• Aucun résultat trouvé

Chapitre 4 : Discussion générale

4.1 Retour sur la méthodologie

4.1.4 Système d’ultrafiltration

Pour mesurer l’effet de la rugosité sur la persistance de B. licheniformis à la surface de membranes de PES suivant l’UF de lactosérum, un système de filtration tangentiel à quatre cellules en module plan a été employé. Une série de deux filtrations a été réalisée avec du lactosérum débactérisé suivie de trois filtrations avec du lactosérum inoculé en spores de la souche B. licheniformis. L’avantage avec ce système est qu’il était possible de comparer la performance membranaire et la persistance bactérienne des deux membranes à différents stades d’usure pour un flux d’alimentation unique. De cette façon, un même traitement était appliqué à la membrane usée et à la membrane neuve. Aussi, l’emploi de cellules en module plan a permis d’effectuer l’UF de lactosérum avec des coupons de membrane provenant de la même unité membranaire sur laquelle les analyses de caractérisation ont été effectuées. Puisque les méthodes de détermination de la porosité et de la rugosité étaient destructives, il n’aurait pas été possible de faire pareil avec un système à module spiralé. Ainsi, il a été possible de mener les travaux avec un échantillonnage d’unité membranaire plus restreint. En revanche, les conditions hydrodynamiques dans le système modèle à module plan différaient probablement de celles observées dans un système à module spiralé tel qu’employé en industrie. Il se peut que cette divergence ait mené à la surestimation de la persistance bactérienne observée à la surface des membranes.

55

Conclusion et perspectives

Les résultats obtenus au cours de ces travaux ont montré que les caractéristiques de surface d’une membrane en PES changeaient avec l’usure. La membrane usée avait une rugosité et une perméabilité plus élevées. Toutefois, ces changements n’ont pas eu d’impact sur la performance de la membrane usée lors de l’UF de lactosérum ni sur la persistance de B.

licheniformis après les procédures de nettoyage.

Ces conclusions soulignent l’importance d’apporter une meilleure compréhension des facteurs de persistance des bactéries sporulantes à la surface des membranes en vue d’adapter les stratégies de contrôle employées en industrie. Dans le cadre de futurs travaux, il pourrait être pertinent de caractériser la surface des membranes en PES provenant du milieu industriel en employant les méthodes proposées dans ce mémoire (profilométrie, microscopie). Cette méthodologie pourrait également prévoir le prélèvement des membranes avant et après CIP. De plus, en dénombrant les bactéries sporulantes à la surface des membranes, il serait possible de suivre leur persistance au cours de l’utilisation de la membrane. À moyen terme, la caractérisation de surface des membranes prélevées en industrie permettrait de mieux reproduire de telles conditions dans un système modèle afin d’étudier le développement et la persistance des bactéries sporulantes.

56

Références

1. Canada, G.d. Centre canadien d'information laitière. 2019.

2. Bansal, N. and B. Bhandari, Functional milk proteins: Production and

utilization—whey-based ingredients, in Advanced dairy chemistry. 2016,

Springer. p. 67-98.

3. Anand, S., et al., Development and Control of Bacterial Biofilms on Dairy

Processing Membranes. Comprehensive Reviews in Food Science and Food

Safety, 2014. 13(1): p. 18-33.

4. Lücking, G., et al., Characterization of aerobic spore-forming bacteria associated

with industrial dairy processing environments and product spoilage. International

Journal of Food Microbiology, 2013. 166(2): p. 270-279.

5. Oliveira, R., et al., Polysaccharide production and biofilm formation by

Pseudomonas fluorescen: effects of pH and surface material. Colloids and

Surfaces B: Biointerfaces, 1994. 2(1): p. 41-46.

6. Chamberland, J., et al., Effect of membrane material chemistry and properties on

biofouling susceptibility during milk and cheese whey ultrafiltration. Journal of

Membrane Science, 2017. 542: p. 208-216.

7. Regula, C., et al., Chemical cleaning/disinfection and ageing of organic UF

membranes: A review. Water Research, 2014. 56: p. 325-365.

8. Smith, D.K., Development of Membrane Processes, in Membrane Processing. 2013, John Wiley & Sons Ltd.

9. Pouliot, Y., Membrane processes in dairy technology—From a simple idea to

worldwide panacea. International Dairy Journal, 2008. 18(7): p. 735-740.

10. Bazinet, L., et al., Opérations unitaires et notions de génie industriel laitier

appliquées in Science et technologie du lait J.-C. Vuillemard, Editor. 2018,

Presses de l'Université Laval: Québec p. 37-153.

11. Uragami, T., Reverse osmosis, in Science and Technology of Separation

Membranes, J.W.S. Ltd, Editor. 2017.

12. Hausmann, A., M. Duke, and T. Demmer, Principles of membrane filtration. Membrane Processing: Dairy and Beverage Applications, 2013: p. 17-51. 13. Gesan-Guiziou, G., Liquid milk processing. 2013, Wiley-Blackwell.

14. McSweeney, P.L.H., et al., 27. Application of Membrane Separation Technology

to Cheese Production, in Cheese - Chemistry, Physics & Microbiology (4th Edition). 2017, Elsevier.

57

15. Remondetto, G., Y. Soucy, and M. Surprenant, Les laits de consommation, in

Science et technologie du lait, J.-C. Vuillemard, Editor. 2018, Les presses de

l'Université Laval: Québec. p. 175-211.

16. Skrzypek, M. and M. Burger, Isoflux® ceramic membranes — Practical

experiences in dairy industry. Desalination, 2010. 250(3): p. 1095-1100.

17. Brans, G., et al., Membrane fractionation of milk: state of the art and challenges. Journal of Membrane Science, 2004. 243(1): p. 263-272.

18. Lipnizki, F., Cross-Flow Membrane Applications in the Food Industry, in

Membranes for Food applications D.K.V. Peinemann, D.S.P. Nunes, and P.L.

Giorno, Editors. 2010. p. 1-24.

19. Kumar, P., et al., Perspective of membrane technology in dairy industry: a review. Asian-Australasian journal of animal sciences, 2013. 26(9): p. 1347-1358.

20. Daufin, G., et al., Recent and Emerging Applications of Membrane Processes in

the Food and Dairy Industry. Food and Bioproducts Processing, 2001. 79(2): p.

89-102.

21. Mistry, V.V. and J.L. Maubois, Application of Membrane Separation Technology

to Cheese Production, in Cheese: Chemistry, Physics and Microbiology,

P.L.H.M.T.M.C. Patrick F. Fox and P.G. Timothy, Editors. 2004, Academic Press. p. 261-VII.

22. Champagne, C.P., M.-C. Gentès, and É. Desfossés-Foucault, Les produits laitiers

fermentés, in Science et technologie du lait J.-C. Vuillemard, Editor. 2018,

Presses de l'Université Laval: Québec. p. 213-258.

23. Pruksasri, S., Dairy stream lactose fractionation/concentration using polymeric

ultrafiltration membrane. Membrane processing for dairy ingredient separation.

Wiley, Chichester, 2015: p. 35-66.

24. Baker, R.W., Overview of membrane science and technology. Membrane technology and applications, 2004. 3: p. 1-14.

25. Cheryan, M., Ultrafiltration and microfiltration handbook. 1998, Lancaster, Pa: Technomic Pub. Co. xvii, 527 p.

26. Smith, K., Commercial membrane technology. Membrane processing: dairy and beverage applications, 2013: p. 52-72.

27. Zhang, Z., et al., Preparation of polyamide membranes with improved chlorine

resistance by bis-2, 6-N, N-(2-hydroxyethyl) diaminotoluene and trimesoyl chloride. Desalination, 2013. 331: p. 16-25.

58

28. Kanani, D., Membrane Fouling: a challenge during dairy ultrafiltration. Membrane Processing for Dairy Ingredient Separation, 2015: p. 67-83.

29. Hoek, E.M.V., F. Peng, and J. WANG, Oil-Tolerant Polymer Membranes for Oil-

Water Separations. 2013, Google Patents.

30. Singh, R., Introduction to membrane technology. Membrane Technology and Engineering for Water Purification-Application, Systems Design and Operation, 2015.

31. Jirjis, B.F. and S. Luque, Chapter 9 - Practical Aspects of Membrane System

Design in Food and Bioprocessing Applications, in Membrane Technology, Z.F.

Cui and H.S. Muralidhara, Editors. 2010, Butterworth-Heinemann: Oxford. p. 179-212.

32. Bouroche, A. and M. Le Bars, Techniques de séparation par membranes:

vocabulaire français-anglais-allemand avec index. 1994: Editions Quae.

33. Zeman, L.J., Adsorption effects in rejection of macromolecules by ultrafiltration

membranes. Journal of Membrane Science, 1983. 15(3): p. 213-230.

34. Schock, G., A. Miquel, and R. Birkenberger, Characterization of ultrafiltration

membranes: cut-off determination by gel permeation chromatography. Journal of

Membrane Science, 1989. 41: p. 55-67.

35. Mehta, A. and A.L. Zydney, Permeability and selectivity analysis for

ultrafiltration membranes. Journal of Membrane Science, 2005. 249(1): p. 245-

249.

36. Thomas, T.R., Rough surfaces. Rough Surfaces, 2nd Edition. Edited by THOMAS TOM R. Published by World Scientific Publishing Co. Pte. Ltd.,. ISBN# 9781860943805, 1999.

37. Gadelmawla, E., et al., Roughness parameters. Journal of materials processing Technology, 2002. 123(1): p. 133-145.

38. Jullien, C., et al., Identification of surface characteristics relevant to the hygienic

status of stainless steel for the food industry. Journal of Food Engineering, 2003.

56(1): p. 77-87.

39. Roane, T.M., I.L. Pepper, and R.M. Maier, Microscopic techniques, in

Environmental Microbiology. 2009, Elsevier. p. 157-172.

40. Uragami, T., Characterization of Membrane, in Science and Technology of

59

41. Johnson, D.J., D.L. Oatley-Radcliffe, and N. Hilal, State of the art review on

membrane surface characterisation: Visualisation, verification and quantification of membrane properties. Desalination, 2018. 434: p. 12-36.

42. Recum, A.F.V., et al., Surface Roughness, Porosity, and Texture as Modifiers of

Cellular Adhesion. Tissue Engineering, 1996. 2(4): p. 241-253.

43. Haussmann, D.A., D.M.C. Duke, and D.I.T. Demmer, Principles of Membrane

Filtration, in Membrane Processing, B. Publishing, Editor. 2012.

44. Zheng, Q.-Z., et al., The relationship between porosity and kinetics parameter of

membrane formation in PSF ultrafiltration membrane. Journal of Membrane

Science, 2006. 286(1-2): p. 7-11.

45. Palacio, L., et al., Porosity measurements by a gas penetration method and other

techniques applied to membrane characterization. Thin Solid Films, 1999.

348(1): p. 22-29.

46. Ren, J., Z. Li, and F.-S. Wong, A new method for the prediction of pore size

distribution and MWCO of ultrafiltration membranes. Journal of Membrane

Science, 2006. 279(1): p. 558-569.

47. Sze, A., et al., Zeta-potential measurement using the Smoluchowski equation and

the slope of the current–time relationship in electroosmotic flow. Journal of

Colloid and Interface Science, 2003. 261(2): p. 402-410.

48. Guo, W., H.-H. Ngo, and J. Li, A mini-review on membrane fouling. Bioresource Technology, 2012. 122: p. 27-34.

49. Koh, L., M. Ashokkumar, and S. Kentish, Membrane fouling, cleaning and

disinfection. Membrane Processing: Dairy and Beverage Applications, 2013: p.

73-106.

50. Marshall, A.D. and G. Daufin, Physico-chemical aspects of membrane fouling by

dairy fluids, in Fouling and Cleaning in Pressure Driven Membranes Processes.

1995.

51. Wang, H., et al., Reducing ultrafiltration membrane fouling during potable water

reuse using pre-ozonation. Water Research, 2017. 125: p. 42-51.

52. Marshall, A. and G. Daufin, Fouling and cleaning in pressure-driven membrane

processes. International Dairy Federation, 1995: p. 8-29.

53. Shi, X., et al., Fouling and cleaning of ultrafiltration membranes: A review. Journal of Water Process Engineering, 2014. 1: p. 121-138.

54. Marshall, A. and G. Daufin, Fouling and cleaning in pressure-driven membrane

60

55. Chmielewski, R. and J. Frank, Biofilm formation and control in food processing

facilities. Comprehensive reviews in food science and food safety, 2003. 2(1): p.

22-32.

56. Flemming, H.-C. and J. Wingender, The biofilm matrix. Nature reviews microbiology, 2010. 8(9): p. 623.

57. Scott, K., Handbook of industrial membranes. 1995: Elsevier.

58. Tang, X., et al., Biofilm growth of individual and dual strains of Klebsiella

oxytoca from the dairy industry on ultrafiltration membranes. Journal of

Industrial Microbiology & Biotechnology, 2009. 36(12): p. 1491-7.

59. Miller, R.A., et al., Spore populations among bulk tank raw milk and dairy

powders are significantly different. Journal of Dairy Science, 2015. 98(12): p.

8492-8504.

60. Mostert, J. and P. Jooste, Quality Control in The Dairy Industry. Dairy

Microbiology Handbook. Edited by Richard K. Robinson. 2002, John Wiley and

Sons, Inc., New York. P.

61. Monroe, D., Looking for chinks in the armor of bacterial biofilms. PLoS biology, 2007. 5(11): p. e307.

62. Simões, M., L.C. Simões, and M.J. Vieira, A review of current and emergent

biofilm control strategies. LWT - Food Science and Technology, 2010. 43(4): p.

573-583.

63. Bremer, P., et al., Introduction to biofilms: Definition and basic concepts. Biofilms in the Dairy Industry, 2015: p. 1-16.

64. Chamberland, J., et al., Biofouling of ultrafiltration membrane by dairy fluids:

Characterization of pioneer colonizer bacteria using a DNA metabarcoding approach. Journal of Dairy Science, 2017. 100(2): p. 981-990.

65. Seale, B., et al., Overview of the problems resulting from biofilm contamination in

the dairy industry. Biofilms in the Dairy Industry, 2015: p. 49-64.

66. Vacheyrou, M., et al., Cultivable microbial communities in raw cow milk and

potential transfers from stables of sixteen French farms. International Journal of

Food Microbiology, 2011. 146(3): p. 253-262.

67. Ledenbach, L.H. and R.T. Marshall, Microbiological spoilage of dairy products, in Compendium of the microbiological spoilage of foods and beverages. 2009, Springer. p. 41-67.

61

68. Sharma, M. and S.K. Anand, Biofilms evaluation as an essential component of

HACCP for food/dairy processing industry – a case. Food Control, 2002. 13(6):

p. 469-477.

69. Seale, B., et al., Thermophilic Spore‐Forming Bacilli in the Dairy Industry. Biofilms in the Dairy Industry, 2015: p. 112-137.

70. Hutchison, E.A., D.A. Miller, and E.R. Angert, Sporulation in bacteria: beyond

the standard model, in The Bacterial Spore: from Molecules to Systems. 2016,

American Society of Microbiology. p. 87-102.

71. Driks, A., Overview: development in bacteria: spore formation in Bacillus

subtilis. Cellular and Molecular Life Sciences CMLS, 2002. 59(3): p. 389-391.

72. Reece, J.B., et al., Campbell biology. 2014: Pearson Boston.

73. Lopez-Brea, S.G., N. Gómez-Torrez, and M.Á. Arribas, Spore‐forming bacteria

in dairy products, in Microbiology in Dairy Processing : Challenges and Opportunities. 2018, Wiley-Blackwell: Hoboken, NJ.

74. Gopal, N., et al., The prevalence and control of Bacillus and related spore-

forming bacteria in the dairy industry. Frontiers in microbiology, 2015. 6: p.

1418.

75. Watterson, M.J., et al., Evaluation of dairy powder products implicates

thermophilic sporeformers as the primary organisms of interest. Journal of Dairy

Science, 2014. 97(4): p. 2487-2497.

76. Murphy, P.M., D. Lynch, and P.M. Kelly, Growth of thermophilic spore forming

bacilli in milk during the manufacture of low heat powders. International Journal

of Dairy Technology, 1999. 52(2): p. 45-50.

77. Zain, S.N.M., et al., Characterisation and biofilm screening of the predominant

bacteria isolated from whey protein concentrate 80. Dairy Science & Technology,

2016. 96(3): p. 285-295.

78. Crielly, E., N. Logan, and A. Anderton, Studies on the Bacillus flora of milk and

milk products. Journal of applied bacteriology, 1994. 77(3): p. 256-263.

79. Mistry, V.V., Fermented milks and cream, in Applied Dairy Microbiology, S.J. Marth Elmer H., Editor. 2001, Marcel Dekker Inc.: New York. p. 301-326. 80. Nsofor, O.N. and J.F. Frank, Milk and dairy products, in Food Microbiology.

2013, American Society of Microbiology. p. 169-185.

81. Chen, L., T. Coolbear, and R.M. Daniel, Characteristics of proteinases and

lipases produced by seven Bacillus sp. isolated from milk powder production lines. International Dairy Journal, 2004. 14(6): p. 495-504.

62

82. Sadiq, F.A., et al., A RAPD based study revealing a previously unreported wide

range of mesophilic and thermophilic spore formers associated with milk powders in China. International Journal of Food Microbiology, 2016. 217: p. 200-208.

83. Herman, L., J.A.N. De Block, and R. Van Renterghem, Isolation and detection of

Clostridium tyrobutyricum cells in semi-soft and hard cheeses using the

polymerase chain reaction. Journal of Dairy Research, 1997. 64(2): p. 311-314.

84. Klijn, N., et al., Identification of Clostridium tyrobutyricum as the causative agent

of late blowing in cheese by species-specific PCR amplification. Applied and

Environmental Microbiology, 1995. 61(8): p. 2919.

85. Molnár, P.J., A model for overall description of food quality. Food Quality and Preference, 1995. 6(3): p. 185-190.

86. Gómez-Torres, N., et al., Impact of Clostridium spp. on cheese characteristics:

Microbiology, color, formation of volatile compounds and off-flavors. Food

Control, 2015. 56: p. 186-194.

87. Skeie, S., Milk quality requirements for cheesemaking, in Improving the Safety

and Quality of Milk. 2010, Elsevier. p. 433-453.

88. Chopra, A. and D. Mathur, Purification and characterization of heat-stable

proteases from Bacillus stearothermophilus RM-67. Journal of dairy science,

1985. 68(12): p. 3202-3211.

89. Tabit, F.T., Prevalence and growth characteristics of Bacillus sporothermodurans

in UHT milk. British Food Journal, 2018. 120(10): p. 2250-2260.

90. Brown, J.H., Bergey's manual of determinative bacteriology. 1939, American Public Health Association.

91. Granum, P.E., Bacillus cereus and its toxins. Journal of Applied Microbiology, 1994. 76(S23): p. 61S-66S.

92. De Jonghe, V., et al., Toxinogenic and spoilage potential of aerobic spore-

formers isolated from raw milk. International Journal of Food Microbiology,

2010. 136(3): p. 318-325.

93. Donlan, R.M. and J.W. Costerton, Biofilms: survival mechanisms of clinically

relevant microorganisms. Clinical microbiology reviews, 2002. 15(2): p. 167-193.

94. Bassi, D., F. Cappa, and P.S. Cocconcelli, A combination of a SEM technique and

X-ray microanalysis for studying the spore germination process of Clostridium tyrobutyricum. Research in Microbiology, 2009. 160(5): p. 322-329.

95. Tang, X., et al., Biofilm Contamination of Ultrafiltration and Reverse Osmosis

63

96. Neu, T.R. and J.R. Lawrence, Investigation of microbial biofilm structure by laser

scanning microscopy, in Productive Biofilms. 2014, Springer. p. 1-51.

97. te Giffel, M.C., et al., Bacterial spores in silage and raw milk. Antonie van Leeuwenhoek, 2002. 81(1): p. 625-630.

98. Flint, S.H., P.J. Bremer, and J.D. Brooks, Biofilms in dairy manufacturing plant‐

description, current concerns and methods of control. Biofouling, 1997. 11(1): p.

81-97.

99. Caldera, L., et al., Setup of a rapid method to distinguish among dead, alive, and

viable but not cultivable cells of Pseudomonas spp. in mozzarella cheese. Journal

of dairy science, 2015. 98(12): p. 8368-8374.

100. Rueckert, A., R.S. Ronimus, and H.W. Morgan, Development of a real-time PCR

assay targeting the sporulation gene, spo0A, for the enumeration of thermophilic bacilli in milk powder. Food Microbiology, 2006. 23(3): p. 220-230.

101. Newby, D.T., E.M. Marlowe, and R.M. Maier, Nucleic Acid–Based Methods of

Analysis, in Environmental Microbiology. 2009, Elsevier. p. 243-284.

102. Taberlet, P., et al., Towards next-generation biodiversity assessment using DNA

metabarcoding. Molecular Ecology, 2012. 21(8): p. 2045-2050.

103. Chamberland, J., et al., A sequencing approach targeting the 16S rRNA gene

unravels the biofilm composition of spiral-wound membranes used in the dairy industry. Dairy science & technology, 2017. 96(6): p. 827-843.

104. D'Souza, N.M. and A.J. Mawson, Membrane Cleaning in the Dairy Industry: A

Review. Critical Reviews in Food Science and Nutrition, 2005. 45(2): p. 125-134.

105. Faille, C., et al., Role of mechanical vs. chemical action in the removal of

adherent Bacillus spores during CIP procedures. Food Microbiology, 2013.

33(2): p. 149-157.

106. Kazemimoghadam, M. and T. Mohammadi, Chemical cleaning of ultrafiltration

membranes in the milk industry. Desalination, 2007. 204(1): p. 213-218.

107. Daufin, G., et al., Cleaning of inorganic membranes after whey and milk

ultrafiltration. Biotechnology and Bioengineering, 1991. 38(1): p. 82-89.

108. Baker, R., Ultrafiltration. Membrane Technology and Applications, Third Edition, Chichester, UK.: John Wiley & Sons, Ltd, 2012.

109. Muñoz-Aguado, M.J., D.E. Wiley, and A.G. Fane, Enzymatic and detergent

cleaning of a polysulfone ultrafiltration membrane fouled with BSA and whey.

64

110. Arkhangelsky, E., D. Kuzmenko, and V. Gitis, Impact of chemical cleaning on

properties and functioning of polyethersulfone membranes. Journal of Membrane

Science, 2007. 305(1-2): p. 176-184.

111. Arkhangelsky, E., D. Kuzmenko, and V. Gitis, Impact of chemical cleaning on

properties anf functioning of polyethersulfone membranes. Journal of Membrane

Science, 2007. 305: p. 176-184.

112. Rabiller-Baudry, M., et al., Simulation of membrane ageing to go ahead in fouling

and cleaning understanding during skim milk ultrafiltration. Food and

bioproducts processing, 2019. 113: p. 22-31.

113. Wang, Q., et al., Impact of sodium hypochlorite cleaning on the surface

properties and performance of PVDF membranes. Applied Surface Science,

2018. 428: p. 289-295.

114. Wang, Q., et al., Impact of sodium hypochlorite cleaning on the surface

properties and performance of PVDF membranes. Applied Surface Science,

2018. 428(Supplement C): p. 289-295.

115. Koh, L.L.A., M. Ashokkumar, and S.E. Kentish, Membrane Fouling, Cleaning

and Disinfection, in Membrane Processing. 2013, Blackwell Publishing Ltd. p.

73-106.

116. Tauveron, G., et al., Variability among Bacillus cereus strains in spore surface

properties and influence on their ability to contaminate food surface equipment.

International Journal of Food Microbiology, 2006. 110(3): p. 254-262. 117. Mi, B. and M. Elimelech, Organic fouling of forward osmosis membranes:

Fouling reversibility and cleaning without chemical reagents. Journal of

Membrane Science, 2010. 348(1): p. 337-345.

118. Chamberland, J., et al., Influence of feed temperature to biofouling of

ultrafiltration membrane during skim milk processing. International Dairy

Journal, 2019. 93: p. 99-105.

119. Bonaventura, G.D., et al., Influence of temperature on biofilm formation by

Listeria monocytogenes on various food‐contact surfaces: relationship with motility and cell surface hydrophobicity. Journal of Applied Microbiology, 2008.

104(6): p. 1552-1561.

120. Wilkinson, J.F. and J.P. Duguid, The Influence of Cultural Conditions on

Bacterial Cytology, in International Review of Cytology, G.H. Bourne and J.F.

Danielli, Editors. 1960, Academic Press. p. 1-76.

121. García, L.F., S.Á. Blanco, and F.A.R. Rodríguez, Microfiltration applied to dairy

streams: removal of bacteria. Journal of the Science of Food and Agriculture,

65

122. Pasmore, M., et al., Effects of ultrafiltration membrane surface properties on

Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. Journal of Membrane Science, 2001. 194(1): p. 15-32.

123. Bower, C.K., J. McGuire, and M.A. Daeschel, The adhesion and detachment of

bacteria and spores on food-contact surfaces. Trends in Food Science &

Technology, 1996. 7(5): p. 152-157.

124. Ostrov, I., et al., Adaptation of Bacillus species to dairy associated environment

facilitates their biofilm forming ability. Food Microbiology, 2019. 82: p. 316-324.

125. Anand, S., A. Hassan, and M. Avadhanula, The effects of biofilms formed on whey

reverse osmosis membranes on the microbial quality of the concentrated product.

International Journal of Dairy Technology, 2012. 65(3): p. 451-455.

126. Sharma, M. and S.K. Anand, Characterization of constitutive microflora of

biofilms in dairy processing lines. Food Microbiology, 2002. 19(6): p. 627-636.

127. S, A.B., H.F. S, and L. D, Characterization of thermophilic bacilli from a milk

powder processing plant. Journal of Applied Microbiology, 2014. 116(2): p. 350-

359.

128. Griep, E.R., Y. Cheng, and C.I. Moraru, Efficient removal of spores from skim

milk using cold microfiltration: Spore size and surface property considerations.

Journal of Dairy Science, 2018. 101(11): p. 9703-9713.

129. Shemesh, M. and I. Ostrov, Role of Bacillus species in biofilm persistence and

emerging antibiofilm strategies in the dairy industry. Journal of the Science of

Food and Agriculture, 2020.

130. Faille, C., et al., Adhesion of Bacillus spores and Escherichia coli cells to inert

surfaces: role of surface hydrophobicity. Canadian journal of microbiology, 2002.

48(8): p. 728-738.

131. Bégoin, L., et al., Ageing of PES industrial spiral-wound membranes in acid whey

ultrafiltration. Desalination, 2006. 192(1): p. 25-39.

132. Levitsky, I., et al., Understanding the oxidative cleaning of UF membranes. Journal of Membrane Science, 2011. 377(1): p. 206-213.

133. Yu, L., et al., Preparation and characterization of HPEI-GO/PES ultrafiltration

membrane with antifouling and antibacterial properties. Journal of membrane

science, 2013. 447: p. 452-462.

134. Raso, J., et al., Influence of sporulation temperature on the heat resistance of a

strain of Bacillus licheniformis (Spanish Type Culture Collection 4523). Food

66

135. Xu, P., et al., Effect of membrane fouling on transport of organic contaminants in

NF/RO membrane applications. Journal of Membrane Science, 2006. 279(1): p.

165-175.

136. Bowen, W.R., T.A. Doneva, and H.B. Yin, Atomic force microscopy studies of

membrane—solute interactions (fouling). Desalination, 2002. 146(1): p. 97-102.

137. Yadav, K., K. Morison, and M.P. Staiger, Effects of hypochlorite treatment on the

surface morphology and mechanical properties of polyethersulfone ultrafiltration membranes. Polymer Degradation and Stability, 2009. 94(11): p. 1955-1961.

138. Rabiller-Baudry, M., L. Paugam, and D. Delaunay, Membrane cleaning: A key for

sustainable production in dairy industry. Handbook of Membrane Research:

Properties, Performance and Application, 2009: p. 219-256.

139. Pellegrin, B., et al., Filtration performance and pore size distribution of

hypochlorite aged PES/PVP ultrafiltration membranes. Journal of Membrane

Science, 2015. 474: p. 175-186.

140. Pellegrin, B., et al., Multi-scale analysis of hypochlorite induced PES/PVP

ultrafiltration membranes degradation. Journal of Membrane Science, 2013. 447:

p. 287-296.

141. Thominette, F., et al., Ageing of polyethersulfone ultrafiltration membranes in

hypochlorite treatment. Desalination, 2006. 200(1): p. 7-8.

142. Daufin, G., et al., Cleaning of inorganic membranes after whey and milk

ultrafiltration. Biotechnology and bioengineering, 1991. 38(1): p. 82-89.

Documents relatifs