisation of Xenopus oocyte and egg cortices. Microsc Res Tech. 44, 415-29.

Chinnadurai, G., 2002. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell. 9, 213-24.

Cho, K. W., Morita, E. A., Wright, C. V., De Robertis, E. M., 1991. Overexpression of a homeodomain protein confers axis-forming activity to uncommitted Xenopus embryonic cells. Cell. 65, 55-64.

150

Choi, S. C., Han, J. K., 2002. Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway. Dev Biol. 244, 342-57. Clements, D., Friday, R. V., Woodland, H. R., 1999. Mode of action of VegT in mesoderm and

endoderm formation. Development. 126, 4903-11.

Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., van Roy, F., 2001. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 7, 1267-78. Cousin, H., 2019. Spemann-Mangold Grafts. Cold Spring Harb Protoc. 2019, pdb.prot097345. Crease, D. J., Dyson, S., Gurdon, J. B., 1998. Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Proc Natl Acad Sci U S A. 95, 4398-403.

Cunliffe, V., Smith, J. C., 1992. Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue. Nature. 358, 427-30.

Dal-Pra, S., Furthauer, M., Van-Celst, J., Thisse, B., Thisse, C., 2006. Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev Biol. 298, 514-26.

Dale, L., Evans, W., Goodman, S. A., 2002. Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. Mech Dev. 119, 177-90.

Daniels, D. L., Weis, W. I., 2005. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 12, 364-71. de Almeida, I. G., Jr., Kuratani, D. K., Gomes, L. M., Fiegenbaum, M., Estima Correia, E. P.,

Gazzola Zen, P. R., Machado Rosa, R. F., 2019. Nasal fistula, epidermal cyst and hypernatremia in a girl presenting holoprosencephaly due to a rare ZIC2 point mutation. Eur J Med Genet.

De Robertis, E. M., Kuroda, H., 2004. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol. 20, 285-308.

De Robertis, E. M., Larrain, J., Oelgeschlager, M., Wessely, O., 2000. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet. 1, 171-81.

DeLay, B. D., Corkins, M. E., Hanania, H. L., Salanga, M., Deng, J. M., Sudou, N., Taira, M., Horb, M. E., Miller, R. K., 2018. Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9. Genetics. 208, 673-686.

151

Dimitrov, S., Almouzni, G., Dasso, M., Wolffe, A. P., 1993. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev Biol. 160, 214-27.

Ding, Y., Colozza, G., Zhang, K., Moriyama, Y., Ploper, D., Sosa, E. A., Benitez, M. D. J., De Robertis, E. M., 2017. Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. Dev Biol. 426, 176-187.

Dixon Fox, M., Bruce, A. E., 2009. Short- and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b. Development. 136, 1675-85.

Dominguez, I., Itoh, K., Sokol, S. Y., 1995. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci U S A. 92, 8498-502.

Dongre, A., Weinberg, R. A., 2018. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol.

Draper, B. W., Morcos, P. A., Kimmel, C. B., 2001. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis. 30, 154-6.

Dykes, I. M., Szumska, D., Kuncheria, L., Puliyadi, R., Chen, C. M., 2018. A Requirement for Zic2 in the Regulation of Nodal Expression Underlies the Establishment of Left-Sided Identity. 8, 10439.

Elinson, R. P., Rowning, B., 1988. A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol. 128, 185-97.

Elms, P., Scurry, A., Davies, J., Willoughby, C., Hacker, T., Bogani, D., Arkell, R., 2004. Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr Patterns. 4, 505-11.

Elms, P., Siggers, P., Napper, D., Greenfield, A., Arkell, R., 2003. Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol. 264, 391-406.

Engleka, M. J., Kessler, D. S., 2001. Siamois cooperates with TGFbeta signals to induce the complete function of the Spemann-Mangold organizer. Int J Dev Biol. 45, 241-50. Etkin, L. D., 1988. Regulation of the mid-blastula transition in amphibians. Dev Biol (N Y

152

Fang, X., Cai, Y., Liu, J., Wang, Z., Wu, Q., Zhang, Z., Yang, C. J., Yuan, L., Ouyang, G., 2011. Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene. 30, 4707-20. Farge, E., 2017. [Mechanotransduction of gastrulation by cellular fluctuations]. Med Sci

(Paris). 33, 698-700.

Feehan, J. M., Stanar, P., Tam, B. M., Chiu, C., Moritz, O. L., 2019. Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9. Methods Mol Biol. 8669-9_14.

Frank, C. L., Liu, F., Wijayatunge, R., Song, L., Biegler, M. T., Yang, M. G., Vockley, C. M., Safi, A., Gersbach, C. A., Crawford, G. E., West, A. E., 2015. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 18, 647-56.

Fujisue, M., Kobayakawa, Y., Yamana, K., 1993. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation. Development. 118, 163-70.

Funayama, N., Fagotto, F., McCrea, P., Gumbiner, B. M., 1995. Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling. J Cell Biol. 128, 959-68.

Furuhashi, M., Yagi, K., Yamamoto, H., Furukawa, Y., Shimada, S., Nakamura, Y., Kikuchi, A., Miyazono, K., Kato, M., 2001. Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol. 21, 5132-41.

Gaarenstroom, T., Hill, C. S., 2014. TGF-beta signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol. 32, 107-18. Gadue, P., Huber, T. L., Paddison, P. J., Keller, G. M., 2006. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A. 103, 16806-11.

Gaj, T., Gersbach, C. A., Barbas, C. F., 3rd, 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405.

Gheldof, A., Berx, G., 2013. Cadherins and epithelial-to-mesenchymal transition. Prog Mol Biol Transl Sci. 116, 317-36.

Giraldez, A. J., Mishima, Y., Rihel, J., Grocock, R. J., Van Dongen, S., Inoue, K., Enright, A. J., Schier, A. F., 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 312, 75-9.

153

Goll, M. G., Bestor, T. H., 2005. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 74, 481-514.

Gonzalez, D. M., Medici, D., 2014. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7, re8.

Goossens, S., Vandamme, N., Van Vlierberghe, P., Berx, G., 2017. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 1868, 584-591.

Gordon, M. D., Nusse, R., 2006. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 281, 22429-33.

Graff, J. M., Bansal, A., Melton, D. A., 1996. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell. 85, 479-87.

Green, J., 1999. The animal cap assay. Methods Mol Biol. 127, 1-13.

Grinberg, I., Millen, K. J., 2005. The ZIC gene family in development and disease. Clin Genet. 67, 290-6.

Grinblat, Y., Gamse, J., Patel, M., Sive, H., 1998. Determination of the zebrafish forebrain: induction and patterning. Development. 125, 4403-16.

Gritsman, K., Talbot, W. S., Schier, A. F., 2000. Nodal signaling patterns the organizer. Development. 127, 921-32.

Grobman, A. B., 1958. Normal Table of Xenopus Laevis (Daudin). A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis. P. D. Nieuwkoop , J. Faber. The Quarterly Review of Biology. 33, 85-85.

Guger, K. A., Gumbiner, B. M., 1995. beta-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev Biol. 172, 115-25.

Guleria, S., 2011. ZIC2 mutations are seen in holoprosencephaly and not partial rhombencephalosynapsis. Am J Med Genet A. 155A, 2901; author reply 2902.

Hansen, C. S., Marion, C. D., Steele, K., George, S., Smith, W. C., 1997. Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development. 124, 483-92.

Haramoto, Y., Takahashi, S., Asashima, M., 2007. Monomeric mature protein of Nodal-related 3 activates Xbra expression. Dev Genes Evol. 217, 29-37.

Hardin, J., Keller, R., 1988. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development. 103, 211-30.

154

Harland, R., Gerhart, J., 1997. Formation and function of Spemann's organizer. Annu Rev Cell Dev Biol. 13, 611-67.

Hatayama, M., Aruga, J., 2018. Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling. Adv Exp Med Biol. 1046, 353-380.

Hatayama, M., Ishiguro, A., Iwayama, Y., Takashima, N., Sakoori, K., Toyota, T., Nozaki, Y., Odaka, Y. S., Yamada, K., Yoshikawa, T., Aruga, J., 2011. Zic2 hypomorphic mutant mice as a schizophrenia model and ZIC2 mutations identified in schizophrenia patients. Sci Rep. 1, 16.

Hay, E. D., 2005. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 233, 706-20.

He, X., Saint-Jeannet, J. P., Woodgett, J. R., Varmus, H. E., Dawid, I. B., 1995. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature. 374, 617-22.

Heasman, J., 1997. Patterning the Xenopus blastula. Development. 124, 4179-91.

Heasman, J., 2002. Morpholino oligos: making sense of antisense? Dev Biol. 243, 209-14. Heasman, J., 2006. Patterning the early Xenopus embryo. Development. 133, 1205-17.

Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., McCrea, P., Kintner, C., Noro, C. Y., Wylie, C., 1994. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell. 79, 791-803.

Heasman, J., Kofron, M., Wylie, C., 2000. Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol. 222, 124-34.

Heisenberg, C. P., Tada, M., Rauch, G. J., Saude, L., Concha, M. L., Geisler, R., Stemple, D. L., Smith, J. C., Wilson, S. W., 2000. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature. 405, 76-81.

Hellsten, U., Harland, R. M., Gilchrist, M. J., Hendrix, D., Jurka, J., Kapitonov, V., Ovcharenko, I., Putnam, N. H., Shu, S., Taher, L., Blitz, I. L., Blumberg, B., Dichmann, D. S., Dubchak, I., Amaya, E., Detter, J. C., Fletcher, R., Gerhard, D. S., Goodstein, D., Graves, T., Grigoriev, I. V., Grimwood, J., Kawashima, T., Lindquist, E., Lucas, S. M., Mead, P. E., Mitros, T., Ogino, H., Ohta, Y., Poliakov, A. V., Pollet, N., Robert, J., Salamov, A., Sater, A. K., Schmutz, J., Terry, A., Vize, P. D., Warren, W. C., Wells, D., Wills, A., Wilson, R. K., Zimmerman, L. B., Zorn, A. M., Grainger, R., Grammer, T., Khokha, M. K., Richardson, P. M., Rokhsar, D. S., 2010. The genome of the Western clawed frog Xenopus tropicalis. Science. 328, 633-6.

155

Hemmati-Brivanlou, A., Melton, D. A., 1992. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature. 359, 609-14. Hendrich, B., Tweedie, S., 2003. The methyl-CpG binding domain and the evolving role of

DNA methylation in animals. Trends Genet. 19, 269-77.

Henry, G. L., Brivanlou, I. H., Kessler, D. S., Hemmati-Brivanlou, A., Melton, D. A., 1996. TGF-beta signals and a pattern in Xenopus laevis endodermal development. Development. 122, 1007-15.

Hikasa, H., Sokol, S. Y., 2013. Wnt signaling in vertebrate axis specification. Cold Spring Harb Perspect Biol. 5, a007955.

Himeda, C. L., Barro, M. V., Emerson, C. P., Jr., 2013. Pax3 synergizes with Gli2 and Zic1 in transactivating the Myf5 epaxial somite enhancer. Dev Biol. 383, 7-14.

Ho, L., Symes, K., Yordan, C., Gudas, L. J., Mercola, M., 1994. Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mech Dev. 48, 165-74.

Holowacz, T., Elinson, R. P., 1993. Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte. Development. 119, 277-85. Hong, M., Srivastava, K., Kim, S., Allen, B. L., Leahy, D. J., Hu, P., Roessler, E., Krauss, R.

S., Muenke, M., 2017. BOC is a modifier gene in holoprosencephaly. Human Mutation. 38, 1464-1470.

Houliston, E., Elinson, R. P., 1992. Microtubules and cytoplasmic reorganization in the frog egg. Curr Top Dev Biol. 26, 53-70.

Houston, D. W., 2012. Cortical rotation and messenger RNA localization in Xenopus axis formation. Wiley Interdiscip Rev Dev Biol. 1, 371-88.

Houston, D. W., Kofron, M., Resnik, E., Langland, R., Destree, O., Wylie, C., Heasman, J., 2002. Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development. 129, 4015-25.

Houston, D. W., Wylie, C., 2005. Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. Development. 132, 4845-55.

Houtmeyers, R., Souopgui, J., Tejpar, S., Arkell, R., 2013. The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol Life Sci. 70, 3791-811.

Houtmeyers, R., Tchouate Gainkam, O., Glanville-Jones, H. A., Van den Bosch, B., Chappell, A., Barratt, K. S., Souopgui, J., Tejpar, S., Arkell, R. M., 2016. Zic2 mutation causes

156

holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet. 25, 3946-3959.

Huang, R. Y., Guilford, P., Thiery, J. P., 2012. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci. 125, 4417-22.

Huang, S., Jin, A., 2017. ZIC2 promotes viability and invasion of human osteosarcoma cells by suppressing SHIP2 expression and activating PI3K/AKT pathways. J Cell Biochem. Huang, Y., Winklbauer, R., 2018a. Cell migration in the Xenopus gastrula. Wiley Interdiscip

Rev Dev Biol. 7, e325.

Huang, Y., Winklbauer, R., 2018b. Cell migration in the Xenopus gastrula. Wiley Interdiscip Rev Dev Biol. 7, 26.

Huber, M. A., Kraut, N., Beug, H., 2005. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17, 548-58.

Hudziak, R. M., Barofsky, E., Barofsky, D. F., Weller, D. L., Huang, S. B., Weller, D. D., 1996. Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev. 6, 267-72.

Inaguma, S., Ito, H., Riku, M., Ikeda, H., Kasai, K., 2015. Addiction of pancreatic cancer cells to zinc-finger transcription factor ZIC2. Oncotarget. 6, 28257-68.

Inoue, T., Hatayama, M., Tohmonda, T., Itohara, S., Aruga, J., Mikoshiba, K., 2004. Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev Biol. 270, 146-62.

Inoue, T., Ota, M., Ogawa, M., Mikoshiba, K., Aruga, J., 2007. Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. J Neurosci. 27, 5461-73.

Ishiguro, A., Hatayama, M., Otsuka, M. I., Aruga, J., 2018. Link between the causative genes of holoprosencephaly: Zic2 directly regulates Tgif1 expression. Sci Rep. 8, 2140. Ishiguro, A., Ideta, M., Mikoshiba, K., Chen, D. J., Aruga, J., 2007. ZIC2-dependent

transcriptional regulation is mediated by DNA-dependent protein kinase, poly(ADP-ribose) polymerase, and RNA helicase A. J Biol Chem. 282, 9983-95.

Ishiguro, A., Inoue, T., Mikoshiba, K., Aruga, J., 2004. Molecular properties of Zic4 and Zic5 proteins: functional diversity within Zic family. Biochem Biophys Res Commun. 324,