• Aucun résultat trouvé

Quelques propriétés d’intégrales

Les propriétés suivantes sont vraies pour toutes fonctions (f, g) intégrables sur [0; T ]. Dans le cas de la propriété Eq.(D.2), la fonction f doit être en plus dérivable sur cet intervalle. Enfin, dans le cas de la propriété Eq.(D.4), on travaille sur les

fonctions f (respt. g) définies sur [0; T ] comme la somme d’une fonction continue fc

(respt. gc

) et d’une fonction constante par morceaux fh

(respt. gh ). Z T 0 Z t 0 {f (τ )} dτ dt = Z T 0 {(T − t).f (t)} dt (D.1) Z T 0  f2(t) dt = Z T 0 Z t 0 n 2.f (τ ) ˙f (τ )odτ + f2(0)  dt = Z T 0 n 2(T − t)f (t) ˙f (t) + f2(0)odt (D.2) Z T 0 Z t 0 {f (τ ). ˙g(τ )}dτ dt T = Z T 0 Z t 0 {(fc (τ ) + fh (τ )) . ( ˙gc (τ ) + ˙gh (τ ))}dτ dt T = Z T 0 Z t 0 {fc (τ ) ˙gc (τ ) + fc (τ ) ˙gh (τ ) + fh (τ ) ˙gc (τ ) + fh (τ ) ˙gh (τ )}dτ dt T Z T 0 dt Z t 0 dτ T {f c (τ ). ˙gh (τ )} = X 0<ti<T  T − ti T f c (ti)Jgh Kti  Z T 0 dt Z t 0 dτ T {f h (τ ). ˙gh (τ )} = X 0<ti<T  T − ti T fh (t+i ) + fh (ti ) 2 Jg h Kti  Z T 0 dt Z t 0 dτ T {f (τ ). ˙g h (τ )} = X 0<ti<T  T − ti T f (t+i ) + f (ti ) 2 Jg h Kti 

Z T 0 dt Z t 0 dτ T {f (τ ). ˙g(τ )} = Z T 0 dt Z t 0 dτ T {f (τ ) ˙g c (τ )} (D.3) + X 0<ti<T  T − ti T f (t+i ) + f (ti ) 2 Jg h Kti 

[Ainsworth et Oden, 1993] Ainsworth, M. et Oden, J. (1993). A unified approach to a posteriori error estimation using element residual methods. Numerische Mathematik, 65(1):23–50.

[Aubry et al., 1999] Aubry, D., Lucas, D. et Tie, B. (1999). Adaptive strategy for transient/coupled problems applications to thermoelasticity and elastodynamics. Computer methods in applied mechanics and engineering, 176(1-4):41–50.

[Aubry et al., 2002] Aubry, D., Tie, B., Jay, G. et Muzzolini, R. (2002). Mé-thodes adaptatives pour les déformations localisées : Adaptive methods for loca-lized behaviour. Mécanique & industries, 3(5):425–430.

[Azziz et Babuška, 1972] Azziz, K. et Babuška, I. (1972). The mathematical foun-dation of the finite element method with applications to partial differential equa-tions, volume 33.

[Babuška et Miller, 1984] Babuška, I. et Miller, A. (1984). The post-processing approach in the finite element method - part 2 : the calculation of stress intensity factors. International Journal for Numerical Methods in Engineering, 20:1111– 1129.

[Babuška et Rheinboldt, 1978a] Babuška, I. et Rheinboldt, W. (1978a). Error estimates for adaptative finite element computation. SIAM Journal on Numeral Analysis, 15(4):736–754.

[Babuška et Rheinboldt, 1978b] Babuška, I. et Rheinboldt, W. (1978b). A pos-teriori error estimates for the finite element method. International Journal for Numerical Methods in Engineering, 12:1597.

[Babuška et Rheinboldt, 1982] Babuška, I. et Rheinboldt, W. C. (1982). Com-putational error estimates and adaptive processes for some nonlinear structural problems. Computer Methods in Applied Mechanics and Engineering, 34(1-3):895 – 937.

[Babuška et Strouboulis, 2001] Babuška, I. et Strouboulis, T. (2001). The Fi-nite Element Method and its Reliability. Oxford Science Publications.

[Babuška et al., 1994] Babuška, I., Strouboulis, T., Mathur, A. et Upadhyay, C. (1994). Pollution error in the h-version of the finite element method and the local quality of a-posteriori estimators. Finite Elements in Analysis and Design, 17:273–321.

[Babuška et al., 1995a] Babuška, I., Strouboulis, T., Upadhyay, C. et

Gan-garaj, S. (1995a). A-posteriori estimation and adaptive control of the

pollution-error in the h-version of the finite element method. International Journal for Numerical Methods in Engineering, 38:4207–4235.

[Babuška et al., 1995b] Babuška, I., Strouboulis, T., Upadhyay, C. S. et

Gan-garaj, S. K. (1995b). A model study of element residual estimators for linear

elliptic problems : The quality of the estimators in the interior of meshes of tri-angles and quadrilaterals. Computers and Structures, 57(6):1009 – 1028.

[Bank et Weiser, 1985] Bank, R. et Weiser, A. (1985). Some a posteriori error estimators for elliptic partial differential equations. Mathematics of Computation, 44(170):283–301.

[Barlow, 1976] Barlow, J. (1976). Optimal stress locations in finite element mo-dels. International Journal for Numerical Methods in Engineering, 10:243–251. [Barthold et al., 1998] Barthold, F., Schmidt, M. et Stein, E. (1998). Error

indicators and mesh refinements for finite-element-computations of elastoplastic deformations. Computational Mechanics, 22(3):225–238.

[Bass et Oden, 1987] Bass, J. et Oden, J. (1987). Adaptative finite element me-thods for a class of evolution problems in viscoplasticity. International Journal of Engineering Science, 25(6):623–653.

[Becker et Rannacher, 1996] Becker, R. et Rannacher, R. (1996). A feed-back approach to error control in finite element methods : Basic analysis and examples. East-West Journal of numerical Mathematics, 4:237–264.

[Becker et Rannacher, 2001] Becker, R. et Rannacher, R. (2001). An optimal control approach to a posteriori error estimation in finite element methods. A. Iserels (Ed.), Acta Numerica, Cambridge University Press, 10:1–120.

[Bergam et al., 2003] Bergam, A., Mghazli, Z. et Verfürth, R. (2003). Esti-mations a posteriori d’un schéma de volumes finis pour un problème non linéaire. Numerische Mathematik, 95(4):599–624.

[Bonnet et Frangi, 2006] Bonnet, M. et Frangi, A. (2006). Analyse des solides déformables par la méthode des éléments finis. Editions Ecole Polytechnique. [Boroomand et Zienkiewicz, 1998] Boroomand, B. et Zienkiewicz, O. (1998).

Recovery procedures in error estimation and adaptivity : Adaptivity in non-linear problems of elasto-plasticity behaviour. In Ladevèze, P. et Oden, J., éditeurs : Advances in Adaptive Computational Methods in Mechanics, volume 47 de Studies in Applied Mechanics, pages 383 – 410. Elsevier.

[Boroomand et Zienkiewicz, 1999] Boroomand, B. et Zienkiewicz, O. (1999). Recovery procedures in error estimation and adaptivity. part ii : Adaptivity in nonlinear problems of elasto-plasticity behaviour. Computer Methods in Applied Mechanics and Engineering, 176(1-4):127 – 146.

[Boussetta et al., 2006] Boussetta, R., Coupez, T. et Fourment, L. (2006). Adaptive remeshing based on a posteriori error estimation for forging simulation. Computer methods in applied mechanics and engineering, 195(48-49):6626–6645. [Brink et Stein, 1998] Brink, U. et Stein, E. (1998). A posteriori error estimation

in large-strain elasticity using equilibrated local Neumann problems. Computer Methods in Applied Mechanics and Engineering, 161(1-2):77 – 101.

[Calloch, 1997] Calloch, S. (1997). Essais triaxiaux non-proportionnels et ingénie-rie des modèles de comportement. Thèse de doctorat, PhD thesis, Ecole Normale Supérieure de Cachan.

[Carstensen et Funken, 1999] Carstensen, C. et Funken, S. (1999). Fully reliable localized error control in the FEM. SIAM Journal on Scientific Computing, 21: 1465.

[Carstensen et al., 2006] Carstensen, C., Klose, R. et Orlando, A. (2006). Re-liable and efficient equilibrated a posteriori finite element error control in elasto-plasticity and elastoviscoelasto-plasticity with hardening. Computer Methods in Applied Mechanics and Engineering, 195(19-22):2574–2598.

[Cecot, 2007] Cecot, W. (2007). Adaptive fem analysis of selected elastic-visco-plastic problems. Computer Methods in Applied Mechanics and Engineering, 196(37-40):3859–3870.

[Chamoin et Ladevèze, 2007] Chamoin, L. et Ladevèze, P. (2007). Bounds on history-dependent or independent local quantities in viscoelasticity problems sol-ved by approximate methods. International Journal for Numerical Methods in Engineering, 71(12):1387–1411.

[Chamoin et Ladevèze, 2008] Chamoin, L. et Ladevèze, P. (2008). A

non-intrusive method for the calculation of strict and efficient bounds of calculed outputs of interest in linear viscoelasticity problems. Computer Methods in Ap-plied Mechanics and Engineering, 197:994–1014.

[Ciarlet, 1978] Ciarlet, P. (1978). The finite element method for elliptic problems. North-Holland.

[Cirak et Ramm, 1998] Cirak, F. et Ramm, E. (1998). A posteriori error estima-tion and adaptivity for linear elasticity using the reciprocal theorem. Computer Methods in Applied Mechanics and Engineering, 156(1-4):351 – 362.

[Coffignal et Ladevèze, 1983] Coffignal, G. et Ladevèze, P. (1983). Error com-putation and optimal mesh in elasticity and elastoplasticity. In Proc. SMIRT, 7(L):177–182.

[Comi et Perego, 2004] Comi, C. et Perego, U. (2004). Criteria for mesh refine-ment in nonlocal damage finite elerefine-ment analyses. European Journal of Mechanics - A/Solids, 23(4):615 – 632.

[Coorevits et al., 2001] Coorevits, P., Hild, P. et Hjiaj, M. (2001). A posteriori error control of finite element approximations for Coulomb’s frictional contact. SIAM Journal on Scientific Computing, 23(3):976–999.

[Coorevits et al., 2000] Coorevits, P., Hild, P. et Pelle, J. (2000). A posteriori error estimation for unilateral contact with matching and non-matching meshes. Computer Methods in Applied Mechanics and Engineering, 186(1):65–83.

[Cottereau et al., 2009] Cottereau, R., Díez, P. et Huerta, A. (2009). Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method. Computational Mechanics, 44(4):533–547.

[Cottle et al., 2009] Cottle, R., Pang, J. et Stone, R. (2009). The linear com-plementarity problem. Society for Industrial Mathematics.

[de Almeida et Pereira, 2006] de Almeida, J. M. et Pereira, O. A. (2006). Up-per bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Computer Methods in Applied Me-chanics and Engineering, 195(4-6):279 – 296. Adaptive Modeling and Simulation. [de Almeida et Oden, 2010] de Almeida, R. C. et Oden, J. T. (2010). Solution ve-rification, goal-oriented adaptive methods for stochastic advection-diffusion pro-blems. Computer Methods in Applied Mechanics and Engineering, In Press, Cor-rected Proof:–.

[De Saxcé, 1992] De Saxcé, G. (1992). Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, 314(2):125–129.

[Demkowicz et al., 1984] Demkowicz, L., Oden, J. et Strouboulis, T. (1984). Adaptive finite elements for flow problems with moving boundaries. I-Variational principles and a posteriori estimates. Computer methods in applied mechanics and engineering, 46:217–251.

[Díez et al., 2007] Díez, P., José Ródenas, J. et Zienkiewicz, O. (2007). Equi-librated patch recovery error estimates : simple and accurate upper bounds of the error. International journal for numerical methods in engineering, 69(10):2075– 2098.

[Drucker, 1964] Drucker, D. (1964). On the postulate of stability of material in the mechanics of continua. Journal of Mechanics, 3(2):235–249.

[Eriksson et al., 1995] Eriksson, K., Estep, D., Hansbo, P. et Johnson, C. (1995). Introduction to adaptive methods for differential equations. Acta nu-merica, 4(-1):105–158.

[Florentin et al., 2003] Florentin, E., Gallimard, L., Ladevèze, P. et Pelle, J. P. (2003). Local error estimator for stresses in 3d structural analysis. Computers and Structures, 81(18-19):1751 – 1757. Civil Comp Special Issue.

[Fortin et al., 2002] Fortin, J., Hjiaj, M. et de Saxcé, G. (2002). An impro-ved discrete element method based on a variational formulation of the frictional contact law. Computers and Geotechnics, 29(8):609 – 640.

[Fourment et Chenot, 1993] Fourment, L. et Chenot, J. (1993). Error estima-tors for viscoplastic materials : application to forming processes. Engineering Computations, 12(5):469–490.

[Gallimard, 2009] Gallimard, L. (2009). A constitutive relation error estimator based on traction-free recovery of the equilibrated stress. International Journal for Numerical Methods in Engineering, 78(4):460–482.

[Gallimard et al., 1996] Gallimard, L., Ladevèze, P. et Pelle, J. (1996). Error estimation and adaptivity in elastoplasticity. International Journal for Numerical Methods in Engineering, 39(2):189–217.

[Greenberg, 1948] Greenberg, H. (1948). The dertermination of upper and lower bounds for the solution of Dirichlet problem. Journal of Mathematics and Physics, 27:161–182.

[Halphen et Nguyen, 1975] Halphen, B. et Nguyen, Q. (1975). On generalized standard materials. Journal de Mécanique, 14:39–63.

[Hansbo et Johnson, 1991] Hansbo, P. et Johnson, C. (1991). Adaptive stream-line diffusion methods for compressible flow using conservation variables. Com-puter Methods in Applied Mechanics and Engineering, 87(2-3):267 – 280.

[Hetu et Pelletier, 1992] Hetu, J. et Pelletier, D. (1992). Fast, adaptive element scheme for viscous incompressible flows. AIAA journal, 30(11):2677–2682. [Hjiaj et al., 2003] Hjiaj, M., Fortin, J. et de Saxcé, G. (2003). A complete

stress update algorithm for the non-associated drucker-Prager model including treatment of the apexrucker-prager model including treatment of the apex. In-ternational Journal of Engineering Science, 41(10):1109 – 1143.

[Huerta et Diez, 2000] Huerta, A. et Diez, P. (2000). Error estimation including pollution assessment for nonlinear finite element analysis. Computer Methods in Applied Mechanics and Engineering, 181:21–41.

[Johnson et Hansbo, 1992] Johnson, C. et Hansbo, P. (1992). Adaptive finite element methods in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 101(1-3):143 – 181.

[Kempeneers et al., 2010] Kempeneers, M., Debongnie, J. et Beckers, P. (2010). Pure equilibrium tetrahedral finite elements for global error estimation by dual analysis. International Journal for Numerical Methods in Engineering, 81(4):513–536.

[Khoei et al., 2007] Khoei, A., Gharehbaghi, S., Tabarraie, A. et Riahi, A. (2007). Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization. Applied Mathematical Modelling, 31(6):983 – 1000.

[Laborde et Nguyen, 1990] Laborde, P. et Nguyen, Q. S. (1990). Etude de l’équa-tion d’évolul’équa-tion des systèmes dissipatifs standards. Mathematical Modelling and Numerical Analysis, 24:67–84.

[Laborde et al., 1997] Laborde, P., Toson, B. et Pesqué, J. (1997). On the consistent tangent operator algorithm for thermo-plastic problems. Computer methods in applied mechanics and engineering, 146(3-4):215–230.

[Ladevèze, 1975] Ladevèze, P. (1975). Comparaison de modèle de mileux continus. Thèse de doctorat, Université de Pierre et Marie Curie.

[Ladevèze, 1985] Ladevèze, P. (1985). Sur une famille d’algorithmes en méca-nique des structures. Comptes Rendus Académie des Sciences - Mécaméca-nique, Paris, 300(2):41–45.

[Ladevèze, 1989] Ladevèze, P. (1989). The large time increment methode for ana-lysis of structures with nonlinear behavior described by internal variables (in french). Comptes Rendus Académie des Sciences - Mécanique, Paris.

[Ladevèze, 1994] Ladevèze, P. (1994). La méthode d’évaluation d’erreur en re-lation de comportement appliqué à la MEF : Qualité et amélioration. Rapport technique 150, LMT-Cachan.

[Ladevèze, 1996] Ladevèze, P. (1996). Mécanique non linéaire des structures. Hermes, Paris.

[Ladevèze, 1998] Ladevèze, P. (1998). Nonlinear computational structural mecha-nics : new approaches and non-incremental methods of calculation. Springer. [Ladevèze, 2006] Ladevèze, P. (2006). Upper error bounds on calculated outputs of

interest for linear and non linear structural problems. Comptes Rendus Académie des Sciences - Mécanique, Paris, 334:399–407.

[Ladevèze, 2008a] Ladevèze, P. (2008a). Une nouvelle approche pour la vérifica-tion des calculs éléments finis en élastoplasticité. compléments. Rapport interne 272, LMT - Cachan.

[Ladevèze, 2008b] Ladevèze, P. (2008b). Strict upper error bounds on compu-ted outputs of interest in computational structural mechanics. Computational Mechanics, 42(2):271–286.

[Ladevèze et Chamoin, 2010] Ladevèze, P. et Chamoin, L. (2010). Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest. International Journal for Numerical Methods in Enginee-ring, 84(13):1638–1664.

[Ladevèze et al., 2009] Ladevèze, P., Chamoin, L. et Florentin, É. (2009). A new non-intrusive technique for the construction of admissible stress fields in model verification. Computer Methods in Applied Mechanics and Engineering, 199(9-12):766–777.

[Ladevèze et al., 1986] Ladevèze, P., Coffignal, G. et Pelle, J. (1986). Accu-racy of elastoplastic and dynamic analysis. AccuAccu-racy Estimates and Adaptative Refinements in Finite Element Computations (Babuska, Gago, Oliviera and Zien-kiewicz Editors), Wiley, London, 11:181–203.

[Ladevèze et Leguillon, 1983] Ladevèze, P. et Leguillon, D. (1983). Error esti-mate procedure in the finite element method ans applications. SIAM Journal on Numeral Analysis, 20(3):448–509.

[Ladevèze et al., 1992] Ladevèze, P., Marin, P., Pelle, J. et Gastine, J. (1992). Accuracy and optimal meshes in finite element computation for nearly incom-pressible materials. Computer methods in applied mechanics and engineering, 94(3):303–315.

[Ladevèze et Moës, 1997] Ladevèze, P. et Moës, N. (1997). A new a posteriori error estimation for nonlinear time-dependent finite element analysis. Computer Methods in Applied Mechanics and Engineering, 157:45–68.

[Ladevèze et Moës, 1998] Ladevèze, P. et Moës, N. (1998). A posteriori consti-tutive relation error estimators for nonlinear finite element analysis and adaptive control. In Ladevèze, P. et Oden, J., éditeurs : Advances in Adaptive Compu-tational Methods in Mechanics, volume 47 de Studies in Applied Mechanics, pages 231 – 256. Elsevier.

[Ladevèze et Moës, 1999] Ladevèze, P. et Moës, N. (1999). Adaptive control for finite element analysis in plasticity. Computers and Structures, 73(1-5):45 – 60. [Ladevèze et al., 1999a] Ladevèze, P., Moës, N. et Douchin, B. (1999a).

Consti-tutive relation error estimators for (visco)plastic finite element analysis with sof-tening. Computer Methods in Applied Mechanics and Engineering, 176:247–264. [Ladevèze et Pelle, 2004] Ladevèze, P. et Pelle, J. (2004). Mastering calculations

in linear and nonlinear mechanics. Springer, NY.

[Ladevèze et al., 1993] Ladevèze, P., Pelle, J. et Rougeot, P. (1993). Error estimation and mesh optimization for classical finite elements. Engineering Com-putations, 8(1):69–80.

[Ladevèze et Rougeot, 1997] Ladevèze, P. et Rougeot, P. (1997). New advances on a posteriori error on constitutive relation in f.e. analysis. Computer Methods in Applied Mechanics and Engineering, 150:239–249.

[Ladevèze et al., 1999b] Ladevèze, P., Rougeot, P., Blanchard, P. et

Mo-reau, J. (1999b). Local error estimators for finite element linear analysis.

Com-puter Methods in Applied Mechanics and Engineering, 176(1-4):231 – 246.

[Ladevèze et Waeytens, 2009] Ladevèze, P. et Waeytens, J. (2009). Model ve-rification in dynamics through strict upper error bounds. Computer Methods in Applied Mechanics and Engineering, 198:1775–1784.

[Lemaitre et al., 2009] Lemaitre, J., Chaboche, J., Benallal, A. et

Desmo-rat, R. (2009). Mécanique des matériaux solides. Dunod.

[Louf et al., 2003] Louf, F., Combe, J. et Pelle, J. (2003). Constitutive error estimator for the control of contact problems involving friction. Computers & structures, 81(18-19):1759–1772.

[Maday et al., 1999] Maday, Y., Patera, A. et Peraire, J. (1999). A general formulation for a posteriori bounds for output functionals of partial differential equations ; application to the eigenvalue problem*. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 328(9):823–828.

[Mathisen et al., 1999] Mathisen, K. M., Hopperstad, O. S., Okstad, K. M. et Berstad, T. (1999). Error estimation and adaptivity in explicit nonlinear finite element simulation of quasi-static problems. Computers and Structures, 72(4-5):627 – 644.

[Moës, 1996] Moës, N. (1996). Une méthode de mesure d’erreur a posteriori pour les modèles de matériaux décrits par variables internes. Thèse de doctorat, ENS de Cachan.

[Moreau, 1966] Moreau, J. J. (1966). Fonctionnelles convexes. College de France. [Morin et al., 2003] Morin, P., Nochetto, R. et Siebert, K. (2003). Local pro-blems on stars : a posteriori error estimators, convergence, and performance. Ma-thematics of Computation, 72(243):1067–1098.

[Oden et al., 2005] Oden, J. T., Babuska, I., Nobile, F., Feng, Y. et Tempone, R. (2005). Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty. Computer Methods in Applied Mecha-nics and Engineering, 194:195–204.

[Ohnimus et al., 2001] Ohnimus, S., Stein, E. et Walhorn, E. (2001). Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems. International Journal for Numerical Methods in Engineering, 52(7):727–746.

[Paraschivoiu et al., 1997] Paraschivoiu, M., Peraire, J. et Patera, A. T. (1997). A posteriori finite element bounds for linear-functional outputs of el-liptic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 150(1-4):289 – 312. Symposium on Advances in Computational Me-chanics.

[Parés et al., 2006] Parés, N., Dìez, P. et Huerta, A. (2006). Subdomain-based flux-free a posteriori error estimators. Computer Methods in Applied Mechanics and Engineering, (195):297–323.

[Parés et al., 2008] Parés, N., Dìez, P. et Huerta, A. (2008). Bounds of functional outputs for parabolic problems. part ii : Bounds of the exact solution. Computer Methods in Applied Mechanics and Engineering, 197:1661–1679.

[Parés et al., 2009] Parés, N., Santos, H. et Díez, P. (2009). Guaranteed energy error bounds for the Poisson equation using a flux-free approach : Solving the local problems in subdomains. International Journal for Numerical Methods in Engineering, 79(10):1203–1244.

[Peraire et Patera, 1998] Peraire, J. et Patera, A. (1998). Bounds for linear-functional outputs of coercive partial differential equations : Local indicators and

adaptive refinement. In Ladevèze, P. et Oden, J., éditeurs : Advances in Adap-tive Computational Methods in Mechanics, volume 47 de Studies in Applied Me-chanics, pages 199 – 216. Elsevier.

[Perego, 1988] Perego, U. (1988). Explicit backward difference operators and consistent predictors for linear hardening elastic-plastic constitutive laws. SM archives, 13(2):65–102.

[Peric et al., 1999] Peric, D., Vaz, M. et al. (1999). On adaptive strategies for large deformations of elasto-plastic solids at finite strains : computational issues and industrial applications. Computer methods in applied mechanics and engineering, 176(1-4):279–312.

[Pled et al., 2011] Pled, F., Chamoin, L. et Ladevèze, P. (2011). On the tech-niques for constructing admissible stress fields in model verification : Performances on engineering examples. International Journal for Numerical Methods in Engi-neering.

[Prathap, 1996] Prathap, G. (1996). Barlow points and gauss points and the alia-sing and best fit paradigms. Computers and Structures, 58:321–325.

[Prayer et Synge, 1947] Prayer, W. et Synge, J. (1947). Approximation in elasti-city based on the concept of functions spaces. Quarterly of Applied Mathematics, 5:261–269.

[Prudhomme et al., 2004] Prudhomme, S., Nobile, F., Chamoin, L. et Oden, J. (2004). Analysis of a subdomain-based error estimator for finite element ap-proximations of elliptic problems. Numerical Methods for Partial Differential Equations, 20(2):165–192.

[Prudhomme et Oden, 1999] Prudhomme, S. et Oden, J. (1999). On goal-oriented error estimation for elliptic problems : application to the control of pointwise errors. Computer Methods in Applied Mechanics and Engineering, 176(1-4):313 – 331.

[Puel et Aubry, 2007] Puel, G. et Aubry, D. (2007). Régularisation de problèmes inverses par utilisation de maillages adaptatifs. In 8 ème Colloque National en Calcul des Structures.

[Rajendran et Liew, 2003] Rajendran, G. et Liew, K. M. (2003). Optimal stress sampling points of plane triangular elements for patch recovery of nodal stresses. International Journal for Numerical Methods in Engineering, 58:579–607.

[Rannacher et Suttmeier, 1999] Rannacher, R. et Suttmeier, F. (1999). A pos-teriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 176:333– 361.

[Rannacher et Suttmeier, 2002] Rannacher, R. et Suttmeier, F. (2002). Error-Controlled Adaptive FEMs in Solid Mechanics, chapitre "Error estimation and adaptive mesh design for FE models in elasto-plasticity", pages 5–52. John Wiley, Chichster.

[Rannacher et Suttmeier, 1998] Rannacher, R. et Suttmeier, F. T. (1998). A posteriori error control in finite element methods via duality techniques : Appli-cation to perfect plasticity. Computational Mechanics, 21:123–133.

[Repin, 2000] Repin, S. (2000). A posteriori error estimation for nonlinear variatio-nal problems by duality theory. Jourvariatio-nal of Mathematical Sciences, 99(1):927–935. [Repin et al., 2004] Repin, S., Sauter, S. et Smolianski, A. (2004). A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boun-dary conditions. Journal of computational and applied mathematics, 164:601–612. [Salençon, 2002] Salençon, J. (2002). De l’élasto-plasticité au calcul à la rupture.

Editions Ecole Polytechnique.

[Sauer-Budge et al., 2005] Sauer-Budge, A., Bonet, J., Huerta, A. et Per-aire, J. (2005). Computing bounds for linear functionals of exact weak solutions to Poisson’s equation. SIAM journal on numerical analysis, pages 1610–1630. [Schleupen et Ramm, 2000] Schleupen, A. et Ramm, E. (2000). Local and global

error estimations in linear structural dynamics. Computers & Structures, 76(6): 741–756.

[Stein et al., 1998] Stein, E., Barthold, F., Ohnimus, S. et Schmidt, M. (1998). Adaptive finite elements in elastoplasticity with mechanical error indicators and Neumann-type estimators. In Ladevèze, P. et Oden, J., éditeurs : Advances in

Adaptive Computational Methods in Mechanics, volume 47 de Studies in Applied

Mechanics, pages 81 – 99. Elsevier.

[Stein et al., 2003] Stein, E., Ramm, E., Rank, E., Rannacher, R., Schweize-rhof, K., Stein, E., Wendland, W., Wittum, G., Wriggers, P. et Wunder-lich, W. (2003). Error-controlled Adaptative Finite Elements in Solid Mechanics. Wiley.

[Strouboulis et al., 2000a] Strouboulis, T., Babuska, I. et Copps, K. (2000a). The design and analysis of the generalized finite element method. Computer methods in applied mechanics and engineering, 181(1-3):43–69.

[Strouboulis et al., 2000b] Strouboulis, T., Babuska, I. et Gangaraj, S. (2000b). Guaranteed computable bounds for the exact error in the finite element solutions - part ii : Bounds for the energy norm of the error in two dimensions.

International Journal for Numerical Methods in Engineering, 47:427–475.

[Strouboulis et Haque, 1992a] Strouboulis, T. et Haque, K. (1992a). Recent ex-periences with error estimation and adaptivity, part i : Review of error estimators for scalar elliptic problems. Computer Methods in Applied Mechanics and Engi-neering, 97(3):399 – 436.

[Strouboulis et Haque, 1992b] Strouboulis, T. et Haque, K. (1992b). Recent experiences with error estimation and adaptivity, part ii : Error estimation for h-adaptive approximations on grids of triangles and quadrilaterals. Computer Methods in Applied Mechanics and Engineering, 100(3):359 – 430.

[Suli et Houston, 2002] Suli, E. et Houston, P. (2002). Adaptive finite element approximation of hyperbolic problems.

[Tie, 2011] Tie, B. (2011). Remaillage adaptatif et contrôle d’erreurs en quantité d’intérêt pour la modélisation numérique de la propagation des ondes élastiques. In CSMA giens.

[Waeytens et al., 2011] Waeytens, J., Chamoin, L. et Ladevèze, P. (2011). Guaranteed error bounds on pointwise quantities of interest for transient vis-codynamics problems. Computational Mechanics, pages 1–17.

[Washitzu, 1953] Washitzu, K. (1953). Bounds for solutions of boundary value problems in elasticity. Journal of Mathematics and Physics, 32:117–128.

[Wiberg et al., 1994] Wiberg, N., Abdulwahab, F. et Ziukas, S. (1994). En-hanced superconvergent patch recovery incorporating equilibrium and boun-dary conditions. International Journal for Numerical Methods in Engineering, 37(20):3417–3440.

[Zhang et Naga, 2005] Zhang, Z. et Naga, A. (2005). A new finite element gra-dient recovery method : Superconvergence property. SIAM Journal on Scientific Computing, 26(4):1192–1213.

[Zhu et Zienkiewicz, 1988] Zhu, J. Z. et Zienkiewicz, O. C. (1988). Adaptive techniques in the finite element method. Communications in Applied Numerical Methods, 4(2):197–204.

[Zienkiewicz et al., 2005] Zienkiewicz, O. C., Taylor, R. L. et Zhu, J. Z. (2005). The Finite Element Method : Its Basis and Fundamentals. Elsevier.

[Zienkiewicz et Zhu, 1987] Zienkiewicz, O. C. et Zhu, J. Z. (1987). A simple error estimator and adaptative procedure for practical engineering analysis. Interna-tional Journal for Numerical Methods in Engineering, 24:337–357.

[Zienkiewicz et Zhu, 1992a] Zienkiewicz, O. C. et Zhu, J. Z. (1992a). The super-convergent patch recovery and a posteriori error estimates. part 1 : The recovery technique. International Journal for Numerical Methods in Engineering, 33:1331– 1364.

[Zienkiewicz et Zhu, 1992b] Zienkiewicz, O. C. et Zhu, J. Z. (1992b). The su-perconvergent patch recovery and a posteriori error estimates. part 2 : Error estimates and adaptivity. International Journal for Numerical Methods in Engi-neering, 33(7):1365–1382.

[Zienkiewicz et Zhu, 1992c] Zienkiewicz, O. C. et Zhu, J. Z. (1992c). The super-convergent patch recovery (spr) and adaptive finite element refinement. Computer Methods in Applied Mechanics and Engineering, 101(1-3):207 – 224.

Documents relatifs