• Aucun résultat trouvé

6. CONCLUSION

6.2 Recommandations et travaux futurs

Pour continuer l’amélioration de la connaissance du phénomène, d’éventuels travaux de recherche futurs doivent être considérés :

- Une comparaison avec la méthode directe pour le cas de Garner Valley peut être envisagé, via une analyse par éléments finis complète, sur un logiciel tel que SASSI

135

ou Abaqus. La comparaison aux résultats de la méthode indirecte des sous- structures présentée ici pourrait confirmer les conclusions précédentes.

- La structure SFSI du site GVDA est symétrique et en surface. Une étude du même type sur une structure asymétrique et/ou en avec enfouissement pourrait amener une amélioration de la compréhension du phénomène.

- Il a été vu que la taille réduite de la structure pouvait amener à des imprécisions (moyenne de la vitesse de cisaillement, hypothèses d’absence de rotation et torsion autours des axes...). Étendre la recherche des effets de l’interaction-structure avec des instrumentations d’un site de plus grande envergure pourrait permettre de s’intéresser aux effets sur des structures véritables et commerciales : ponts, bâtiments etc.

Pour finir, j’aimerai ajouter que l’interaction sol-structure porte bien son nom : il s’agit d’un phénomène complexe, dont la nature est à la fois géotechnique et structurelle. Le partage des connaissances, des ressources, et des points de vue entre les ingénieurs structures et les ingénieurs géotechniques est essentiel, et doit être souligné.

137

Références

ASCE, (2010), "Minimum Design load for Buildings and other structures", ASCE/SEI 7-10, American Society of Civil Engineers, Reton, Virginia

ATC (1996), "Seismic Evaluation and retrofit of concrete buildings", ATC-40 Report, Applied Technology Council, Redwood city, Californie

Bielak, J., (1975). "Dynamic behavior of structure with embedded foundations." Journal of Earthquake Engrg. Struct. Dyn., 3(3), pp. 259-274

Bolisetti, C., Whittaker, A., (2012), "An evaluation of current site response analysis methods", Quake Summit NEES & CMMI, Soil Structure Interaction on the Scale of a city Block

Bonilla, L.F., Steidl, J. H., Gariel, J-C., Archuleta, R. J., (2002), "Borehole Response studies at the Garner Valley Downhole Array, Southern California", Bulletin of the Seismological Society of America, Vol. 92, No.8, pp. 3165-3179

Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W., Abghari, A., (1999), “Seismic soil- pile-structure interaction experiments and analyses,” Journal Geotechnical and Geoenvironmental Engineering, Vol. 125, pp. 750-759.

Brown, L. T., Boore, D. M., Stokoe II, K. H., (2002),"Comparison of shear-wave slowness profiles and 10 strong-motion sites from noninvasive SASW measurements and measurements made in boreholes", Bulletin of the seismological society of America, Vol. 9, no.8, pp. 3116-3133

BYU-UCSB-USC Joint Research, (2003), “Garner Valley Downhole Array (GVDA)”, SPT1 borehole results, dernièrement téléchargé à partir de

< http://nees.ucsb.edu/facilities/GVDA>

CAN-CSA S6 F14, (2014), "Canadian highway bridge design code”, CSA

Carlton, B., (2016), "Ground motion parameter sensitivity to shear strain ratio in equivalent linear analyses", Earthquake Spectra, Vol.32, No. 3, pp. 1889-1901

CNRC (2005), "Code national du bâtiment, Canada 2005", 12eme ed., Ottawa: Conseil National de Recherches du Canada

Crouse, C. B., Hushmand, B., Luco, J. E., Wong, H. L., (1990). "Foundation impedance functions : theory versus experiment." J. Geotech. Eng., 116(3), 432-449

Crouse, C. B., Liang, G. C., Martin, G. R., (1984). "Experimental study of soil-structure interaction at an accelerograph station." Bull. Seismol. Soc. Am., 75(5), 1995-2013

CSI., (2015). ETABS [logiciel]. Berkeley, Californie (USA): Computers & Structures, Inc. - CSI

138

CSI., (2015). SAP2000 [logiciel]. Berkeley, Californie (USA): Computers & Structures, Inc. - CSI

Dassault Systèmes (2016), ABAQUS [logiciel], Dassault Systemes, Simulia

Davidovici, V. (1999). " La construction en zone sismique : approche réglementaire, modèles d'analyse des structures, diagnostic des bâtiments existants, exemples de calculs." Coll. " Moniteur référence technique". Paris: Le Moniteur, 3309

De Barros, C. P., Luco, J. E. (1995), " Identification of foundation impedance functions and soil properties from vibration tests of the Hualien containment model." Soil Dyn. Earthquale Eng., 14(4), pp. 229-248

Dobry, R., Gazetas, G., Stokoe, K. H., II. (1986). " Dynamic response of arbitrarily shaped foundations: Experimental verification." J. Geotech. Eng., 112(2), 136-154

EduPro Civil Systems, Inc, "ProShake - Ground Response Analysis Program, User's Manual", version 1,1, < http://www.proshake.com/userman.pdf >, dernièrement accédé en octobre 2016

EduPro Civil Systems, Inc, (2003), ProShake [logiciel], Sammamish, Washington USA

ESRI, (2011), “ArcGIS Desktop”, [logiciel], Environmental Systems Research Institute, Redlands, Californie,

FEMA (1997), "NEHRP Guidelines for the seismic rehabilitation of buildings, FEMA 273", préparé par Applied Technology Council et Building Seismic Safecty Council for the federal Emergency management Agency, Washington D.C.

FEMA (2005), "Improvement of nonlinear static seismic analysis procedures", FEMA 440, préparé par "the Applied Technology Council for Federal Emergency Agency, Washington D. C.

FEMA (2009), "NEHRP Recommended Seismic provisions for new Buildings and other Structures", FEMA P-750/2009, préparé par le Building Seismic Safety Council of the National Institute of Buildings Sciences for the Federal Emergency management Agency, Washington D.C.

Gajan, S., Kutter, B. L. (2008). "Capacity, settlement and energy dissipation of shallow footings subjected to rocking." Journal of Geotechnical and Geoenvironmental Engineering., 134(8), pp.1129-1141

Gajan, S., Kutter, B. L., Stewart, J.P., (2008), "Numerical models for analysis and performance-based design of shallow foundation subjected to seismic loading", PEER report 2007/04, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, parties 1-4

Galy, B., (2013), "Méthodes de conception et étude du comportement sismique des fondations superficielles sur sol naturel et traité, considérant l'interaction sol- structure", thèse présentée à l'Ecole de Technologie Supérieure, Canada

139

Gazetas, G., (1991), "Formulas and charts for impedances of surface and embedded foundations", Journal of Geotechnical Engineering, Vol. 117 (9)

Gazetas, G., Stokoe, K. H., II. (1991), "Free Vibration of embedded foundations: theory versus experiment." J. Geotech. Eng., 117(9), pp. 1382-1401

Gibbs, J. F., (1989), "Near-surface P- and S-wave velocities from borehole measurements near Lake Hemet, California", U.S. Geology Survey Open-file Rep, 89-630

Givens, M. J., (2013), "Dynamic Soil Structure Interaction of Instrumented Buildings and Test Structures". Doctoral dissertation, University of California, Los Angeles

Hashash, Y. M. A., Phillips, C., Groholski, D. R., (2010), "Recent advances in non-linear site response analysis", Fifth International Conference on Recent Advances in getoechnical Earthquake Engineering and Soil Dynamics, San Diego, California.

Idriss, I. M., Sun, J. I., (1992), "User manual for Shake91, a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits", University of California, Davis

Jennings, P., Bielak, J., (1973), "Dynamics of building-soil interaction", Bulletin of the Seismological Society of America, Vol. 63, N°1, pp. 9-48

Jeremic, B., Jie, G., Preisig, M., Tafazzoli, N., (2009), "Time domain simulation of soil- foundation-structure interaction in non-uniform soils", Earthquake engineering and structural dynamics, 38, pp. 699-718

Johnson, J. J., (2003), " Soil-structure interaction", In Earthquake engineering handbook, sous la direction de CRC Press, LLC, p.31

Kausel, E., (2010), "Early history of soil-structure interaction", Soil Dynamics and Earthquake Engineering 30(2010), pp. 822-832

Kim, S., et Stewart, J.P., (2003), "Kinematic soil-structure interaction from strong motion recordings", Journal of geotechnical and geoenvironmental engineering, Vol. 129, No,4, pp. 323-335

Kramer, S. L., (1996), "Geotechnical Earthquake Engineering", Prentice Hall, chapitres 6 et 7

Kramer, S.L., Stewart, J.P. (2004). Chapter 4 : "Geotechnical Aspects of Seismic Hazards." In Earthquake Engineering: From Engineering Seismology to Performance based Engineering. Y. Bozorgnia and V.V. Bertero (editors) CRC Press, 85 Pages

Lebec, A., (2009), "Effets du basculement des fondations superficielles sur le comportement sismique des murs de refend en béton armé", Mémoire de recherche, Polytechnique Montréal, Canada

140

Lin, A. N, Jennings, P. C. (1984). "Effect of embedment on foundation-soil impedances." J. Eng. Mech., 110(7), pp. 1060-1075

Liu, H-P., Boore, D. M., Joyner, W. B., Oppenheimer, D. H., Warrick, R. E., Zhang, W., Hamilton, J. C., Brown, L. T., (2000), "Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles", Bulletin of the seismological society of America, 90, 3, pp. 666-678

Luco, J. E, Trifunac, M. D., Wong, H. L. (1988). "Isolation of soil structure interaction effects by full-scale forced vibration tests." Earthquake Eng. Struct. Dyn., 16(1), pp.1-21

Mylonakis, G., Gazetas, G., (2000), "Seismic soil-structure interaction: beneficial or detrimental ?", Journal of Earthquake Engineering, Vol. 4, n°3, pp. 277-301

Mylonakis, G., Nikolaou, A., Gazetas, G., (1997), "Soil-pile-bridge seismic interaction: kinematic and inertial effects. Part I : soft soil", Earthquake engineering and structural dynamics, Vol. 26, pp. 337-359

NEES@UCSB, NEES@UCSB Data Portal, <http://nees.ucsb.edu/data-portal>. Dernièrement consulté en novembre 2016

NEES@UCSB-BYU,(2004)," SFSI structure instrumentation details", NEES

NEHRP, (1997), "Recommended provisions for seismic regulations for new buildings and other structure", parties 1 et 2, Building Seismic Safety Council, Washington D.C.

NEHRP Consultant Joint Venture, (2012), "Soil-Structure Interaction for building structures", National Institute of Standards and Technology NIST, U.S. Department of Commerce

Nigbor, R., Asghari, A. Nastar, N. (2004), "SFSI test structure at GVDA: Construction report", University of Southern California

Nii, Y., (1987), "Experimental half-space dynamic stiffness." J. Geotech. Eng, 113(11), pp. 1359-1373

OpenSees (2011), OpenSees [logiciel], Open System for Earthquake Engineering Simulation : OpenSees, University of California, Berkeley(USA)

Ostadan, F., Deng, N., Roesset, J.M. (2004), "Estimating Total system damping for soil- structure interaction systems", Proceedings Third UJNR Workshop on Soil- Structure Interaction, California

Pais, A., Kausel, E., (1988), "Approximation formulas for dynamic stiffnesses of rigid foundations", Soil Dynamics and Earthquake Engineering, Vol. 7, n°4, pp. 213-227

Pecker, A., (1995), "Validation of small strain properties from recorded weak seismic motions", Soil Dynamics and Earthquake Engineering, Vol. 14, pp. 399-408

141

Pecker, A., (2008), "Dynamique des ouvrages et dynamique des structures." Document Pédagogique, Ecole Nationale des Ponts et Chaussées, France.

PLAXIS (2012), Plaxis 3D [logiciel], Plaxis

Richart, F.E. Jr, Whitman, E. V. (1967). "Comparison of footing vibration tests with theory." J. Soil Mech. And Foundation Div., 93(6)

Roesset, J.M., (1980), "Stiffness and damping coefficient of foundations", Proceedings, ASCE Geotechnical Engineering Division National Convention, pp. 1-30

Schnabel, P. B., Lysmer, J., Seed, H. B.,(1972), "SHAKE, a computer program for earthquake response analysis of horizontal layered sites", Rapport No. EERC72- 12 Décembre.

Seed, H.B., Idriss, I.M., (1970), "Soil moduli and damping factors for dynamic response analyses". Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley

Seed, H.B., Wong, R. T., Idriss, I. M., Tokimatsu, K., (1986), "Moduli and damping factors for dynamic analyses of cohesionless soils", Journal of geotechnical Engineering, ASCE, Vol. 112, No. 11, pp. 1016-1032

SeismoSoft, (2016), SeismoSignal [logiciel], SeismoSoft Ltd.

Star, L. M., Givens, M. J., Nigbor, R. L., Stewart, J.P., (2015), "Field-testing of structure on shallow foundation to evaluate soil-structure interaction effects", Earthquake Engineering Research Institute, Earthquake Spectra, Vol. 31, No. 4. pp. 2511-2534

Steidl, J. H. , Youd, T. L., Nigbor, R. L., (2004), "Research opportunities at the NEES permanently instrumented field sites", 13" World Conference on Earthquake Engineering, Vancouver B.C. Canada, paper N°307

Steidl, J. H., (2007), "Instrumented Geotechnical sites : current and future trends", 4th internation Conference on Earthquake Geotechnical Engineering, Paper N°W1- 1009

Steidl, J. H., Archuleta, R. G., Tumarkin, A. G., Bonilla, L. F., Gariel, J. C., (1998), "Observations and modeling of ground motion and pore perssure at the garner

Valley, California, test site", Proceedings,

<https://projects.crustal.ucsb.edu/observatories/gvda/esg98.html>, dernierement consulté le 29 octobre 2016

Stellar, R., (1996), "New borehole geophysical results at GVDA", UCSB Internal report

Stewart, J.P., Fenves, G.L., Seed, R.B. (1998)" Seismic soil structure interaction in buildings. I. Analytical methods". Journal of Geotechnical and geoenvironmental engineering, pp. 26-37

142

Stewart, J.P., Kim,S., Bielak, J., Dobry, R., et Power, M., (2003), "Revisions to soil structure interaction procedures in NEHRP design provisions," Earthquake Spectra, Vol. 19, No. 3, pp. 677-696

Stinson, E., (2014), "Characterizing soil-foundation-structure interaction using experimental data from a test structure", Department of Civil and Environmental Engineering, Princeton University

Stokoe, K. H., Darendeli, M. B., (1998), "Laboratory evaluation of the dynamic properties of intact soil specimens: Garner Valley, California", Geotechnical Engineering Report GR98-3, University of Texas at Austin

Stokoe, K. H., Kutulus A., Menq, F.Y., (2004), "SASW measurements at the NEES GarnerValley test site, California", University of Texas at Austin, College of Engineering Data Report

Tileylioglu, S., Nigbor, R.L., Stewart, J.P., (2008). "Determination of Soil-Structure Interaction Effects from a Model Test Structure Using Parametric System Identification Procedures»: pg. Proceedings of the conference of Geotechnical Earthquake Engineering and Soil Dynamics IV, Sacramento, CA

Tileylioglu, S., Stewart, J. P., Nigbor, R. L., (2011), "Dynamic Stiffness and Damping of Shallow Foundation from Forced Vibration of a Field Test Structure." Journal of Geotechnical and Geoenvironmental Engineering, 137 (4), pp. 344-353

Tyapin, A., (2012). "Soil-Structure Interaction, Earthquake Engineering", Prof Halil Sezen (Ed.),<http://www.intechopen.com/books/earthquake-engineering/soil-structure- interaction>, dernierement accédé en octobre 2016

USGS, Earthquake hazards Program, U.S. Seismic Design maps,

<https://earthquake.usgs.gov/designmaps/us/application.php?>, dernièrement consulté en Janvier 2017

Veletsos, A. S., Nair, V.V., (1975). "Seismic interaction of structure on hysteretic foundations." Journal of Structural Engineering, ACE, 101(1), pp. 109-129

Veletsos, A. S., Meek, J. W., (1974), "Dynamic behavior of building-foundation systems", Earthquake engineering and structural dynamics, vol.3, pp.121-138

Wair, B. R., DeJong, J. T., Shantz, T., (2012), "Guidelines for estimation of shear wave velocity profiles", Pacific Earthquake Engineering Research (PEER) Report

Wilson, E. L., (2002), “Three-dimensional static and dynamic analysis of structures - a physical approach with emphasis on earthquake engineering", Computers and Structures, p.423.

Wolf, J.P., (1985), "Dynamic Soil-Structure Interaction, Prentice-Hall", Upper Saddle River, New Jersey

Wolf, J.P., Song, C., (2002), "Some cornerstones of dynamic soil-structure interaction", Engineering Structures, 24, pp. 13-28

143

Wong, H. L., Trifunac, M. D., Luco, J. E., (1988). "A comparison of soil-structure interaction calculations with results of full-scale forced vibration tests." Soil Dyn. Earthquake Eng., 7(1), pp. 22-31

Yin, J., Nigbor, R. L., Chen, Q., Steidl, J. H., (2016), "Engineering analysis of measured rotational ground motions at GVDA", Soil Dynamics and Earthquake Engineering 87, pp. 125 - 137

Youd, T. L., Bartholomew, H. A. J., Proctor, J. S., (2004), "Geotechnical logs and data from permanently instrumented field sites: Garner Valley Downhole Array (GVDA) and Wildlife Liquefaction Array (WLA)", Report to the Network for Earthquake Engineering Simulation (NEES) Colaboratories, Brigham Young University

145

Annexes

147

Annexe I : Stratigraphie géologique du site de

Documents relatifs