• Aucun résultat trouvé

1.5 Détection des WIMPs dans la galaxie

1.5.2 Détection indirecte

1.5.2.3 Rayons cosmiques d’antimatières

Finalement, l’annihilation de WIMPs produit des particules d’antimatière. Celles-ci sont

par-ticulèrement intéressantes car le nombre de mécanismes astrophysiques connus capables de les

créer est relativement restreint. Le bruit de fond associé au flux de rayons cosmiques d’antimatière

est par conséquent relativement faible comparé aux canaux discutés précédemment. C’est

pour-quoi la recherche de matière noire à travers les antiparticules constitue une stratégie prometteuse.

Il faut néanmoins remarquer que les rayons cosmiques chargés sont sujets à des interactions dues

au champ magnétique des galaxies. En s’intéressant à des WIMPs dont la masse est de l’ordre

du TeV, nous ne serons sensibles qu’aux antiparticules produites et confinées dans notre galaxie.

En outre, le caractère stochastique de leur propagation rend impossible de remonter à la position

de leur source. La recherche de matière noire à travers les antiparticules se décline selon trois

directions : les positrons, les antiprotons et les anti-noyaux. Les deux premiers feront l’objet de

la suite de ce mémoire de thèse. Un revue sur la détection indirecte de matière noire grâce aux

antideutons peut être trouvée dans [60,5].

Figure1.11 –Limites supérieures des régions exclues de la section efficacehσvipar les rayons gamma

(traits continus), les antiprotons (tirets) et les neutrinos (pointillés) . (Tiré de [16])

Bibliographie

[1] Atlas collaboration,‘ATLAS Conf Notes’, 15 dec 2015.

[2] Kevork N. Abazajian, Nicolas Canac, Shunsaku Horiuchi, and Manoj Kaplinghat.

Astrophy-sical and Dark Matter Interpretations of Extended Gamma-Ray Emission from the Galactic

Center. Phys. Rev., D90(2) :023526, 2014.

[3] P. A. R. Ade et al. Planck 2013 results. XV. CMB power spectra and likelihood. Astron.

Astrophys., 571(0) :A15, 2014.

[4] Thomas Appelquist, Hsin-Chia Cheng, and Bogdan A. Dobrescu. Bounds on universal extra

dimensions. Phys. Rev. D, 64 :035002, Jun 2001.

[5] T. Aramaki et al. Review of the theoretical and experimental status of dark matter

identifi-cation with cosmic-ray antideuterons. Phys. Rept., 618 :1–37, 2016.

[7] Jacob D. Bekenstein. Relativistic gravitation theory for the modified Newtonian dynamics

paradigm. Phys. Rev. D, 70(8) :083509, oct 2004.

[8] M Betoule et al. Improved cosmological constraints from a joint analysis of the SDSS-II

and SNLS supernova samples. Astron. Astrophys., submitted :30, 2014.

[9] S. Binney, J. Tremaine. Galactic dynamics. Princeton Series in Astrophysics, 1987.

[10] V. Bonnivard, C. Combet, M. Daniel, S. Funk, A. Geringer-Sameth, J. A. Hinton, D. Maurin,

J. I. Read, S. Sarkar, M. G. Walker, and M. I. Wilkinson. Dark matter annihilation and decay

in dwarf spheroidal galaxies : the classical and ultrafaint dSphs. MNRAS, 453 :849–867,

October 2015.

[11] A. Boyarsky, D. Malyshev, and O. Ruchayskiy. A comment on the emission from the

Galactic Center as seen by the Fermi telescope.Physics Letters B, 705 :165–169, November

2011.

[12] A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse. Unidentified Line in

X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster. Phys. Rev. Lett.,

113(25) :251301, dec 2014.

[13] Esra Bulbul, Maxim Markevitch, Adam Foster, Randall K. Smith, Michael Loewenstein,

and Scott W. Randall. DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE

STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS. Astrophys. J., 789(1) :13, jul

2014.

[14] F. Calore, I. Cholis, C. McCabe, and C. Weniger. A tale of tails : Dark matter interpretations

of the Fermi GeV excess in light of background model systematics. Physical Review D,

91(6) :063003, March 2015.

[15] Riccardo Catena and Paolo Gondolo. Global limits and interference patterns in dark matter

direct detection. arXiv.org, 1504 :6554, 2015.

[16] Marco Cirelli. Status of Indirect (and Direct) Dark Matter searches. page 24, nov 2015.

[17] Marco Cirelli, Gennaro Corcella, Andi Hektor, Gert Hütsi, Mario Kadastik, Paolo Panci,

Martti Raidal, Filippo Sala, and Alessandro Strumia. PPPC 4 DM ID : a poor particle

physi-cist cookbook for dark matter indirect detection.J. Cosmol. Astropart. Phys., 2011(03) :051–

051, mar 2011.

[18] A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour, and C. Angulo. Updated Big

Bang Nucleosynthesis Compared with Wilkinson Microwave Anisotropy Probe

Observa-tions and the Abundance of Light Elements. Astrophys. J., 600(2) :544–552, jan 2004.

[19] CMS Collaboration. Search for new physics in high mass diphoton events in proton-proton

collisions at 13TeV. 2015.

[20] J. Cooley. Overview of non-liquid noble direct detection dark matter experiments. Phys.

Dark Universe, 4 :92–97, sep 2014.

[21] Tansu Daylan, Douglas P. Finkbeiner, Dan Hooper, Tim Linden, Stephen K.N. Portillo,

Ni-cholas L. Rodd, and Tracy R. Slatyer. The characterization of the gamma-ray signal from

the central Milky Way : A case for annihilating dark matter.Phys. Dark Universe, 12 :1–23,

jun 2016.

[22] Jürg Diemand, Ben Moore, and Joachim Stadel. Convergence and scatter of cluster density

profiles. Mon. Not. R. Astron. Soc., 353(2) :624–632, sep 2004.

[23] A. K. Drukier, K. Freese, and D. N. Spergel. Detecting cold dark-matter candidates.Physical

Review D, 33 :3495–3508, June 1986.

[24] a. Liam Fitzpatrick, Wick Haxton, Emanuel Katz, Nicholas Lubbers, and Yiming Xu. Model

Independent Direct Detection Analyses. pages 1–25, 2012.

[25] D. J. Fixsen. The Temperature of the Cosmic Microwave Background. APJ, 707 :916–920,

2009.

[26] Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett.,

81 :1562–1567, Aug 1998.

[27] Lisa Goodenough and Dan Hooper. Possible Evidence For Dark Matter Annihilation In The

Inner Milky Way From The Fermi Gamma Ray Space Telescope. Fermilab-Pub-09-494-a,

pages 1–5, oct 2009.

[28] Andreas Goudelis, Maxim Pospelov, and Josef Pradler. A light particle solution to the

cos-mic lithium problem. (1) :5, 2015.

[29] S. W. Hawking. Particle creation by black holes.Communications in Mathematical Physics,

43(3) :199–220, 1975.

[30] D. Hooper and L. Goodenough. Dark matter annihilation in the Galactic Center as seen by

the Fermi Gamma Ray Space Telescope. Physics Letters B, 697 :412–428, March 2011.

[31] D. Hooper and T. Linden. Origin of the gamma rays from the Galactic Center. Physical

Review D, 84(12) :123005, December 2011.

[32] Fabio Iocco, Miguel Pato, Gianfranco Bertone, and Philippe Jetzer. Dark Matter distribution

in the Milky Way : microlensing and dynamical constraints. page 12, 2011.

[33] Gerard Jungman and Marc Kamionkowski. γrays from neutralino annihilation. Phys. Rev.

D, 51 :3121–3124, Mar 1995.

[34] J.C. Kapteyn. First attempt at a theory of the arrangement and motion of the sideral system.

Astrophys. J., XXXIII(2) :81–87, 2012.

[35] Thomas Lacroix, Celine Boehm, and Joseph Silk. Fitting the Fermi-LAT GeV excess :

On the importance of including the propagation of electrons from dark matter. Phys. Rev.,

D90(4) :043508, 2014.

[36] R. A. Malaney and G. J. Mathews. Probing the early universe : a review of primordial

nucleosynthesis beyond the standard big bang. Physics Reports, 229 :145–219, July 1993.

[37] Mordehai Milgrom. MOND theory 1. Can. J. Phys., 93(2) :107–118, feb 2015.

[38] Ben Moore, Sebastiano Ghigna, Fabio Governato, George Lake, Thomas Quinn, Joachim

Stadel, and Paolo Tozzi. Dark Matter Substructure within Galactic Halos. Astrophys. J.,

524(1) :L19–L22, oct 1999.

[39] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. The Structure of Cold Dark

Matter Halos. Astrophys. J., 462 :563, may 1996.

[40] Julio F. Navarro, Aaron Ludlow, Volker Springel, Jie Wang, Mark Vogelsberger, Simon

D. M. White, Adrian Jenkins, Carlos S. Frenk, and Amina Helmi. The diversity and

si-milarity of simulated cold dark matter haloes.Mon. Not. R. Astron. Soc., 402(1) :21–34, feb

2010.

[41] Roberto D. Peccei. The Strong CP Problem and Axions. InAxions, volume 741, pages 3–17.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[42] S. A. Perlmutter. Measurements ofΩandΛfrom Supernovae. In L. Labhardt, B. Binggeli,

and R. Buser, editors,Supernovae and cosmology, page 75, 1998.

[43] Planck Collaboration, P. a. R. Ade, et al. Planck 2013 results. I. Overview of products and

scientific results. Physics (College. Park. Md)., 6 :107, 2013.

[44] Planck Collaboration and P. A. R.et alAde. Planck 2015 results. XIII. Cosmological

para-meters. arXiv, page 1502.01589, feb 2015.

[45] Marc Postman. Distribution of Galaxies, Clusters, and Superclusters. Encycl. Astron.

Astro-phys., 2006.

[46] Vivian Poulin and Pasquale Dario Serpico. Loophole to the universal photon spectrum in

electromagnetic cascades and application to the cosmological lithium problem. Phys. Rev.

Lett., 114(9) :1–5, 2015.

[47] Scott W. Randall, Maxim Markevitch, Douglas Clowe, Anthony H. Gonzalez, and Marusa

Bradaˇc. Constraints on the Self Interaction Cross Section of Dark Matter from Numerical

Simulations of the Merging Galaxy Cluster 1E 0657 56. Astrophys. J., 679(2) :1173–1180,

2008.

[48] M J Reid, J A Braatz, J J Condon, K Y Lo, C Y Kuo, C M V Impellizzeri, and C. Henkel.

The Megamaser Cosmology Project : IV. A Direct Measurement of the Hubble Constant

from UGC 3789. pages 1–27, jul 2012.

[49] Vera C Rubin, W Kent, Ford Jr, Norbert Thonnard, Morton S Roberts, National Radio,

As-tronomy Observatory, Green Bank, West Virginia, John A Graham, and Rubin E T Al. 3

while recent work by Sandage and Tammann (1975) indicates that (j. 81(9), 1976.

[50] P. Salati, P. Chardonnet, X. Luo, J. Silk, and R. Taillet. The gas deficiency of the galactic

halo. Astronomy and Astrophysics, 313 :1–7, September 1996.

[51] Subir Sarkar. Big Bang nucleosynthesis and physics beyond the Standard Model. Reports

Prog. Phys., 59(12) :1493–1609, feb 1996.

[52] Marc Schumann. Dark Matter 2014. EPJ Web Conf., 96(1) :01027, jun 2015.

[53] R. Taillet. http://lapth.cnrs.fr/pg-nomin/taillet/dossier_matiere_noire/matiere_noire.php.

[54] A. the. The distribution and kinematics of neutral hydrogen in spiral galaxies of various

morphological types. PhD thesis, PhD Thesis, Groningen Univ., (1978), 1978.

[55] P. Tisserand et al. Limits on the Macho content of the Galactic Halo from the EROS-2

Survey of the Magellanic Clouds. Astron. Astrophys., 469(2) :387–404, jul 2007.

[56] R Brent Tully, Hélène Courtois, Yehuda Hoffman, and Daniel Pomarède. The Laniakea

supercluster of galaxies. Nature, 513(7516) :71–3, 2014.

[57] Edwin a. Valentijn and Paul P. van der Werf. First Extragalactic Direct Detection of

Large-Scale Molecular Hydrogen in the Disk of NGC 891. Astrophys. J., 522(1) :L29–L33, 1999.

[58] F. C. van den Bosch, Andreas Burkert, and Rob A. Swaters. The angular momentum content

of dwarf galaxies : new challenges for the theory of galaxy formation. Mon. Not. R. Astron.

Soc., 326(3) :1205–1215, sep 2001.

[59] Vera, Ford, and Thornnard Rubin. Extended rotation curves of high-luminosity spiral

ga-laxies. IV. Systematic dynamical properties. Astrophys. J., 225, 1978.

[60] P. von Doetinchem, T. Aramaki, S. Boggs, S. Bufalino, L. Dal, F. Donato, N. Fornengo,

H. Fuke, M. Grefe, C. Hailey, B. Hamilton, A. Ibarra, J. Mitchell, I. Mognet, R. A. Ong,

R. Pereira, K. Perez, A. Putze, A. Raklev, P. Salati, M. Sasaki, G. Tarle, A. Urbano, A.

Vit-tino, S. Wild, W. Xue, and K. Yoshimura. Status of cosmic-ray antideuteron searches. 34th

Int. Cosm. Ray Conf., page 9, jul 2015.

[61] S. Weinberg. The Quantum Theory of Fields - Volume III". Cambridge University Press

(2000), ISBN 0-521-66000-9, 2000.

[62] Christoph Weniger. A tentative gamma-ray line from Dark Matter annihilation at the Fermi

Large Area Telescope. J. Cosmol. Astropart. Phys., 2012(08) :007–007, aug 2012.

[63] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta, 6(1), dec

1933.

Chapitre 2

Le rayonnement cosmique