• Aucun résultat trouvé

1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–74 (2011).

2. Tian, T., Olson, S., Whitacre, J. M. & Harding, A. The origins of cancer robustness and evolvability. Integr.

Biol. 3, 17–30 (2011).

3. Boon, T., Cerottini, J.-C., Van den Eynde, B., van der Bruggen, P. & Van Pel, A. Tumor Antigens Recognized by T Lymphocytes. Annu. Rev. Immunol. 12, 337–365 (1994).

4. Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).

5. Chen, D. S. & Mellman, I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 39, 1–10 (2013).

6. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology 17, 97–111 (2017).

7. Obar, J. J., Khanna, K. M. & Lefrançois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28, 859–69 (2008).

8. Verykokakis, M., Boos, M. D., Bendelac, A. & Kee, B. L. SAP Protein-Dependent Natural Killer T-like Cells Regulate the Development of CD8+ T Cells with Innate Lymphocyte Characteristics. Immunity 33, 203–215 (2010).

9. Gowans, J. L. The effect of the continuous re-infusion of lymph and lymphocytes on the output of lymphocytes from the thoracic duct of unanaesthetized rats. Br. J. Exp. Pathol. 38, 67–78 (1957).

10. Gowans, J. L. & Knight, E. J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. London.

Ser. B, Biol. Sci. 159, 257–82 (1964).

11. Gowans, J. L. The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. 146, 54–69 (1959).

12. Mandl, J. N. et al. Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naive CD4+ and CD8+ T cells. Proc. Natl. Acad. Sci. U. S. A. 109, 18036–41 (2012).

13. Kaiser, A., Donnadieu, E., Abastado, J.-P., Trautmann, A. & Nardin, A. CC Chemokine Ligand 19 Secreted by Mature Dendritic Cells Increases Naive T Cell Scanning Behavior and Their Response to Rare Cognate Antigen. J. Immunol. 175, 2349–2356 (2005).

14. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat.

Immunol. 4, 579–585 (2003).

15. Mueller, D. L., Jenkins, M. K. & Schwartz, R. H. Clonal Expansion Versus Functional Clonal Inactivation:

A Costimulatory Signalling Pathway Determines the Outcome of T Cell Antigen Receptor Occupancy.

Annu. Rev. Immunol. 7, 445–480 (1989).

16. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev.

Immunol. 14, 233–258 (1996).

17. Schwartz, R. H. T Cell Anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

18. Masopust, D. & Schenkel, J. M. The integration of T cell migration, differentiation and function. Nature Reviews Immunology 13, 309–320 (2013).

19. Desmet, C. J. & Ishii, K. J. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat. Rev. Immunol. 12, 479–491 (2012).

20. Walunas, T. L. et al. CTLA-4 Can Function as a Negative Regulator of T Cell Activation. Immunity 1, 405–

413 (1994).

21. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541 (1995).

22. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–8 (1995).

23. Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining Chronic Viral Infection. Cell 138, 30–50 (2009).

24. Doherty, P. C. Immune exhaustion: driving virus-specific CD8+ T cells to death. Trends Microbiol. 1, 207–

208 (1993).

25. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

Immunol. Rev. 211, 81–92 (2006).

27. Takeda, K. et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 7, 94–100 (2001).

28. Screpanti, V., Wallin, R. P. A., Grandien, A. & Ljunggren, H. G. Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Molecular Immunology 42, 495–499 (2005).

29. Anel, A., Buferne, M., Boyer, C., Schmitt-Verhulst, A.-M. & Golstein, P. T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A.Eur. J. Immunol. 24, 2469–2476 (1994).

30. Bossi, G. & Griffiths, G. M. CTL secretory lysosomes: biogenesis and secretion of a harmful organelle.

Semin. Immunol. 17, 87–94 (2005).

31. De Saint Basile, G., Ménasché, G. & Fischer, A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nature Reviews Immunology 10, 568–579 (2010).

32. De La Roche, M., Asano, Y. & Griffiths, G. M. Origins of the cytolytic synapse. Nature Reviews Immunology 16, 421–432 (2016).

33. Voskoboinik, I., Smyth, M. J. & Trapani, J. A. Perforin-mediated target-cell death and immune homeostasis.

Nature Reviews Immunology 6, 940–952 (2006).

34. Pardo, J. et al. The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation. Microbes and Infection 11, 452–459 (2009).

35. Chowdhury, D. & Lieberman, J. Death by a Thousand Cuts: Granzyme Pathways of Programmed Cell Death. Annu. Rev. Immunol. 26, 389–420 (2008).

36. Lopez, J. A. et al. Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood 121, 2659–2668 (2013).

37. Metkar, S. S. et al. Perforin rapidly induces plasma membrane phospholipid flip-flop. PLoS One 6, e24286 (2011).

38. Pipkin, M. E. & Lieberman, J. Delivering the kiss of death: progress on understanding how perforin works.

Current Opinion in Immunology 19, 301–308 (2007).

39. Martínez-Lostao, L., Anel, A. & Pardo, J. How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clin. Cancer Res. 21, 5047–5056 (2015).

40. Badovinac, V. P., Porter, B. B. & Harty, J. T. Programmed contraction of CD8+ T cells after infection. Nat.

Immunol. 3, 619–626 (2002).

41. Badovinac, V. P., Porter, B. B. & Harty, J. T. CD8+ T cell contraction is controlled by early inflammation.

Nat. Immunol. 5, 809–817 (2004).

42. Harty, J. T. & Badovinac, V. P. Shaping and reshaping CD8+ T-cell memory. Nature Reviews Immunology 8, 107–119 (2008).

43. Banerjee, A. et al. Cutting edge: The transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche. J. Immunol. 185, 4988–92 (2010).

44. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat.

Immunol. 6, 1236–1244 (2005).

45. Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR Kinase Determines Effector versus Memory CD8+ T Cell Fate by Regulating the Expression of Transcription Factors T-bet and Eomesodermin.

Immunity 32, 67–78 (2010).

46. Yang, C. Y. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+

T cell subsets. Nat. Immunol. 12, 1221–1229 (2011).

47. Ji, Y. et al. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+

T cells. Nat. Immunol. 12, 1230–1237 (2011).

48. Wang, D. et al. The Transcription Factor Runx3 Establishes Chromatin Accessibility of cis-Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte Formation. Immunity 48, 659–674.e6 (2018).

49. Olesin, E. et al. The Transcription Factor Runx2 Is Required for Long-Term Persistence of Antiviral CD8 + Memory T Cells. ImmunoHorizons 2, 251–261 (2018).

50. Hu, G. & Chen, J. A genome-wide regulatory network identifies key transcription factors for memory CD8

+ T-cell development. Nat. Commun. 4, 1–14 (2013).

51. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

52. Sallusto, F., Geginat, J. & Lanzavecchia, A. C entral M emory and E ffector M emory T C ell S ubsets : Function, Generation, and Maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

53. Masopust, D. & Picker, L. J. Hidden memories: frontline memory T cells and early pathogen interception. J.

Immunol. 188, 5811–5817 (2012).

54. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, (2015).

55. Zajac, A. J. et al. Viral immune evasion due to persistence of activated t cells without effector function. J.

Exp. Med. 188, 2205–2213 (1998).

56. Gallimore, A. et al. Induction and Exhaustion of Lymphocytic Choriomeningitis Virus–specific Cytotoxic T Lymphocytes Visualized Using Soluble Tetrameric Major Histocompatibility Complex Class I–Peptide Complexes. J. Exp. Med. 187, 1383–1393 (1998).

57. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction.

Trends Immunol. 35, 51–60 (2014).

58. Bengsch, B. et al. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8+T Cell Exhaustion. Immunity 45, 358–373 (2016).

59. Doering, T. A. et al. Network Analysis Reveals Centrally Connected Genes and Pathways Involved in CD8+ T Cell Exhaustion versus Memory. Immunity 37, 1130–1144 (2012).

60. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

61. Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3-potential mechanisms of action. Nature Reviews Immunology 15, 45–56 (2015).

62. Thompson, J. C., Rathmell, E. A., Farkash, W. & Gao, C. B. Size of Naive T Cells IL-7 Enhances the Survival and Maintains the. J Immunol Ref. 167, 6869–6876 (2001).

63. Kinjyo, I. et al. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat. Commun. 6, 6301 (2015).

64. Dimeloe, S., Burgener, A. V., Grählert, J. & Hess, C. T-cell metabolism governing activation, proliferation and differentiation; a modular view. Immunology 150, 35–44 (2017).

65. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: Insights into metabolism and lymphocyte function. Science 342, (2013).

66. Roos, D. & Loos, J. A. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes: II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp. Cell Res. 77, 127–135 (1973).

67. Kim, J. W. & Dang, C. V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Research 66, 8927–8930 (2006).

68. Warburg, O. On the Origin of Cancer Cells. Science 123, 309–314 (1956).

69. Chang, C.-H. et al. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell 153, 1239–1251 (2013).

70. Ho, P. C. et al. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell 162, 1217–1228 (2015).

71. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, (2013).

72. Delgoffe, G. M. & Powell, J. D. Feeding an army: The metabolism of T cells in activation, anergy, and exhaustion. Mol. Immunol. 68, 492–496 (2015).

73. Frauwirth, K. A. et al. The CD28 Signaling Pathway Regulates Glucose Metabolism. Immunity 16, 769–777 (2002).

74. Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. & Powell, J. D. Anergic T Cells Are Metabolically Anergic. J. Immunol. 183, 6095–6101 (2009).

75. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–

107 (2009).

76. van der Windt, G. J. W. et al. Mitochondrial Respiratory Capacity Is a Critical Regulator of CD8+T Cell Memory Development. Immunity 36, 68–78 (2012).

77. Aon, M. A., Bhatt, N. & Cortassa, S. C. Mitochondrial and cellular mechanisms for managing lipid excess.

Front. Physiol. 5, 282 (2014).

78. O’Sullivan, D. et al. Memory CD8+ T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development. Immunity 41, 75–88 (2014).

79. Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochimica et Biophysica Acta - Molecular Cell Research 1813, 1269–1278 (2011).

80. Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis.

Am. J. Clin. Nutr. 93, 884S–890S (2011).

81. Buck, M. D. D. et al. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell 166, 63–76 (2016).

82. Schwindling, C., Quintana, A., Krause, E. & Hoth, M. Mitochondria Positioning Controls Local Calcium Influx in T Cells. J. Immunol. 184, 184–190 (2010).

83. Quintana, A. et al. T cell activation requires mitochondrial translocation to the immunological synapse.

Proc. Natl. Acad. Sci. 104, 14418–14423 (2007).

84. van der Windt, G. J. W. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. U. S. A. 110, (2013).

85. Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology 13, 566–578 (2012).

86. Wenner, C. E. Targeting mitochondria as a therapeutic target in cancer. Journal of Cellular Physiology 227, 450–456 (2012).

87. Xu, Y. et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J. Clin. Invest. 126, 2678–2688 (2016).

88. Siska, P. J. & Rathmell, J. C. T cell metabolic fitness in antitumor immunity. Trends in Immunology 36, (2015).

89. Gottfried, E., Kreutz, M. & Mackensen, A. Tumor metabolism as modulator of immune response and tumor progression. Semin. Cancer Biol. 22, 335–341 (2012).

90. Chang, C. H. et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell (2015).

91. Hensley, C. T., Wasti, A. T. & DeBerardinis, R. J. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. Journal of Clinical Investigation 123, 3678–3684 (2013).

92. Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci.

Transl. Med. 7, 277ra30-277ra30 (2015).

93. Cham, C. M. & Gajewski, T. F. Metabolic mechanisms of tumor resistance to T cell effector function.

Immunologic Research 31, 107–118 (2005).

94. Shroff, E. H. et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc. Natl. Acad. Sci. 112, 6539–6544 (2015).

95. Scharping, N. E. et al. The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity 45, 374–388 (2016).

96. Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97-ra97 (2015).

97. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, (2016).

98. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, (2014).

99. Michalek, R. D. et al. Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. J. Immunol. 186, 3299–3303 (2011).

100. Schultz, E. & Steiger, E. Ueber das Arginin. Z Physiol Chem 11, 43–65 (1886).

101. Hedin, S. G. Eine Methode, das Lysin zu isoliren, nebst einigen Bemerkungen Über das Lysatinin. Z Physiol Chem 21, 155–168 (1895).

102. Sørensen, S. P. L. Über die Synthese desdl-Arginins (α-Amino-δ-guanido-n-valeriansäure) und der isomeren α-Guanido-δ-amino-n-valeriansäure. Berichte der Dtsch. Chem. Gesellschaft 43, 643–651 (1910).

103. Nieves, C. & Langkamp-Henken, B. Arginine and immunity: A unique perspective. Biomed. Pharmacother.

56, 471–482 (2002).

104. Peranzoni, E. et al. Role of arginine metabolism in immunity and immunopathology. Immunobiology 212, 795–812 (2008).

105. Fitch, C. A., Platzer, G., Okon, M., Garcia-Moreno, B. E. & McIntosh, L. P. Arginine: Its pKa value revisited. Protein Sci. 24, 752–761 (2015).

106. Snyderman, S. E., Boyer, A. & Holt, L. E. The Arginine Requirement of the Infant. AMA. J. Dis. Child. 97, 192–195 (1959).

107. Beaumier, L., Castillo, L., Yu, Y. M., Ajami, A. M. & Young, V. R. Arginine: new and exciting developments for an ‘old’ amino acid. Biomed. Environ. Sci. 9, 296–315 (1996).

108. Appleton, J. Arginine: Clinical potential of a semi-essential amino acid. Altern. Med. Rev. 7, 512–522 (2002).

109. Wakabayashi, Y., Yamada, E., Yoshida, T. & Takahashi, H. Arginine becomes an essential amino acid after massive resection of rat small intestine. J. Biol. Chem. 269, 32667–71 (1994).

110. Seifter, E., Rettura, G., Barbul, A. & Levenson, S. M. Arginine: an essential amino acid for injured rats.

Surgery 84, 224–30 (1978).

111. Popovic, P. J. & Ochoa, J. B. Arginine and Immunity 1–3. J. Nutr. 137, 1681–1686 (2007).

112. Gad, M. Z. Anti-aging effects of L-arginine. Journal of Advanced Research 1, 169–177 (2010).

113. White, M. F. The transport of cationic amino acids across the plasma membrane of mammalian cells. BBA -Reviews on Biomembranes 822, 355–374 (1985).

114. Mann, G. E., Yudilevich, D. L. & Sobrevia, L. Regulation of Amino Acid and Glucose Transporters in Endothelial and Smooth Muscle Cells. Physiol. Rev. 83, 183–252 (2003).

115. Castillo, L. et al. Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol Endocrinol Metab 265, E532-539 (1993).

116. Wu, G. et al. Pharmacokinetics and Safety of Arginine Supplementation in Animals. J. Nutr. 137, 1673S–

1680S (2007).

117. Wu, G. & Morris, S. M. J. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).

118. Watford, M. The urea cycle: a two-compartment system. Essays Biochem. 26, 49–58 (1991).

119. Wallis, M. On the frequency of arginine in proteins and its implications for molecular evolution. Biochem.

Biophys. Res. Commun. 56, 711–716 (1974).

120. King, J. L. & Jukes, T. H. Non-Darwinian Evolution. Science 164, 788 LP-798 (1969).

121. Murray, P. J. Amino acid auxotrophy as a system of immunological control nodes. Nat. Immunol. 17, 132–

139 (2016).

122. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol.

5, 641–54 (2005).

123. Vincendeau, P., Gobert, A. P., Daulouède, S., Moynet, D. & Djavad Mossalayi, M. Arginases in parasitic diseases. Trends Parasitol. 19, 9–12 (2003).

124. Gobert, A. P. et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: A strategy for bacterial survival. Proc. Natl. Acad. Sci. 98, 13844–13849 (2001).

125. Iniesta, V., Gómez-Nieto, L. C. & Corraliza, I. The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J. Exp. Med. 193, 777–84 (2001).

126. Christianson, D. W. & Cox, J. D. Catalysis By Metal-Activated Hydroxide in Zinc and Manganese Metalloenzymes. Annu. Rev. Biochem. 68, 33–57 (1999).

128. Takiguchi, M., Matsubasa, T., Amaya, Y. & Mori, M. Evolutionary aspects of urea cycle enzyme genes.

BioEssays 10, 163–166 (1989).

129. Jenkinson, C. P., Grody, W. W. & Cederbaum, S. D. Comparative properties of arginases. Comp. Biochem.

Physiol. - B Biochem. Mol. Biol. 114, 107–132 (1996).

130. Ouzounis, C. A. & Kyrpides, N. C. On the evolution of arginases and related enzymes. J. Mol. Evol. 39, 101–104 (1994).

131. Cederbaum, S. D. et al. Hyperargininemia with Arginase Deficiency. Pediatr. Res. 13, 827–833 (1979).

132. Spector, E. B., Rice, S. C. H. & Cederbaum, S. D. Immunologic studies of arginase in tissues of normal human adult and arginase–deficient patients. Pediatr. Res. 17, 941–944 (1983).

133. Gotoh, T. et al. Molecular cloning of cDNA for nonhepatic mitochondrial arginase ( arginase II ) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. 395, 119–122 (1996).

134. Morris, S. M., Bhamidipati, D. & Kepka-Lenhart, D. Human type II arginase: Sequence analysis and tissue-specific expression. Gene 193, 157–161 (1997).

135. Vockley, J. G. et al. Cloning and Characterization of the Human Type II Arginase Gene. Genomics 38, 118–

123 (1996).

136. Golebiowski, A. et al. Synthesis of quaternary α-amino acid-based arginase inhibitors via the Ugi reaction.

Bioorganic Med. Chem. Lett. 23, 4837–4841 (2013).

137. Sekowska, A., Danchin, A. & Risler, J. L. Phylogeny of related functions: The case of polyamine biosynthetic enzymes. Microbiology 146, 1815–1828 (2000).

138. Morris, S. M. J. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22, 87–

105 (2002).

139. Samson, M. L. Drosophila arginase is produced from a nonvital gene that contains the elav locus within its third intron. J. Biol. Chem. 275, 31107–14 (2000).

140. Kanyo, Z. F., Scolnick, L. R., Asht, D. E. & Christianson, D. W. Structure of a unique binuclear manganese cluster in arginase. Nature 383, (1996).

141. Colleluori, D. M., Morris, S. M. & Ash, D. E. Expression, purification, and characterization of human type II arginase. Arch. Biochem. Biophys. 389, 135–143 (2001).

142. Kanyo, Z. F., Chen, C. Y., Daghigh, F., Ash, D. E. & Christianson, D. W. Crystallization and oligomeric structure of rat liver arginase. J. Mol. Biol. 224, 1175–1177 (1992).

143. Ash, D. E. Structure and Function of Arginases. J. Nutr. 134, 2760S–2764S (2004).

144. Caldwell, R. W., Rodriguez, P. C., Toque, H. A., Narayanan, S. P. & Caldwell, R. B. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol. Rev. 98, 641–665 (2018).

145. Shi, O. et al. Generation of a Mouse Model for Arginase II Deficiency by Targeted Disruption of the Arginase II Gene Generation of a Mouse Model for Arginase II Deficiency by Targeted Disruption of the Arginase II Gene. 3–6 (2001).

146. Iyer, R. K. et al. Mouse model for human arginase deficiency. Mol. Cell. Biol. 22, 4491–8 (2002).

147. Wu, G. & Morris, S. M. J. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).

148. Fligger, J., Blum, J. & Jungi, T. W. Induction of intracellular arginase activity does not diminish the capacity of macrophages to produce nitric oxide in vitro. Immunobiology 200, 169–86 (1999).

149. Förstermann, U. et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23, 1121–1131 (1994).

150. Elms, S. et al. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS. Am. J. Physiol. Circ. Physiol. 305, H651–H666 (2013).

151. Fultang, L., Vardon, A., De Santo, C. & Mussai, F. Molecular basis and current strategies of therapeutic arginine depletion for cancer. Int. J. Cancer 139, 501–509 (2016).

152. Furchgott, R. F. & Vanhoutte, P. M. Endothelial relaxing and contracting factors. FASEB J. 3, 2007–2018 (1989).

153. Closs, E. I., Scheld, J. S., Sharafi, M. & Förstermann, U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol. Pharmacol. 57, 68–74

(2000).

154. Simon, A. et al. Role of Neutral Amino Acid Transport and Protein Breakdown for Substrate Supply of Nitric Oxide Synthase in Human Endothelial Cells. Circ. Res. 93, 813–820 (2003).

155. Grohmann, U. & Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev. 236, 243–264 (2010).

156. Morris, S. M. Arginine metabolism: boundaries of our knowledge. J. Nutr. 137, 1602S–1609S (2007).

157. Schindler, H. & Bogdan, C. NO as a signaling molecule: effects on kinases. Int. Immunopharmacol. 1, 1443–55 (2001).

158. Qualls, J. E. et al. Sustained Generation of Nitric Oxide and Control of Mycobacterial Infection Requires Argininosuccinate Synthase 1. Cell Host Microbe 12, 313–323 (2012).

159. Munder, M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol. 158, 638–51 (2009).

160. Munder, M. et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105, 2549–2556 (2005).

161. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev.

Immunol. 11, 723–737 (2011).

162. Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M. & Ratan, R. R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl. Acad. Sci. U. S. A. 100, 4843–

8 (2003).

163. Rutschman, R. et al. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J.

Immunol. 166, 2173–7 (2001).

164. Gray, M. J., Poljakovic, M., Kepka-Lenhart, D. & Morris, S. M. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPβ. Gene 353, 98–106 (2005).

165. Pauleau, A.-L. et al. Enhancer-mediated control of macrophage-specific arginase I expression. J. Immunol.

172, 7565–73 (2004).

166. Lang, R., Patel, D., Morris, J. J., Rutschman, R. L. & Murray, P. J. Shaping Gene Expression in Activated and Resting Primary Macrophages by IL-10. J. Immunol. 169, 2253–2263 (2002).

167. Chawla, A. Control of Macrophage Activation and Function by PPARs. Circ. Res. 106, 1559–1569 (2010).

168. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

169. Barile, M. F. & Leventhal, B. G. Possible mechanism for mycoplasma inhibtion of lymphocyte transformation induced by phytohaemagglutinin. Nature 220, 751–752 (1968).

170. Osunkoya, B. O., Adler, W. H. & Smith, R. T. Effect of arginine deficiency on synthesis of DNA and immunoglobulin receptor of Burkitt lymphoma cells. Nature 227, 398–399 (1970).

171. Barbul, A., Rettura, G., Levenson, S. M. & Seifter, E. Arginine: a thymotropic and wound-healing promoting agent. Surg. Forum 28, 101–3 (1977).

172. Tong, B. C. & Barbul, A. Cellular and physiological effects of arginine. Mini Rev. Med. Chem. 4, 823–32 (2004).

173. Mandal, A. Do malnutrition and nutritional supplementation have an effect on the wound healing process? J.

Wound Care 15, 254–257 (2006).

174. Bansal, V. et al. Interactions Between Fatty Acids and Arginine Metabolism: Implications for the Design of Immune-Enhancing Diets. J. Parenter. Enter. Nutr. 29, S75–S80 (2005).

175. Grimble, R. F. Immunonutrition. Curr. Opin. Gastroenterol. 21, 216–222 (2005).

176. Ochoa, J. B., Makarenkova, V. & Bansal, V. A rational use of immune enhancing diets: When should we use dietary arginine supplementation? Nutrition in Clinical Practice 19, 216–225 (2004).

177. Morris, C. R. et al. Dysregulated Arginine Metabolism, Hemolysis-Associated Pulmonary Hypertension, and Mortality in Sickle Cell Disease. JAMA 294, 81 (2005).

178. Taheri, F. et al. L-Arginine regulates the expression of the T-cell receptor zeta chain (CD3zeta) in Jurkat cells. Clin. Cancer Res. 7, 958s–965s (2001).

179. Munder, M. et al. Suppression of T-cell functions by human granulocyte arginase. Blood 108, 1627–1634 (2006).

180. Zabaleta, J. et al. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J. Immunol. 173, 586–93 (2004).

181. Rodriguez, P. C. et al. L-Arginine Consumption by Macrophages Modulates the Expression of CD3 Chain in T Lymphocytes. J. Immunol. 171, 1232–1239 (2003).

182. Zea, A. H. et al. l-Arginine modulates CD3ζ expression and T cell function in activated human T lymphocytes. Cell. Immunol. 232, 21–31 (2004).

183. Ochoa, J. B. et al. Effects of L-arginine on the proliferation of T lymphocyte subpopulations. J. Parenter.

Enter. Nutr. 25, 23–29 (2001).

184. Kato, J. Y. Control of G1 progression by D-type cyclins: key event for cell proliferation. Leukemia 11 Suppl 3, 347–51 (1997).

185. Rodriguez, P. C. et al. L-Arginine Deprivation Regulates Cyclin D3 mRNA Stability in Human T Cells by Controlling HuR Expression. J. Immunol. 185, 5198–5204 (2010).

186. Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2007).

187. Fallarino, F. et al. The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites

187. Fallarino, F. et al. The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites