On top of this, it was found in [30] that the model is ruled out by the fact that its ten-sor perturbations do not propagate at the speed of light. This is also interesting from the methodological point of view since it shows that, for these nonlocal models, it is not obvious a priori to satisfy this constraint. The equation for tensor perturbations

CMB+BAO+SNe

Parameter *νΛCDM* ∆4

H_{0} 67.60^{+}_{−}^{0.66}_{0.55} 70.27^{+}_{−}^{0.95}_{0.94}

∑*ν*m* _{ν}*[eV] <0.10 (at 1σ) 0.185

^{+}

_{−}

^{0.087}

_{0.096}

*ω*

_{c}0.1189

^{+}

_{−}

^{0.0011}

_{0.0011}0.1202

^{+}

_{−}

^{0.0014}

_{0.0014}100ω

_{b}2.229

^{+}

_{−}

^{0.014}

_{0.015}2.217

^{+}

_{−}

^{0.017}

_{0.017}ln(10

^{10}As) 3.071

^{+}

_{−}

^{0.026}

_{0.029}3.080

^{+}

_{−}

^{0.034}

_{0.036}n

_{s}0.9661

^{+}

_{−}

^{0.0043}

_{0.0043}0.9637

^{+}

_{−}

^{0.0050}

_{0.0050}

*τ*

_{re}0.06965

^{+}

_{−}

^{0.01393}

_{0.01549}0.07280

^{+}

_{−}

^{0.01769}

_{0.01927}ΩM 0.3109

^{+}

_{−}

^{0.0069}

_{0.0084}0.2925

^{+}

_{−}

^{0.0096}

_{0.0101}z

_{re}9.150

^{+}

_{−}

^{1.396}

_{1.355}9.490

^{+}

_{−}

^{1.793}

_{1.656}

*σ*

_{8}0.8157

^{+}

_{−}

^{0.0135}

_{0.0104}0.8240

^{+}

_{−}

^{0.0199}

_{0.0177}

*χ*^{2}_{min} 13630.78 13649.98

∆χ^{2}_{min} 0 19.20

TABLE5.1: Parameter estimation and*χ*^{2}values for*νΛCDM and the*

∆4model, using the CMB, BAO and SNe datasets. From [30].

0 1 2 3 4 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

z cgw(Δ4)

FIGURE5.2: The speed of gravitational waves in the∆4model as a function of the redshift. From [30].

in the∆4model is

(1−^{3γ}^{V}^{¯})^{}*∂*^{2}* _{η}*h˜

_{A}+2H

^{∂}*η*h˜

_{A}+k

^{2}h˜

_{A}+

*γ*

"

(*∂**η*V¯)^{2}
a^{2}H_{0}^{2}

2∂^{2}* _{η}*h˜

_{A}−

^{k}

^{2}

^{h}

^{˜}A

+ (4 ¯U−^{3})*∂**η*V∂¯ *η*h˜_{A}

#

=16πGa^{2}*σ*˜_{A}, (5.5.1)
and the corresponding speed of gravitational waves in a FRW background is

c^{(}_{gw}^{∆}^{4}^{)} =
v
u
u
t

1−^{3γ}^{V}^{¯} − _{a}2* ^{γ}*H

^{2}

_{0}(

*∂*

*η*V¯)

^{2}1−

^{3γ}

^{V}

^{¯}+2

_{a}

_{2}

^{γ}_{H}2

0

(*∂** _{η}*V¯)

^{2}

^{.}

^{(5.5.2)}This quantity is always smaller than one, and in the recent epoch it differs from one significantly, see Fig.5.2. Thus, the∆4 model is ruled out by the GW170817/GRB 170817A test.

**Bibliography**

[1] C. W. Misner, K. Thorne, and J. Wheeler,Gravitation. Freeman, New York, 1973.

[2] **Supernova Search Team**Collaboration, A. G. Riesset al., “Observational
evidence from supernovae for an accelerating universe and a cosmological
constant,”Astron.J.**116**(1998) 1009–1038,arXiv:astro-ph/9805201

[astro-ph].

[3] **Supernova Cosmology Project**Collaboration, S. Perlmutteret al.,

“Measurements of Omega and Lambda from 42 high redshift supernovae,”

Astrophys.J.**517**(1999) 565–586,arXiv:astro-ph/9812133 [astro-ph].

[4] S. Weinberg, “The Cosmological Constant Problem,”Rev. Mod. Phys.**61**(1989)
1–23.

[5] M. Maggiore,A Modern Introduction to Quantum Field Theory. Oxford University Press, 312 p, 2005.

[6] A. Padilla, “Lectures on the Cosmological Constant Problem,”

arXiv:1502.05296 [hep-th].

[7] C. Brans and R. Dicke, “Mach’s principle and a relativistic theory of
gravitation,”Phys. Rev.**124**(1961) 925–935.

[8] D. Lovelock, “The Einstein tensor and its generalizations,”J. Math. Phys.**12**
(1971) 498–501.

[9] T. Padmanabhan, “Emergent Gravity Paradigm: Recent Progress,”Mod. Phys.

Lett. A**30**no. 03n04, (2015) 1540007,arXiv:1410.6285 [gr-qc].

[10] E. P. Verlinde, “On the Origin of Gravity and the Laws of Newton,”JHEP**04**
(2011) 029,arXiv:1001.0785 [hep-th].

[11] G. W. Horndeski, “Second-order scalar-tensor field equations in a
four-dimensional space,”Int. J. Theor. Phys.**10**(1974) 363–384.

[12] J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and
G. Tasinato, “Degenerate higher order scalar-tensor theories beyond
Horndeski up to cubic order,”JHEP**12**(2016) 100,arXiv:1608.08135
[hep-th].

[13] J. Ben Achour, D. Langlois, and K. Noui, “Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations,”

Phys. Rev. D**93**no. 12, (2016) 124005,arXiv:1602.08398 [gr-qc].

[14] M. Crisostomi, K. Koyama, and G. Tasinato, “Extended Scalar-Tensor
Theories of Gravity,”JCAP**04**(2016) 044,arXiv:1602.03119 [hep-th].

[15] D. Langlois, “Dark energy and modified gravity in degenerate higher-order
scalar–tensor (DHOST) theories: A review,”Int. J. Mod. Phys. D**28**no. 05,
(2019) 1942006,arXiv:1811.06271 [gr-qc].

[16] C. Eling, T. Jacobson, and D. Mattingly, “Einstein-Aether theory,” inDeserfest:

A Celebration of the Life and Works of Stanley Deser, pp. 163–179. 10, 2004.

arXiv:gr-qc/0410001.

[17] S. Hassan and R. A. Rosen, “Bimetric Gravity from Ghost-free Massive
Gravity,”JHEP**1202**(2012) 126,arXiv:1109.3515 [hep-th].

[18] M. Fierz and W. Pauli, “On relativistic wave equations for particles of
arbitrary spin in an electromagnetic field,”Proc.Roy.Soc.Lond.**A173**(1939)
211–232.

[19] D. Boulware and S. Deser, “Can gravitation have a finite range?,”Phys.Rev.

**D6**(1972) 3368–3382.

[20] D. Comelli, M. Crisostomi, F. Nesti, and L. Pilo, “Degrees of Freedom in
Massive Gravity,”Phys.Rev.**D86**(2012) 101502,arXiv:1204.1027 [hep-th].

[21] C. de Rham, G. Gabadadze, and A. J. Tolley, “Resummation of Massive
Gravity,”Phys.Rev.Lett.**106**(2011) 231101,arXiv:1011.1232 [hep-th].

[22] K. Hinterbichler, “Theoretical Aspects of Massive Gravity,”Rev.Mod.Phys.**84**
(2012) 671–710,arXiv:1105.3735 [hep-th].

[23] G. Dvali, G. Gabadadze, and M. Porrati, “4-D gravity on a brane in 5-D
Minkowski space,”Phys.Lett.**B485**(2000) 208–214,arXiv:hep-th/0005016
[hep-th].

[24] A. De Felice and S. Tsujikawa, “f(R) theories,”Living Rev. Rel.**13**(2010) 3,
arXiv:1002.4928 [gr-qc].

[25] P. Horava, “Quantum Gravity at a Lifshitz Point,”Phys. Rev. D**79**(2009)
084008,arXiv:0901.3775 [hep-th].

[26] M. Ostrogradsky, “Mémoires sur les équations différentielles, relatives au
problème des isopérimètres,”Mem. Acad. St. Petersbourg**6**no. 4, (1850)
385–517.

[27] M. Maggiore,Gravitational Waves. Vol. 1: Theory and Experiments. Oxford Master Series in Physics. Oxford University Press, 2007.

http://www.oup.com/uk/catalogue/?ci=9780198570745.

[28] T. Taylor and G. Veneziano, “Quantum Gravity at Large Distances and the
Cosmological Constant,”Nucl.Phys.**B345**(1990) 210–230.

[29] M. Maggiore, “Nonlocal Infrared Modifications of Gravity. A Review,”

Fundam. Theor. Phys.**187**(2017) 221–281,arXiv:1606.08784 [hep-th].

[30] E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore, “Nonlocal gravity.

Conceptual aspects and cosmological predictions,”JCAP**1803**(2018) 002,
arXiv:1712.07066 [hep-th].

[31] E. Belgacem, Y. Dirian, A. Finke, S. Foffa, and M. Maggiore, “Gravity in the
infrared and effective nonlocal models,”JCAP**04**(2020) 010,

arXiv:2001.07619 [astro-ph.CO].

[32] A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,”arXiv:1703.05448 [hep-th].

[33] H. Bondi, M. van der Burg, and A. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,”Proc. Roy. Soc. Lond.

A**269**(1962) 21–52.

[34] R. Sachs, “Gravitational waves in general relativity. 8. Waves in

asymptotically flat space-times,”Proc. Roy. Soc. Lond. A**270**(1962) 103–126.

[35] I. Antoniadis and E. Mottola, “Graviton Fluctuations in De Sitter Space,”

J.Math.Phys.**32**(1991) 1037–1044.

[36] I. Antoniadis and E. Mottola, “4-D quantum gravity in the conformal sector,”

Phys.Rev.**D45**(1992) 2013–2025.

[37] A. Higuchi, D. Marolf, and I. A. Morrison, “de Sitter invariance of the dS
graviton vacuum,”Class. Quant. Grav.**28**(2011) 245012,arXiv:1107.2712
[hep-th].

[38] S. P. Miao, N. C. Tsamis, and R. P. Woodard, “Gauging away Physics,”Class.

Quant. Grav.**28**(2011) 245013,arXiv:1107.4733 [gr-qc].

[39] A. Rajaraman, “de Sitter Space is Unstable in Quantum Gravity,”Phys. Rev.

**D94**no. 12, (2016) 125025,arXiv:1608.07237 [hep-th].

[40] N. C. Tsamis and R. P. Woodard, “Strong infrared effects in quantum
gravity,”Annals Phys.**238**(1995) 1–82.

[41] A. A. Starobinsky and J. Yokoyama, “Equilibrium state of a selfinteracting
scalar field in the De Sitter background,”Phys. Rev.**D50**(1994) 6357–6368,
arXiv:astro-ph/9407016 [astro-ph].

[42] A. Riotto and M. S. Sloth, “On Resumming Inflationary Perturbations beyond
One-loop,”JCAP**0804**(2008) 030,arXiv:0801.1845 [hep-ph].

[43] C. Burgess, L. Leblond, R. Holman, and S. Shandera, “Super-Hubble de Sitter
Fluctuations and the Dynamical RG,”JCAP**1003**(2010) 033,

arXiv:0912.1608 [hep-th].

[44] A. Rajaraman, “On the proper treatment of massless fields in Euclidean de
Sitter space,”Phys. Rev.**D82**(2010) 123522,arXiv:1008.1271 [hep-th].

[45] M. Beneke and P. Moch, “On dynamical mass generation in Euclidean de
Sitter space,”Phys. Rev.**D87**(2013) 064018,arXiv:1212.3058 [hep-th].

[46] F. Gautier and J. Serreau, “Infrared dynamics in de Sitter space from
Schwinger-Dyson equations,”Phys. Lett.**B727**(2013) 541–547,
arXiv:1305.5705 [hep-th].

[47] D. López Nacir, F. D. Mazzitelli, and L. G. Trombetta, “O(N)model in

Euclidean de Sitter space: beyond the leading infrared approximation,”JHEP
**09**(2016) 117,arXiv:1606.03481 [hep-th].

[48] I. Antoniadis, P. O. Mazur, and E. Mottola, “Cosmological dark energy:

Prospects for a dynamical theory,”New J.Phys.**9**(2007) 11,
arXiv:gr-qc/0612068 [gr-qc].

[49] N. Birrell and P. Davies,Quantum fields in curved space. Cambridge University Press, 1982.

[50] A. Barvinsky and G. Vilkovisky, “The Generalized Schwinger-DeWitt

Technique in Gauge Theories and Quantum Gravity,”Phys.Rept.**119**(1985) 1.

[51] A. Barvinsky and G. Vilkovisky, “Beyond the Schwinger-DeWitt Technique:

Converting Loops Into Trees and In-In Currents,”Nucl.Phys.**B282**(1987) 163.

[52] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro,Effective action in quantum gravity. Institute of Physics, Bristol, UK, 1992.

[53] V. Mukhanov and S. Winitzki,Introduction to quantum effects in gravity.

Cambridge University Press, Cambridge, 2007.

[54] I. L. Shapiro, “Effective Action of Vacuum: Semiclassical Approach,”Class.

Quant. Grav.**25**(2008) 103001,arXiv:0801.0216 [gr-qc].

[55] R. Jordan, “Effective Field Equations for Expectation Values,”Phys.Rev.**D33**
(1986) 444.

[56] E. Calzetta and B. Hu, “Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems,”Phys.Rev.

**D35**(1987) 495.

[57] D. A. Dalvit and F. D. Mazzitelli, “Running coupling constants, Newtonian
potential and nonlocalities in the effective action,”Phys.Rev.**D50**(1994)
1001–1009,arXiv:gr-qc/9402003 [gr-qc].

[58] A. V. Manohar, “Effective field theories,”Lect.Notes Phys.**479**(1997) 311–362,
arXiv:hep-ph/9606222 [hep-ph].

[59] A. Dobado and A. L. Maroto, “Particle production from nonlocal
gravitational effective action,”Phys.Rev.**D60**(1999) 104045,
arXiv:gr-qc/9803076 [gr-qc].

[60] V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, “Fractal Structure
of 2D Quantum Gravity,”Mod. Phys. Lett.**A3**(1988) 819.

[61] F. David, “Conformal Field Theories Coupled to 2D Gravity in the Conformal
Gauge,”Mod. Phys. Lett.**A3**(1988) 1651.

[62] J. Distler and H. Kawai, “Conformal Field Theory and 2D Quantum Gravity,”

Nucl. Phys.**B321**(1989) 509–527.

[63] J. Polchinski, “A Two-Dimensional Model for Quantum Gravity,”Nucl. Phys.

**B324**(1989) 123–140.

[64] R. J. Riegert, “A Nonlocal Action for the Trace Anomaly,”Phys. Lett.**B134**
(1984) 56–60.

[65] G. Dvali, “Predictive Power of Strong Coupling in Theories with Large
Distance Modified Gravity,”New J.Phys.**8**(2006) 326,arXiv:hep-th/0610013
[hep-th].

[66] M. Porrati, “Higgs phenomenon for 4-D gravity in anti-de Sitter space,”JHEP
**04**(2002) 058,arXiv:hep-th/0112166 [hep-th].

[67] M. Jaccard, M. Maggiore, and E. Mitsou, “A non-local theory of massive
gravity,”Phys.Rev.**D88**(2013) 044033,arXiv:1305.3034 [hep-th].

[68] P. Boucaud, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene, and

J. Rodriguez-Quintero, “Testing Landau gauge OPE on the lattice with ah^{A}^{2}i
condensate,”Phys. Rev.**D63**(2001) 114003,arXiv:hep-ph/0101302 [hep-ph].

[69] M. A. L. Capri, D. Dudal, J. A. Gracey, V. E. R. Lemes, R. F. Sobreiro, S. P.

Sorella, and H. Verschelde, “A Study of the gauge invariant, nonlocal mass operator TrR

d^{4}xF*µν*(D^{2})^{−}^{1}F*µν* in Yang-Mills theories,”Phys. Rev.**D72**(2005)
105016,arXiv:hep-th/0510240 [hep-th].

[70] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and H. Verschelde, “A
Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared
propagators in harmony with the lattice results,”Phys. Rev.**D78**(2008)

065047,arXiv:0806.4348 [hep-th].

[71] S. Foffa, M. Maggiore, and E. Mitsou, “Apparent ghosts and spurious degrees
of freedom in non-local theories,”Phys.Lett.**B733**(2014) 76–83,

arXiv:1311.3421 [hep-th].

[72] E. E. Flanagan and S. A. Hughes, “The Basics of gravitational wave theory,”

New J.Phys.**7**(2005) 204,arXiv:gr-qc/0501041 [gr-qc].

[73] M. Jaccard, M. Maggiore, and E. Mitsou, “Bardeen variables and hidden
gauge symmetries in linearized massive gravity,”Phys.Rev.**D87**(2013)
044017,arXiv:1211.1562 [hep-th].

[74] M. Maggiore,Gravitational Waves. Vol. 2: Astrophysics and Cosmology. Oxford University Press, 2018. https://global.oup.com/academic/product/

gravitational-waves-9780198570899?cc=de&lang=en&#.

[75] S. Deser, “Covariant Decomposition and the Gravitational Cauchy Problem,”

Ann.Inst.Henri Poincare**7**(1967) 149.

[76] J. J. York, “Covariant decompositions of symmetric tensors in the theory of
gravitation,”Ann.Inst.Henri Poincare**21**(1974) 319.

[77] M. Maggiore, “Phantom dark energy from nonlocal infrared modifications of
general relativity,”Phys.Rev.**D89**(2014) 043008,arXiv:1307.3898 [hep-th].
[78] M. Maggiore and M. Mancarella, “Non-local gravity and dark energy,”

Phys.Rev.**D90**(2014) 023005,arXiv:1402.0448 [hep-th].

[79] S. Nojiri and S. D. Odintsov, “Modified non-local-F(R) gravity as the key for
the inflation and dark energy,”Phys.Lett.**B659**(2008) 821–826,

arXiv:0708.0924 [hep-th].

[80] S. Jhingan, S. Nojiri, S. Odintsov, M. Sami, I. Thongkool,et al., “Phantom and
non-phantom dark energy: The Cosmological relevance of non-locally
corrected gravity,”Phys.Lett.**B663**(2008) 424–428,arXiv:0803.2613
[hep-th].

[81] N. Koshelev, “Comments on scalar-tensor representation of nonlocally
corrected gravity,”Grav.Cosmol.**15**(2009) 220–223,arXiv:0809.4927
[gr-qc].

[82] T. Koivisto, “Newtonian limit of nonlocal cosmology,”Phys.Rev.**D78**(2008)
123505,arXiv:0807.3778 [gr-qc].

[83] T. S. Koivisto, “Cosmology of modified (but second order) gravity,”AIP
Conf.Proc.**1206**(2010) 79–96,arXiv:0910.4097 [gr-qc].

[84] A. O. Barvinsky, “Serendipitous discoveries in nonlocal gravity theory,”

Phys.Rev.**D85**(2012) 104018,arXiv:1112.4340 [hep-th].

[85] S. Deser and R. Woodard, “Observational Viability and Stability of Nonlocal
Cosmology,”JCAP**1311**(2013) 036,arXiv:1307.6639 [astro-ph.CO].
[86] A. Kehagias and M. Maggiore, “Spherically symmetric static solutions in a

non-local infrared modification of General Relativity,”JHEP**1408**(2014) 029,
arXiv:1401.8289 [hep-th].

[87] M. Maggiore, “Perturbative loop corrections and nonlocal gravity,”Phys. Rev.

**D93**(2016) 063008,arXiv:1603.01515 [hep-th].

[88] G. ’t Hooft and M. Veltman, “One loop divergencies in the theory of
gravitation,”Annales Poincare Phys.Theor.**A20**(1974) 69–94.

[89] A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 2:

Second order in the curvature. General algorithms,”Nucl. Phys.**B333**(1990)
471–511.

[90] E. V. Gorbar and I. L. Shapiro, “Renormalization group and decoupling in
curved space,”JHEP**0302**(2003) 021,arXiv:hep-ph/0210388 [hep-ph].

[91] E. V. Gorbar and I. L. Shapiro, “Renormalization group and decoupling in
curved space. 2. The Standard model and beyond,”JHEP**0306**(2003) 004,
arXiv:hep-ph/0303124 [hep-ph].

[92] J. F. Donoghue, “General relativity as an effective field theory: The leading
quantum corrections,”Phys. Rev.**D50**(1994) 3874–3888,

arXiv:gr-qc/9405057 [gr-qc].

[93] A. Codello and R. K. Jain, “On the covariant formalism of the effective field
theory of gravity and leading order corrections,”Class. Quant. Grav.**33**(2016)
225006,arXiv:1507.06308 [gr-qc].

[94] A. Codello and R. K. Jain, “On the covariant formalism of the effective field
theory of gravity and its cosmological implications,”Class. Quant. Grav.**34**
(2017) 035015,arXiv:1507.07829 [astro-ph.CO].

[95] J. Polchinski, “Renormalization and Effective Lagrangians,”Nucl. Phys.**B231**
(1984) 269–295.

[96] C. Wetterich, “Exact evolution equation for the effective potential,”Phys. Lett.

**B301**(1993) 90–94,arXiv:1710.05815 [hep-th].

[97] M. Reuter and F. Saueressig, “Quantum Einstein Gravity,”New J. Phys.**14**
(2012) 055022,arXiv:1202.2274 [hep-th].

[98] C. Wetterich, “Graviton fluctuations erase the cosmological constant,”Phys.

Lett.**B773**(2017) 6–19,arXiv:1704.08040 [gr-qc].

[99] B. Knorr, “Infinite order quantum-gravitational correlations,”Class. Quant.

Grav.**35**(2018) 115005,arXiv:1710.07055 [hep-th].

[100] T. R. Morris, “Renormalization group properties in the conformal sector:

towards perturbatively renormalizable quantum gravity,”JHEP**08**(2018)
024,arXiv:1802.04281 [hep-th].

[101] C. Wetterich, “Infrared limit of quantum gravity,”Phys. Rev.**D98**(2018)
026028,arXiv:1802.05947 [gr-qc].

[102] M. Reuter and H. Weyer, “Quantum gravity at astrophysical distances?,”

JCAP**0412**(2004) 001,arXiv:hep-th/0410119 [hep-th].

[103] H. W. Hamber,Quantum gravitation: The Feynman path integral approach.

Springer, Berlin, 2009. http://www.springer.com/978-3-540-85292-6.

[104] J. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, “Nonperturbative
Quantum Gravity,”Phys. Rept.**519**(2012) 127–210,arXiv:1203.3591
[hep-th].

[105] R. Loll, “Quantum Gravity from Causal Dynamical Triangulations: A
Review,”Class. Quant. Grav.**37**(2020) 013002,arXiv:1905.08669 [hep-th].
[106] B. Knorr and F. Saueressig, “Towards reconstructing the quantum effective

action of gravity,”Phys. Rev. Lett.**121**(2018) 161304,arXiv:1804.03846
[hep-th].

[107] E. Belgacem, G. Cusin, S. Foffa, M. Maggiore, and M. Mancarella, “Stability
issues of nonlocal gravity during primordial inflation,”Int. J. Mod. Phys.**A33**
(2018) 1850007,arXiv:1610.05664 [hep-th]. [Erratum: Int. J. Mod.

Phys.A33,1892005(2018)].

[108] M. Chevallier and D. Polarski, “Accelerating universes with scaling dark
matter,”Int.J.Mod.Phys.**D10**(2001) 213–224,arXiv:gr-qc/0009008 [gr-qc].

[109] E. V. Linder, “Exploring the expansion history of the universe,”Phys.Rev.Lett.

**90**(2003) 091301,arXiv:astro-ph/0208512 [astro-ph].

[110] S. Nesseris and S. Tsujikawa, “Cosmological perturbations and observational
constraints on nonlocal massive gravity,”Phys.Rev.**D90**(2014) 024070,
arXiv:1402.4613 [astro-ph.CO].

[111] Y. Dirian, S. Foffa, N. Khosravi, M. Kunz, and M. Maggiore, “Cosmological
perturbations and structure formation in nonlocal infrared modifications of
general relativity,”JCAP**1406**(2014) 033,arXiv:1403.6068 [astro-ph.CO].

[112] L. Amendola, M. Kunz, and D. Sapone, “Measuring the dark side (with weak
lensing),”JCAP**0804**(2008) 013,arXiv:0704.2421 [astro-ph].

[113] S. F. Danielet al., “Testing General Relativity with Current Cosmological
Data,”Phys.Rev.**D81**(2010) 123508,arXiv:1002.1962 [astro-ph.CO].

[114] C. Deffayet, “Cosmology on a brane in Minkowski bulk,”Phys.Lett.**B502**
(2001) 199–208,arXiv:hep-th/0010186 [hep-th].

[115] C. Deffayet, G. Dvali, and G. Gabadadze, “Accelerated universe from gravity
leaking to extra dimensions,”Phys.Rev.**D65**(2002) 044023,

arXiv:astro-ph/0105068 [astro-ph].

[116] M. A. Luty, M. Porrati, and R. Rattazzi, “Strong interactions and stability in
the DGP model,”JHEP**0309**(2003) 029,arXiv:hep-th/0303116 [hep-th].

[117] A. Nicolis and R. Rattazzi, “Classical and quantum consistency of the DGP
model,”JHEP**0406**(2004) 059,arXiv:hep-th/0404159 [hep-th].

[118] D. Gorbunov, K. Koyama, and S. Sibiryakov, “More on ghosts in DGP
model,”Phys.Rev.**D73**(2006) 044016,arXiv:hep-th/0512097 [hep-th].

[119] C. Charmousis, R. Gregory, N. Kaloper, and A. Padilla, “DGP

Specteroscopy,”JHEP**0610**(2006) 066,arXiv:hep-th/0604086 [hep-th].
[120] K. Izumi, K. Koyama, and T. Tanaka, “Unexorcized ghost in DGP brane

world,”JHEP**0704**(2007) 053,arXiv:hep-th/0610282 [hep-th].

[121] C. de Rham and G. Gabadadze, “Generalization of the Fierz-Pauli Action,”

Phys.Rev.**D82**(2010) 044020,arXiv:1007.0443 [hep-th].

[122] S. Hassan and R. A. Rosen, “Resolving the Ghost Problem in non-Linear
Massive Gravity,”Phys.Rev.Lett.**108**(2012) 041101,arXiv:1106.3344
[hep-th].

[123] G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, and
A. J. Tolley, “Massive Cosmologies,”Phys. Rev.**D84**(2011) 124046,

arXiv:1108.5231 [hep-th].

[124] F. Koennig, Y. Akrami, L. Amendola, M. Motta, and A. R. Solomon, “Stable and unstable cosmological models in bimetric massive gravity,”Phys. Rev.

**D90**(2014) 124014,arXiv:1407.4331 [astro-ph.CO].

[125] M. Lagos and P. G. Ferreira, “Cosmological perturbations in massive
bigravity,”JCAP**1412**(2014) 026,arXiv:1410.0207 [gr-qc].

[126] G. Cusin, R. Durrer, P. Guarato, and M. Motta, “Gravitational waves in
bigravity cosmology,”JCAP**1505**(2015) 030,arXiv:1412.5979

[astro-ph.CO].

[127] Y. Akrami, S. F. Hassan, F. Könnig, A. Schmidt-May, and A. R. Solomon,

“Bimetric gravity is cosmologically viable,”Phys. Lett.**B748**(2015) 37–44,
arXiv:1503.07521 [gr-qc].

[128] G. Cusin, R. Durrer, P. Guarato, and M. Motta, “Inflationary perturbations in
bimetric gravity,”JCAP**1509**(2015) 043,arXiv:1505.01091 [astro-ph.CO].

[129] A. Schmidt-May and M. von Strauss, “Recent developments in bimetric
theory,”J. Phys.**A49**(2016) 183001,arXiv:1512.00021 [hep-th].

[130] G. Cusin, R. Durrer, P. Guarato, and M. Motta, “A general mass term for
bigravity,”JCAP**1604**(2016) 051,arXiv:1512.02131 [astro-ph.CO].

[131] D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving
System (CLASS) II: Approximation schemes,”JCAP**1107**(2011) 034,

arXiv:1104.2933 [astro-ph.CO].

[132] https://github.com/enisbelgacem/class_public.

[133] Y. Dirian, “Changing the Bayesian prior: Absolute neutrino mass constraints
in nonlocal gravity,”Phys. Rev.**D96**(2017) 083513,arXiv:1704.04075

[astro-ph.CO].

[134] M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, and T. Schwetz, “Global fit to
three neutrino mixing: critical look at present precision,”JHEP**12**(2012) 123,
arXiv:1209.3023 [hep-ph].

[135] **Planck**Collaboration, P. A. R. Adeet al., “Planck 2015 results. XIII.

Cosmological parameters,”Astron. Astrophys.**594**(2016) A13,
arXiv:1502.01589 [astro-ph.CO].

[136] **Planck**Collaboration, N. Aghanimet al., “Planck 2018 results. VI.

Cosmological parameters,”arXiv:1807.06209 [astro-ph.CO].

[137] **Planck**Collaboration, N. Aghanimet al., “Planck 2018 results. V. CMB power
spectra and likelihoods,”arXiv:1907.12875 [astro-ph.CO].

[138] **Planck**Collaboration, N. Aghanimet al., “Planck 2018 results. VIII.

Gravitational lensing,”arXiv:1807.06210 [astro-ph.CO].

[139] D. M. Scolnicet al., “The Complete Light-curve Sample of Spectroscopically
Confirmed Type Ia Supernovae from Pan-STARRS1 and Cosmological
Constraints from The Combined Pantheon Sample,”The Astrophysical Journal
**859**(June, 2018) 101,arXiv:1710.00845 [astro-ph.CO].

[140] **SDSS**Collaboration, M. Betouleet al., “Improved cosmological constraints
from a joint analysis of the SDSS-II and SNLS supernova samples,”Astron.

Astrophys.**568**(2014) A22,arXiv:1401.4064 [astro-ph.CO].

[141] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith,et al., “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble

Constant,”Mon.Not.Roy.Astron.Soc.**416**(2011) 3017–3032,arXiv:1106.3366
[astro-ph.CO].

[142] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera,

“The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent

distance measure atz =0.15,”Mon. Not. Roy. Astron. Soc.**449**(2015) 835–847,
arXiv:1409.3242 [astro-ph.CO].

[143] **BOSS**Collaboration, S. Alamet al., “The clustering of galaxies in the
completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological
analysis of the DR12 galaxy sample,”Mon. Not. Roy. Astron. Soc.**470**(2017)
2617–2652,arXiv:1607.03155 [astro-ph.CO].

[144] H. Jeffreys,The theory of probability. OUP Oxford, 1998.

[145] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, “Large
Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the
Determination of the Hubble Constant and Stronger Evidence for Physics
Beyond LambdaCDM,”Astrophys. J.**876**(2019) 85,arXiv:1903.07603
[astro-ph.CO].

[146] K. C. Wonget al., “H0LiCOW XIII. A 2.4% measurement of H_{0}from lensed
quasars: 5.3σtension between early and late-Universe probes,”

arXiv:1907.04869 [astro-ph.CO].

[147] V. Poulin, K. K. Boddy, S. Bird, and M. Kamionkowski, “Implications of an
extended dark energy cosmology with massive neutrinos for cosmological
tensions,”Phys. Rev.**D97**(2018) 123504,arXiv:1803.02474 [astro-ph.CO].
[148] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan, and W. L. K. Wu,

“Sounds Discordant: Classical Distance Ladder &ΛCDM -based

Determinations of the Cosmological Sound Horizon,”Astrophys. J.**874**(2019)
4,arXiv:1811.00537 [astro-ph.CO].

[149] M. Moresco, R. Jimenez, L. Verde, A. Cimatti, L. Pozzetti, C. Maraston, and
D. Thomas, “Constraining the time evolution of dark energy, curvature and
neutrino properties with cosmic chronometers,”JCAP**1612**no. 12, (2016) 039,
arXiv:1604.00183 [astro-ph.CO].

[150] S. Nesseris, D. Sapone, and S. Sypsas, “Evaporating primordial black holes as
varying dark energy,”Phys. Dark Univ.**27**(2020) 100413,arXiv:1907.05608
[astro-ph.CO].

[151] L. Kazantzidis and L. Perivolaropoulos, “Evolution of the f*σ*_{8}tension with
the Planck15/ΛCDM determination and implications for modified gravity
theories,”Phys. Rev.**D97**no. 10, (2018) 103503,arXiv:1803.01337

[astro-ph.CO].

[152] F. Beutleret al., “The 6dF Galaxy Survey:z≈0 measurement of the growth
rate and*σ*_{8},”Mon. Not. Roy. Astron. Soc.**423**(2012) 3430–3444,

arXiv:1204.4725 [astro-ph.CO].

[153] A. Oka, S. Saito, T. Nishimichi, A. Taruya, and K. Yamamoto, “Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample,”Mon. Not. Roy.

Astron. Soc.**439**(2014) 2515–2530,arXiv:1310.2820 [astro-ph.CO].

[154] L. Samushiaet al., “The clustering of galaxies in the SDSS-III Baryon

Oscillation Spectroscopic Survey: measuring growth rate and geometry with
anisotropic clustering,”Mon. Not. Roy. Astron. Soc.**439**(2014) 3504–3519,
arXiv:1312.4899 [astro-ph.CO].

[155] C. Blakeet al., “The WiggleZ Dark Energy Survey: Joint measurements of the
expansion and growth history atz<1,”Mon. Not. Roy. Astron. Soc.**425**(2012)
405–414,arXiv:1204.3674 [astro-ph.CO].

[156] S. de la Torreet al., “The VIMOS Public Extragalactic Redshift Survey

(VIPERS). Galaxy clustering and redshift-space distortions at z=0.8 in the first
data release,”Astron. Astrophys.**557**(2013) A54,arXiv:1303.2622

[astro-ph.CO].

[157] **Euclid Theory Working Group**Collaboration, L. Amendolaet al.,

“Cosmology and fundamental physics with the Euclid satellite,”Living
Rev.Rel.**16**(2013) 6,arXiv:1206.1225 [astro-ph.CO].

[158] Y. Songet al., “Complementarity of Weak Lensing and Peculiar Velocity
Measurements in Testing General Relativity,”Phys.Rev.**D84**(2011) 083523,
arXiv:1011.2106 [astro-ph.CO].

[159] M. Ishaket al., “Modified Gravity and Dark Energy models Beyond w(z)CDM Testable by LSST,”arXiv:1905.09687 [astro-ph.CO].

[160] A. Vainshtein, “To the problem of nonvanishing gravitation mass,”Phys.Lett.

**B39**(1972) 393–394.

[161] C. Deffayet, G. Dvali, G. Gabadadze, and A. I. Vainshtein, “Nonperturbative
continuity in graviton mass versus perturbative discontinuity,”Phys.Rev.**D65**
(2002) 044026,arXiv:hep-th/0106001 [hep-th].

[162] N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, “Effective field theory for
massive gravitons and gravity in theory space,”Annals Phys.**305**(2003)
96–118,arXiv:hep-th/0210184 [hep-th].

[163] K. Koyama, G. Niz, and G. Tasinato, “Analytic solutions in non-linear
massive gravity,”Phys.Rev.Lett.**107**(2011) 131101,arXiv:1103.4708
[hep-th].

[164] K. Koyama, G. Niz, and G. Tasinato, “Strong interactions and exact solutions
in non-linear massive gravity,”Phys.Rev.**D84**(2011) 064033,

arXiv:1104.2143 [hep-th].

[165] E. Belgacem, A. Finke, A. Frassino, and M. Maggiore, “Testing nonlocal
gravity with Lunar Laser Ranging,”JCAP**1902**(2019) 035,arXiv:1812.11181
[gr-qc].

[166] A. Barreira, B. Li, W. A. Hellwing, C. M. Baugh, and S. Pascoli, “Nonlinear
structure formation in Nonlocal Gravity,”JCAP**1409**(2014) 031,

arXiv:1408.1084 [astro-ph.CO].

[167] F. Hofmann and J. Müller, “Relativistic tests with lunar laser ranging,”Class.

Quant. Grav.**35**(2018) 035015.

[168] M. Carrera and D. Giulini, “On the influence of global cosmological expansion on the dynamics and kinematics of local systems,”

arXiv:0810.2712 [gr-qc]. [Rev. Mod. Phys.82,169(2010)].

[169] W. G. Laarakkers and E. Poisson, “Radiative falloff in Einstein-Straus
space-time,”Phys. Rev.**D64**(2001) 084008,arXiv:gr-qc/0105016 [gr-qc].
[170] E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore, “The gravitational-wave

luminosity distance in modified gravity theories,”Phys. Rev.**D97**(2018)
104066,arXiv:1712.08108 [astro-ph.CO].

[171] E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore, “Modified

gravitational-wave propagation and standard sirens,”Phys. Rev.**D98**(2018)
023510,arXiv:1805.08731 [gr-qc].

[172] E. Belgacem, Y. Dirian, A. Finke, S. Foffa, and M. Maggiore, “Nonlocal
gravity and gravitational-wave observations,”JCAP**1911**(2019) 022,
arXiv:1907.02047 [astro-ph.CO].

[173] B. F. Schutz, “Determining the Hubble Constant from Gravitational Wave
Observations,”Nature**323**(1986) 310–311.

[174] B. P. Abbottet al., “A gravitational-wave standard siren measurement of the
Hubble constant,”Nature**551**no. 7678, (2017) 85–88,arXiv:1710.05835
[astro-ph.CO].

[175] D. E. Holz and S. A. Hughes, “Using gravitational-wave standard sirens,”

Astrophys. J.**629**(2005) 15–22,arXiv:astro-ph/0504616 [astro-ph].

[176] N. Dalal, D. E. Holz, S. A. Hughes, and B. Jain, “Short GRB and binary black
hole standard sirens as a probe of dark energy,”Phys. Rev.**D74**(2006) 063006,
arXiv:astro-ph/0601275 [astro-ph].

[177] C. L. MacLeod and C. J. Hogan, “Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information,”

Phys. Rev.**D77**(2008) 043512,arXiv:0712.0618 [astro-ph].

[178] S. Nissanke, D. E. Holz, S. Hughes, N. Dalal, and J. L. Sievers, “Exploring short gamma-ray bursts as gravitational-wave standard sirens,”Astrophys. J.

**725**(2010) 496–514,arXiv:0904.1017 [astro-ph.CO].

[179] C. Cutler and D. E. Holz, “Ultra-high precision cosmology from gravitational
waves,”Phys. Rev.**D80**(2009) 104009,arXiv:0906.3752 [astro-ph.CO].

[180] B. S. Sathyaprakash, B. F. Schutz, and C. Van Den Broeck, “Cosmography
with the Einstein Telescope,”Class. Quant. Grav.**27**(2010) 215006,

arXiv:0906.4151 [astro-ph.CO].

[181] W. Zhao, C. Van Den Broeck, D. Baskaran, and T. G. F. Li, “Determination of
Dark Energy by the Einstein Telescope: Comparing with CMB, BAO and
SNIa Observations,”Phys. Rev.**D83**(2011) 023005,arXiv:1009.0206
[astro-ph.CO].

[182] W. Del Pozzo, “Inference of the cosmological parameters from gravitational
waves: application to second generation interferometers,”Phys. Rev.**D86**
(2012) 043011,arXiv:1108.1317 [astro-ph.CO].

[183] A. Nishizawa, K. Yagi, A. Taruya, and T. Tanaka, “Cosmology with
space-based gravitational-wave detectors — dark energy and primordial
gravitational waves —,”Phys. Rev.**D85**(2012) 044047,arXiv:1110.2865
[astro-ph.CO].

[184] S. R. Taylor, J. R. Gair, and I. Mandel, “Hubble without the Hubble:

Cosmology using advanced gravitational-wave detectors alone,”Phys. Rev.

**D85**(2012) 023535,arXiv:1108.5161 [gr-qc].

[185] S. R. Taylor and J. R. Gair, “Cosmology with the lights off: standard sirens in
the Einstein Telescope era,”Phys. Rev.**D86**(2012) 023502,arXiv:1204.6739
[astro-ph.CO].

[186] S. Camera and A. Nishizawa, “Beyond Concordance Cosmology with
Magnification of Gravitational-Wave Standard Sirens,”Phys. Rev. Lett.**110**
(2013) 151103,arXiv:1303.5446 [astro-ph.CO].

[187] R.-G. Cai and T. Yang, “Estimating cosmological parameters by the simulated
data of gravitational waves from the Einstein Telescope,”Phys. Rev.**D95**
(2017) 044024,arXiv:1608.08008 [astro-ph.CO].

[188] N. Tamanini, C. Caprini, E. Barausse, A. Sesana, A. Klein, and A. Petiteau,

“Science with the space-based interferometer eLISA. III: Probing the

expansion of the Universe using gravitational wave standard sirens,”JCAP
**1604**(2016) 002,arXiv:1601.07112 [astro-ph.CO].

[189] C. Caprini and N. Tamanini, “Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission,”

JCAP**1610**(2016) 006,arXiv:1607.08755 [astro-ph.CO].

[190] B. P. Abbottet al., “Gravitational Waves and Gamma-rays from a Binary
Neutron Star Merger: GW170817 and GRB 170817A,”Astrophys. J.**848**(2017)
L13,arXiv:1710.05834 [astro-ph.HE].

[191] C. de Rham and S. Melville, “Gravitational Rainbows: LIGO and Dark Energy
at its Cutoff,”Phys. Rev. Lett.**121**(2018) 221101,arXiv:1806.09417 [hep-th].

[192] P. Creminelli and F. Vernizzi, “Dark Energy after GW170817 and
GRB170817A,”Phys. Rev. Lett.**119**(2017) 251302,arXiv:1710.05877
[astro-ph.CO].

[193] J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817
for Cosmological Scalar-Tensor Theories,”Phys. Rev. Lett.**119**(2017) 251303,

[193] J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817
for Cosmological Scalar-Tensor Theories,”Phys. Rev. Lett.**119**(2017) 251303,