• Aucun résultat trouvé

The Free Ion Activity Model is one of the most employed steady-state models for relating metal speciation in solution with metal bioavailability and toxicological effects on the aquatic biota. This study highlighted the advantages of this model to predict metal bioavailability by using unicellular green alga.

A rigorous study of Cd uptake (i.e., adsorption, internalization) by a walled and a wall-less strain of Chlamydomonas reinhardtii grown in TAP medium was performed. Free Cd concentrations were examined in the absence and presence of ligands forming both labile and inert hydrophilic complexes, from 10-11 M to 10-3 M. Cadmium adsorption by the walled and wall-less strains of Chlamydomonas reinhardtii was not predicted by a single site (Langmuirian) model. Indeed, no saturation of the cell wall was observed, even for Cd concentrations in excess of 5 x 10-3 M. A continual production of Cd binding sites appeared to be responsible for the observed increase of Cd adsorption with time. SDS PAGE and measurements of the protein content of algal supernatants demonstrated that organic matter was released by the algae, both in the presence and absence of Cd demonstrating that exudate release was not in response to Cd stress but rather a constitutive process. Both the nature (e.g.

polysaccharides, proteins) and the quantity of exudate production were influenced by the physicochemistry of the external medium (i.e., pH buffer). Moreover, measurements using the permeation liquid membrane (PLM) and anodic stripping voltammetry (ASV) demonstrated that dissolved cadmium was rapidly complexed by the organic exudates produced by the algae. Due to the continual production of the binding sites on the cell wall, the equilibrium between Cd adsorbed to the cell wall sites and Cd in solution (steady-state) was never achieved under the studied conditions. Nevertheless, this result did not have any implication in the applicability of the FIAM for Cd internalization, since transporters (specific sites) are responsible for the internalization and not the cell wall binding sites (non-specific sites).

A first order biological internalization, as predicted by the free ion activity model (FIAM), was observed for the entire range of Cd concentrations studied for both strains. A linear relationship with [Cd2+] in solution was seen also for the transporter bound Cd. The maximum Cd internalization flux, Jmax, for the walled strain was 5-fold higher (1.3x10-11 mol cm-2 min-1) than for the CW-2 strain (2.3x10-12 mol cm-2 min-1) and was not influenced by the presence of competitors such as Ca in the experimental solution. The conditional stability constant for the

adsorption of Cd to transport sites of the CW-2 strain was 5-fold higher (106.7 M-1) than for the wild type strain (106 M-1) demonstrating the higher affinity of the CW-2 strain for Cd and suggesting that the number of transport sites was greater for the WT strain. Due to the demonstrated limiting nature of Cd internalization, differences smaller than 10-fold in Cd diffusive fluxes due to the presence of a cell wall should have had no effect on Cd uptake.

Competition experiments demonstrated that Mo, Mn, Cu, Co, Zn, Ni, Ca and Pb competed, at least partially, for the Cd binding sites while no inhibition was observed for similar concentrations of Mg and Fe. Stability constants for the competitive binding of Ca, Zn and Cu to the Cd transport site were determined to be 104.5 M-1, 105.2 M-1 and 105.6 M-1, respectively.

Protons also appeared to compete with Cd uptake sites as uptake could generally be predicted quantitatively in their presence and KH2-Rcell was determined to be 1011.3 M-1. Finally, in the presence of low concentrations (<20 mg L-1) of Suwannee River fulvic acid, Cd internalization fluxes could be predicted from [Cd2+], in accordance with the FIAM.

The vast majority of the results presented above indicated that Cd uptake by C. reinhardtii can be best predicted by models based upon the thermodynamic equilibria of trace metals at the surface of the microorganism. This would suggest that the FIAM or BLM models would be reasonable tools for evaluating Cd bioavailability to C. reinhardtii in freshwaters. Although slight deviations from the steady-state models were observed for high concentrations of organic matter, Cd or protons, these concentrations are generally not seen in the majority of freshwaters. Nonetheless, due to the strong interaction of trace metals, hardness metals and protons at the biological surface, the knowledge of a large number of stability constants and physicochemical parameters will be necessary to quantitatively predict uptake (and thus biological effects) in natural aquatic systems.

8- REFERENCES

Adhiya J., Cai X., Sayre R. T. and Traina S. J. Binding of aqueous cadmium by the lyophilized biomass of Chlamydomonas reinhardtii. Colloids Surf. A: Physicochem.

Eng. Aspects. 2002, 210, 1-11.

Aksu Z. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep. Sci. Technol. 2001, 21, 285-294.

Albert B., Bray D., Lewis J., Raff M., Roberts K. and Watson J. D., Eds; in Molecular Biology of the Cell; Garland Publishing: London; 1994.

Anderson M. A., Morel F. M. M. and Guillard R. R. L. Growth limitation of a coastal diatom by low zinc ion activity. Nature 1978, 276, 70-1.

Anderson N. J., Blomqvist P. and Renberg I. An experimental and palaeoecological study of algal responses to lake acidification and limiting in three central Swedish lakes. Eur. J.

Phycol. 1997, 32, 35-48.

Avery S. V., Howlett N. G. and Radice S. Copper toxicity towards Saccharomyces cerevisiae:

dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol.

1996, 62, 3960-3966.

Bates S. S., Tessier A., Campbell P. G. C. and Buffle J. Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semicontinuous culture. J. Phycol. 1982, 18, 521-9.

Ben-Bassat D., Shelef G., Gruner N. and Shuval H. I. Growth of Chlamydomonas in a medium containing mercury. Nature 1972, 240, 43-44.

Bilinski H., Huston R. and Stumm W. Determination of the stability constants of some hydroxo and carbonato complexes of lead(II), copper(II), cadmium(II), and zinc(II) in dilute solutions by anodic stripping voltammetry and differential pulse polarography.

Anal. Chim. Acta 1976, 84, 157-164.

Boisson F., Hutchins D. A., Fowler S. W., Fisher N. S. and Teyssie J.-L. Influence of temperature on the accumulation and retention of 11 radionuclides by the marine alga Fucus vesiculosus (L.). Mar. Poll. Bull. 1998, 35, 313-321.

Bold H. C. and Wynne M. J.; in Introduction to the Algae: Structure and Reproduction;

Englewood Cliffs: New York; 1978.

Borgmann U.; Metal speciation and toxicity of free metal ions to aquatic biota in Aquat.

Toxicol.; Nriag J. O., Eds.; Wiley Interscience: New York; 1982.

Boyle E. A., Scalter F. and Edmond J. M. On the marine geochemistry of cadmium. Nature 1976, 263, 42-44.

Bruland K. W. Complexation of zinc by natural organic ligands in the central North Pacific.

Limnol. Oceanogr. 1989, 34, 269-285.

Buffle J.; Complexation properties of homologous complexants and choice of measuring methods in Complexation reaction in aquatic systems: An analytical approach, Ellis Horwood: Chichester; 1988.

Buffle J., Altmann R. S., Filella M. and Tessier A. Complexation by natural heterogeneous compounds: Site occupation distribution functions, a normalized description of metal complexation. Geochim. Cosmochim. Acta 1990, 54, 1535-53.

Cain J. R. and Allen R. K. Use of cell wall-less mutant strains to assess the role of the cell wall in cadmium and mercury tolerance by Chlamydomonas reinhardtti. Bull.

Environ. Contamin. Toxicol. 1980, 25, 797-801.

Campbell P. G. C.; Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model in Metal Speciation and Bioavailability in Aquatic Systems;

Tessier A. and Turner D., Eds.; John Wiley & Sons: Chichester; 1995.

Campbell P. G. C., Errecalde O., Fortin C., Hiriart-Baer V. P. and Vigneault B. Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp.

Biochem. Physiol. Part C: Toxicol. Pharmacol. 2002, 133C, 189-206.

Campbell P. G. C. and Stokes P. M. Acidification and toxicity of metals to aquatic biota. Can.

J. Fish. Aquat. Sci. 1985, 42, 2034-2049.

Campbell P. G. C., Twiss M. R. and Wilkinson K. J. Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota. Can. J. Fish. Aquat. Sci. 1997, 54, 2543-2554.

Catt J. W., Hills G. J. and Roberts K. A structural glycoprotein, containing hydroxproline, isolated from the cell wall of Chlamydomonas reinhardtii. Planta 1976, 131, 165-171.

Cho D.-Y., Lee S.-T., Park S.-W. and Chung A.-S. Studies on the biosorption of heavy metals onto Chlorella vulgaris. J. Environ. Sci. Health 1994, A29 (2), 389-409.

Collard J. M. and Matagne R. F. Isolation and genetic analysis of Chlamydomonas reinhardtii strains resistant to cadmium. Appl. Environ. Microbiol. 1990, 56, 2051-5.

Cook M. E. and Morrow H.; Anthropogenic sources of cadmium in Canada in. National Workshop on Cadmium Transport into Plants, June 20-21; Ottawa, Ontario, Canada;

1995.

Cosovic B., Ciglenecki I., Vilicic D. and Ahel M. Distribution and seasonal variability of organic matter in a small eutrophicated salt lake. Estuar. Coast. Shelf Sci. 2000, 51, 705-715.

Crist R. H., Martin J. R., Carr D., Watson J. R. and Clarke H. J. Interaction of metals and protons with algae. 4. Ion exchange vs adsorption models and a reassessment of Scatchard plots; ion-exchange rates and equilibria compared with calcium alginate.

Environ. Sci. Technol. 1994, 28, 1859-1866.

Crist R. H., Oberholser K., Schwartz D., Marzoff J., Ryder D. and Crist D. R. Interactions of metals and protons with algae. Environ. Sci. Technol. 1988, 22, 755-60.

Crist R. H., Oberholser K., Shank N. and Nguyen M. Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Technol. 1981, 15, 1212-1217.

Danesi P. R. Separation of metal species by supported liquid membranes. Sep. Sci. Technol.

1984, 19, 857-94.

Davis R. D. and Plaskitt A. Genetic and structural analysis of cell-wall formation in Chlamydomonas reinhardtii. Genet. Res. Camb. 1971, 17, 33-43.

Devriese M., Tsakaloudi V., Garbayo I., Leon R., Vilchez C. and Vigara J. Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii.

Plant Physiol. Biochem. 2001, 39, 443-448.

Dudka S. and Adriano D. C. Environmental impacts of metal ore mining and processing: A review. J. Environ. Qual. 1997, 26, 590-602.

Eckhardt U. and Buckhout T. J. Iron assimilation in Chlamydomonas reinhardtii involves ferric reduction and is similar to strategy I higher plants. J. Exp. Bot. 1998, 49, 1219-1226.

Eckhardt U. and Buckhout T. J. Analysis of the mechanism of iron assimilation in Chlamydomonas reinhardtii: a model system for strategy I plants. J. Plant Nut. 2000, 23, 1797-1807.

Elgersma F., Anderberg B. S. and Stigliani W. M.; Emission factors for aqueous industrial cadmium emissions in the Rhine river basin; A historical reconstruction for the period 1970-1988 in. Edited Proceedings Seventh International Cadmium Conference; New-Orleans; 1992.

Elinder C.-G.; Cadmium and Health: A Toxicological and Epidemiological Appraisal; Boca Raton, Florida, USA; 1985.

Ellwood M. J. Zinc and cadmium speciation in subantarctic waters east of New Zealand. Mar.

Chem. 2004, 87, 37-58.

Errecalde O., Seidl M. and Campbell P. G. C. Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: an exception to the free-ion model. Wat. Res. 1998, 32, 419-429.

Ferguson W. J., Braunschweiger K. I., Braunschweiger W. R., Smith J. R., McCormick J. J., Wasmann C. C., Jarvis N. P., Bell D. H. and Good N. E. Hydrogen ion buffers for biological research. Anal. Biochem. 1980, 104, 300-310.

Ferris P. J., Woessner J. P., Waffenschmidt S., Kilz S., Drees J. and Goodenough U. W.

Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins. Biochem. 2001, 40, 2978-2987.

Fortin C. and Campbell P. G. C. Silver uptake by the green alga Chlamydomonas reinhardtii in relation to chemical speciation: influence of chloride. Environ. Toxicol. Chem.

2000, 19, 2769-2778.

Fortin C. and Campbell P. G. C. Thiosulfate enhances uptake by a green alga: role of anion transporters in metal uptake. Environ. Sci. Technol. 2001, 35, 4000.

Fortin C., Dutel L. and Garnier-Laplace J. Uranium complexation and uptake by a green alga in relation to chemical speciation: the importance of the free uranyl ion. Environ.

Toxicol. Chem. 2004, 23, 974-981.

Franklin N. M., Stauber J. L. and Lim R. P. Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environ. Toxicol. Chem.

2001, 20, 160-170.

Galceran J. and van Leeuwen H. P.; Dynamic of biouptake processes. The role of transport, adsorption and internalization in Physicochemical Kinetics and Transport at Biointerfaces; van Leeuwen H. P. and Köster W., Eds.; John Wiley & Sons:

Chichester; 2004.

Gensemer R. W., Smith R. E. H. and Duthie H. C. Comparative effects of pH and aluminium on silica-limited growth and nutrient uptake in Asterionella ralfsii var. americana (Bacillariophyceae). J. Phycol. 1993, 29, 36-44.

Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S. and Singh R. M. M.

Hydrogen ion buffers for biological research. Biochem. 1966, 5, 467-77.

Goodenough U. W., Gebhart B., Mecham R. P. and Heuser J. E. Crystals of the Chlamydomonas reinhardtii cell wall: polymerization, depolymerization, and purification of glycoprotein monomers. J. Cell Bio. 1986, 103, 405-17.

Goodenough U. W. and Heuser J. E. The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J. Cell Bio. 1985, 101, 1550-68.

Guanzon N. G., Nakahara H. and Nishimura K. Accumulation of copper, zinc, cadmium, and their combinations by three freshwater microalgae. Fisheries Sci. 1995, 61, 149-156.

Hanikenne M., Matagne R. F. and Loppes R. Pleiotropic mutants hypersensitive to heavy metals and to oxidative stress in Chlamydomonas reinhardtii. FEMS Microbiol. Lett.

2001, 196, 107-111.

Hare L. and Tessier A. Predicting animal cadmium concentrations in lakes. Nature 1996, 380, 430-432.

Hargreaves J. W. and Whitton B. A. Effect of pH on growth of acid stream algae. J. Phycol.

1976, 11, 215-223.

Harris E. H.; Culture and Storage Methods in The Chlamydomonas sourcebook- a comprehensive guide to biology and laboratory use; Academic Press: San Diego;

1989.

Hart B. A., Bertram P. E. and Scaife B. D. Cadmium transport by Chlorella pyrenoidosa.

Environ. Res. 1979, 18, 327-35.

Hart B. A. and Scaife B. D. Toxicity and bioaccumulation of cadmium in Chlorella. Environ.

Res. 1977, 14, 401-13.

Hassler C. S., Slaveykova V. I. and Wilkinson K. J. Discriminating between intra- and extracellular metals using chemical extractions. Limnol. Oceanogr. Methods 2004, 2, 237–247.

Hassler C. S., Slaveykova V. I. and Wilkinson K. J. Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models.

Environ. Toxicol. Chem. 2004, 23, 283-291.

Hassler C. S. and Wilkinson K. J. Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ. Toxicol. Chem. 2003, 22, 620-626.

Hill K. L., Hassett R., Kosman D. and Merchant S. Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiol. 1996, 112, 697-704.

Hu S., Lau K. W. K. and Wu M. Cadmium sequestration in Chlamydomonas reinhardtii.

Plant Sci. 2001, 161, 987-996.

Hu Z., Wong Y.-S. and Nora F. Y. T.; Expression of the metallothionein-like gene from Festuca rubra in Chlamydomonas reinhardtii. in. Ninth International Conference on the Cell and Molecular Biology of Chlamydomonas (Chlamy2000); Amsterdam; 2000.

Hudson R. J. M. Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. Sci. Tot. Environ.

1998, 219, 95-115.

Hudson R. J. M. and Morel F. M. M. Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 1990, 35, 1002-1020.

Hudson R. J. M. and Morel F. M. M. Trace metal transport by marine microorganisms:

implications of metal coordination kinetics. Deep-Sea Res. 1993, 40, 129-150.

Hyams J. and Davies D. R. The induction and characterization of cell wall mutants of Chlamydomonas reinhardtii. Mutation Res. 1972, 14, 381-389.

Irmer U., Wachholz I., Schaefer H. and Lorch D. W. Influence of lead on Chlamydomonas reinhardtii Danegard (Volvocales, Chlorophyta): accumulation, toxicity and ultrastructural changes. Environ. Experim. Bot. 1986, 26, 97-105.

Jensen A. and Bro-Rasmussen F. Environnemental contamination in Europe. Rev. Environ.

Contamin. Toxicol. 1992, 125, 101-181.

Kaplan J.; Patterns Receptor behaviour and function in Mechanisms of Receptor Regulation;

Poste G. and Crooke S. T., Eds.; Plenum Press: New York; 1985.

Khoshmanesh A., Lawson F. and Prince I. G. Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. Chem. Eng. J. 1997, 65, 13-19.

Khummongkol D., Canterford G. S. and Fryer C. Accumulation of heavy metals in unicellular algae. Biotechnol. Bioeng. 1982, 24, 2643-2660.

Kiefer E., Sigg L. and Schosseler P. Chemical and spectroscopic characterization of algae surfaces. Environ. Sci. Technol. 1997, 31, 759-764.

Kilz S., Waffenschmidt S. and Budzikiewicz H. Mass spectrometric analysis of hydroxyproline glycans. J. Mass Spectrom. 2000, 35, 689-697.

Kleijn J. M. and van Leeuwen H. P.; Electrostatic and electrodynamic properties of biological interphases in Physical Chemistry of Biological Interfaces; Baszkin A. and Norde W., Eds.; Marcel Dekker: New York; 2000.

Klotz I. M. Ligand-receptor interactions: facts and fantasies. Q. Rev. Biophys. 1985, 18, 227-259.

Kola H., Langlera L. M., Parthasarathy N. and Wilkinson K. J. Cadmium adsorption by Chlamydomonas reinhardtii and its interaction with the cell wall proteins. Environ.

Chem. 2004, 1, 172-179.

Kola H. and Wilkinson K. J. Cadmium uptake by a green algae can be predicted by equilibrium modelling. Environ. Sci. Technol. 2004, in press.

Korte F. Ecotoxicology of cadmium: general overview. Ecotoxicol. Environ. Saf. 1983, 7, 3-8.

Kruger N. J.; The Bradford Method for Protein Quantification in Protein Protocols Handbook; Walker J. M., Eds.; Humana Press: Totowa, New York; 1996.

Laegreid M., Alstad J., Klaveness D. and Seip H. M. Seasonal variation of cadmium toxicity toward the alga Selenastrum capricornutum Printz in two lakes with different humus content. Environ. Sci. Technol. 1983, 17, 357-61.

Lage O. M., Vasconcelos M. T. S. D., Soares H. M. V. M., Osswald J. M., Sansonetty F., Parente A. M. and Salema R. Suitability of the pH buffers 3-[N,N-bis(hydroxyethyl) amino]-2-hydroxypropanesulfonic acid and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid for in vitro copper toxicity studies. Arch. Environ. Contamin.

Toxicol. 1996, 31, 199-205.

Lauffenburgar D. A. and Linderman J. J.; Receptors: Models for Binding, Trafficking and Signalling; Oxford University Press, Inc.: New York; 1993.

Lawrence S. G., Holoka M. H. and Hamilton R. D. Effects of cadmium on a microbial food chain, Chlamydomonas reinhardtii and Tetrahymena vorax. Sci. Tot. Environ. 1989, 87-88, 381-95.

Leal M. F. C., Vasconcelos M. T. S. D. and van den Berg C. M. G. Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures. Limnol.

Oceanogr. 1999, 44, 1750-1762.

Lee D.-Y., Fortin C. and Campbell P. G. C. Influence of chloride on silver uptake by two green algae, Pseudokirchneriella subcapitata and Chlorella pyrenoidosa. Environ.

Toxicol. Chem. 2004, 23, 1012-1018.

Lustigman B., Lee L. H. and Khalil A. Effects of nickel and pH on the growth of Chlorella vulgaris. Bull. Environ. Contamin. Toxicol. 1995, 55, 73-80.

Lustigman B., Lee L. H., Morata J. and Khan F. Effect of thallium on the growth of Anacystis nidulans and Chlamydomonas reinhardtii. Bull. Environ. Contamin. Toxicol. 2000, 64, 565-573.

Lustigman B., Lee L. H. and Weiss-Magasic C. Effects of cobalt and pH on the growth of Chlamydomonas reinhardtii. Bull. Environ. Contamin. Toxicol. 1995, 55, 65-72.

Macfie S. M., Tarmohamed Y. and Welbourn P. M. Effects of cadmium, cobalt, copper, and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH. Arch. Environ. Contamin. Toxicol. 1994, 27.

Macfie S. M. and Welbourn P. M. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch. Environ.

Contamin. Toxicol. 2000, 39, 413-419.

Maeda S., Mizoguchi M., Ohki A. and Takeshita T. Bioaccumulation of zinc and cadmium in freshwater alga, Chlorella vulgaris. Part I toxicity and accumulation. Chemosphere 1990b, 21, 953-963.

Malis-Arad S. and McGowan R. E. Alkalinity-induced aggregation in Chlorella vulgaris. II.

Changes in the cell wall during the cell cycle. Plant Cell Physiol. 1982, 23, 11-17.

Marsalek B. and Rojickova R. Stress factors enhancing production of algal exudates. A potential self-protective mechanism? Z. Naturforsch. C: J. Biosci. 1996, 51, 646-650.

Martel A. E. and Smith R. M.; NIST; Version 5.0; Texas University: 1998.

Mash H. E., Chin Y.-P., Sigg L., Hari R. and Xue H. Complexation of copper by zwitterionic aminosulfonic (Good) buffers. Anal. Chem. 2003, 75, 671-677.

Mason A. Z. and Jenkins K. D.; Metal detoxification in aquatic organisms in Metal Speciation and Bioavailability in Aquatic Systems; Tessier A. and Turner D., Eds.; John Wiley and Sons: Chichester; 1995.

Melkonian M. Release of dissolved organic substances by the green alga Fritschiella tuberosa Iying. (Chaetophorineae) during different growth phases. Z. Pflanzenphysiol. 1979, 94, 125-33.

Mirimanoff N. and Wilkinson K. J. Regulation of Zn accumulation by a freshwater gram-positive bacterium (Rhodococcus opacus). Environ. Sci. Technol. 2000, 34, 616-622.

Morel F. M. M. Trace metals-phytoplankton interactions: an overview. Elsevier Oceanography Series 1986, 43, 177-89.

Morel F. M. M. and Hering J. G., Eds; in Principles and Applications of Aquatic Chemistry;

John Wiley & Sons: Chichester; 1993.

Morel F. M. M. and Price N. M. The biogeochemical cycles of trace metals in the oceans.

Science 2003, 300, 944-947.

Moseley J. L., Allinger T., Herzog S., Hoerth P., Wehinger E., Merchant S. and Hippler M.

Adaptation to Fe-deficiency requires remodelling of the photosynthetic apparatus.

Embo J. 2002a, 21, 6709-6720.

Moseley J. L., Page M. D., Alder N. P., Eriksson M., Quinn J., Soto F., Theg S. M., Hippler M. and Merchant S. Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. Plant Cell 2002b, 14, 673-688.

Moss B.; The uses of waterways; Pollution, waste disposal and water supply in Ecology of fresh waters; Publications B. S., Eds.; Billing & Sons Ltd: Oxford, London, Edinburgh, Boston, Melbourne; 1980.

Mukunoki J. and Fujimoto K.; Collection and recycling of used Ni-Cd batteries in Japan in.

Sources of cadmium in the environment, Inter-Organisation Programme for the Sound Management of Chemical (IOMC); Paris, France; 1996.

Nagel K., Adelmeier U. and Voigt J. Subcellular distribution of cadmium in the unicellular green alga Chlamydomonas reinhardtii. J. Plant Physiol. 1996, 149, 86-90.

Nagel K. and Voigt J. Impaired photosynthesis in a cadmium-tolerant Chlamydomonas mutant strain. Microbiol. Res. 1995, 150, 105-110.

Nederlof M. M., De Wit J. C. M., Van Riemsdijk W. H. and Koopal L. K. Determination of proton affinity distributions for humic substances. Environ. Sci. Technol. 1993, 27, 846-856.

Neiboer E. and Richardson D. H. S. The replacement of nondescript term "heavy metal" by a biologically and chemically significant classification of metal ion. Environ. Pollut.

1980, 1, 3-26.

Nies D. H. Microbial heavy metal resistance. App. Microbiol. Biotechnol. 1999, 51, 730-750.

Nriagu J. O. and Pacyna J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134-139.

OECD; (Organization for Economic Co-operation and Development) in. Risk Reduction Monograph No. 5 : Cadmium; Paris, France; 1994.

Ohnesorge F. K. and Wilhelm M.; Zinc in Metals and their compounds in environment;

Merian E., Eds.; VCH: New York; 1991.

Parent L., Twiss M. R. and Campbell P. G. C. Influences of natural dissolved organic matter on the interaction of aluminium with the microalga Chlorella: A test of the free-ion model of trace metal toxicity. Environ. Sci. Technol. 1996, 30, 1713-20.

Parthasarathy N., Pelletier M. and Buffle J. Permeation liquid membrane for trace metal speciation in natural waters. Transport of liposoluble Cu(II) complexes. J. Chrom. A 2004, 1025, 33-40.

Pasciak W. J. and Gavis J. Transport limitation of nutrient uptake in phytoplankton. Limnol.

Oceanogr. 1974, 19, 881-888.

Payne A. G. Responses of the three test algae of the algal assay procedure. Bottle test. Wat.

Res. 1975, 9, 437-45.

Pei J., Tercier-Waeber M.-L. and Buffle J. Simultaneous determination and speciation of zinc, cadmium, lead, and copper in natural water with minimum handling and artefacts by voltammetry on a gel-integrated microelectrode array. Anal. Chem. 2000, 72, 161-171.

Pinheiro J. P., Galceran J. and Van Leeuwen H. P. Metal speciation dynamics and

Pinheiro J. P., Galceran J. and Van Leeuwen H. P. Metal speciation dynamics and