• Aucun résultat trouvé

Chapitre 5 : Approches de la Swarm Intelligence pour la Prédiction de Fonction des

2. Perspectives de recherche

L‘étude expérimentale réalisée nous a permis de déterminer l‘approche bio-inspirée qui nous semble la plus prometteuse pour la prédiction de fonctions des protéines et c‘est dans cette voie que nous souhaitons continuer. Les systèmes immunitaires artificiels représentent une approche bio-inspirée intéressante dont nous pouvons encore approfondir l‘exploitation, en particulier l‘algorithme immunitaire artificiel de reconnaissance (AIRS). Grâce à son procédé de généralisation à partir de peu de données d‘apprentissage, c‘est le plus appropriée pour le problème d‘identification des récepteurs couplés aux protéines G. Ceci s‘explique par le fait qu‘aux niveaux inférieurs de la hiérarchie de la superfamille des RCPGs, on dispose de peu de séquences, ce qui rend la tâche de classification plus ardue, de plus, c‘est à ces niveaux là que le besoin d‘identification se fait le plus ressentir.

Nous avons différentes suggestions qui peuvent, à notre avis, améliorer les performances de l‘algorithme AIRS. Ce dernier utilise l‘approche des k-plus proches voisins pour l‘étape de classification et même si cette approche semble convenir, il est possible d‘implémenter AIRS en utilisant une autre méthode de classification. Nos futurs travaux porteront donc sur l‘évaluation de diverses méthodes de classification afin d‘identifier celle qui apportera le plus de changements significatifs. Ils porteront également sur un changement d‘ensemble de données, car, bien que GDS soit un ensemble de données approprié, il a été collecté en 2007 et depuis, la superfamille des RCPGs a connu quelques modifications, comme celles de la liste des sous-familles et du nombre de séquences. De ce fait, nous projetons de travailler à l‘avenir sur un ensemble de données actualisé que nous construirons nous-mêmes. Aussi, nous souhaitons modifier l‘ensemble des contre-exemples (non-RCPG) car, lorsque nous avons construit l‘ensemble des non-RCPGs, nous avons sélectionné toutes les protéines, membranaires et globulaires confondues. Dans nos prochains travaux, nous allons construire un ensemble de séquences protéiques uniquement membranaires afin d‘affiner le plus possible l‘apprentissage de notre futur modèle et lui permettre ainsi de distinguer les RCPGs (qui sont des protéines membranaires) des autres familles de protéines membranaires.

Bien que les approches de la swarm intelligence que nous avons utilisées ne nous aient pas apporté les résultats escomptés, nous projetons d‘évaluer d‘autres méthodes de cette famille d‘approches bio-inspirées telles que les colonies d‘abeilles artificielles qui figurent parmi les modèles les plus récents de l‘intelligence en essaims et représentent un algorithme de faible complexité, qui a eu beaucoup de succès dans de nombreux domaines d‘application durant la dernière décennie.

Une autre voie de recherche intéressante serait d‘évaluer l‘apport des diverses approches de combinaison de classifieurs bio-inspirés et d‘envisager les différentes possibilités d‘hybridation d‘approches bio-inspirées.

REFERENCES BIBLIOGRAPHIQUES

[AIC 14] Aickelin, U., Dasgupta, D., Gu, F.: Artificial Immune Systems, in E.K. Burke et G. Kendall (Eds.), Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Springer US, pp. 187–211, 2014.

[AIC 07] Aickelin, U., Greensmith, J.: Sensing Danger: Innate Immunology for Intrusion Detection, Information Security Technical Report, vol. 12, issue 4, pp. 218–227, 2007.

[AKA 12] Akay, B., Karaboga, D.: A Modified Artificial Bee Colony Algorithm for Real- Parameter optimization, Information Sciences, vol. 192, pp. 120–142, 2012.

[ALA 10] Alatas, B.: Chaotic Bee Colony Algorithms for Global Numerical Optimization,

Expert Systems with Applications, vol. 37, issue 8, pp. 5682–5687, 2010.

[ALB 08] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular

Biology of the Cell, Taylor and Francis Group, 2008.

[ALC 09] Alcalá-Fdez, J., Sánchez, L., García, S., Del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F. : KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems, Soft Computing, vol. 13, issue 3, pp. 307–318, 2009.

[ALC 11] Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F. : KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework, Journal of Mult.-Valued

Logic & Soft Computing, vol. 17, pp. 255–287, 2011.

[ALE 11] Alem, K.: Contribution à la Prédiction de la Structure Secondaire et Tertiaire des

Protéines : Cas des Récepteurs Couplés aux Protéines G (Rhodopsin-like) du Génome Humain, thèse, Université Badji Mokhtar – Annaba, 2011.

[ALQ 13] Alqattan, Z.N., Abdullah, R.: A Comparison Between Artificial Bee Colony and Particle Swarm Optimization Algorithms for Protein Structure Prediction Problem, in M. Lee, A. Hirose, Z.G. Hou, R.M. Kil (Eds.), Neural Information Processing, Lecture Notes in Computer Science, 8227, Springer Berlin Heidelberg, pp. 331– 340, 2013.

[ALV 08] Alves, R.T., Delgado, M.R., Freitas, A.A.: Multi-label Hierarchical Classification of Protein Functions with Artificial Immune Systems, in: A.L.C. Bazzan, M. Craven, N.F. Martins (Eds.), Advances in Bioinformatics and Computational Biology, Lecture Notes in Bioinformatics, 5167, Springer-Verlag Berlin, pp 1–12, 2008.

[ALV 10] Alves, R.T., Delgado, M.R., Freitas, A.A.: Knowledge Discovery with Artificial Immune Systems for Hierarchical Multi-label Classification of Protein Functions, IEEE International Conference on Fuzzy Systems, pp. 1–8, 2010.

[AND 73] Anderson, R.W., Neumann A.U., Perelson, A.S.: A Cayley Tree Immune Network Model with Antibody Dynamics, Bulletin of Mathematical Biology, vol. 55, pp. 1091– 1131, 1973.

[AND 04] Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J.P., Chothia, C., Murzin, A.G.: SCOP Database: Refinements Integrate Structure and Sequence Family Data, Nucleic Acids Research, vol. 32, pp 226–229, 2004.

[BAK 06] Bakir, B., Sezerman, O.U.: Functional Classification of G-Protein Coupled Receptors Based on their Specific Ligand Coupling Patterns, in F. Rothlauf et al. (Eds.), Applications of Evolutionary Computing, Lecture Notes in Computer Science, 3907, Springer Berlin Heidelberg, pp. 1–12, 2006.

[BAN 13] Bansal, J.C., Sharma, H., Jadon, S.S.: Artificial Bee colony Algorithm: A Survey,

International Journal of Advanced Intelligence Paradigms, vol. 5, issue 1, pp.

123–159, 2013.

[BER 07] Berrar, D., Granzow, M., Dubitzky, W.: Introduction to Genomic and Proteomic Data Analysis, in W. Dubitzky, M. Granzow, D. Berrar (Eds.), Fundamentals of Data Mining in Genomics and Proteomics, Springer Science+Business Media, pp. 1–33, 2007.

[BEV 08] Bevilacqua, V., Menolascina, F., Alves, R.T., Tommasi, S., Mastronardi, G., Delgado, M., Paradiso, A., Nicosia, G., Freitas, A.A.: Artificial Immune Systems in Bioinformatics, in T.G. Smolinski, M.G. Milanova, A. Hassanien (Eds.), Computational Intelligence in Biomedicine and Bioinformatics, Studies in Computational Intelligence, 151, Springer Berlin Heidelberg, pp. 271–295, 2008.

[BHA 04] Bhasin, M., Raghava, G.P.S.: GPCRpred: An SVM-based Method for Prediction of Families and Subfamilies of G-Protein Coupled Receptors, Nucleic Acids

Research, vol. 32 (suppl 2), pp. W383–W389, 2004.

[BHA 05] Bhasin, M., Raghava, G.P.S.: GPCRsclass: A Web Tool for the Classification of Amine Type of G-Protein-Coupled Receptors, Nucleic acids research, vol. 33 (suppl 2), pp. W143–W147, 2005.

[BI 11] Bi, X., Wang, Y.: An Improved Artificial Bee Colony Algorithm, 3rd International Conference on Computer Research and Development (ICCRD), vol. 2, pp. 174– 177, 2011

[BIC 10] Bichindaritz, I.: Bioinformatics Contributions to Data Mining, in P. Perner (Ed.), Advances in Data Mining. Applications and Theoretical Aspects, Lecture Notes in Computer Science, 6171, Springer Berlin Heidelberg, pp. 17–27, 2010.

[BIR 14] Birlutiu, A., Heskes, T.: Using Topology Information for Protein-Protein Interaction Prediction, in M. Comin, L. Käll, E. Marchiori, A. Ngom, J. Rajapakse (Eds.), Pattern Recognition in Bioinformatics, Lecture Notes in Computer Science, 8626, Springer International Publishing, pp. 10–22, 2014.

[BJA 06] Bjarnadttir, T.K., Gloriam, D.E., Hellstrand, S.H., Kristiansson, H., Fredriksson, R., Schith, H.B.: Comprehensive Repertoire and Phylogenetic Analysis of the G Protein-Coupled Receptors in Human and Mouse, Genomics, vol. 88, pp. 263–273, 2006.

[BOR 12] Borges, H.B., Nievola, J.C.: Multi-Label Hierarchical Classification using a Competitive Neural Network for Protein Function Prediction, International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2012.

[BRO 05a] Brownlee, J.: Artificial Immune Recognition System (AIRS) - A Review and Analysis., Technical Report 1-02, Center for Intelligent Systems and Complex Processes (CISCP), Faculty of Information and Communication Technologies (ICT), Swinburne University of Technology, Victoria, Australia, 2005

[BRO 05b] Brownlee, J.: Clonal Selection Theory, ClonalG and the Clonal Selection Classification Algorithm (CSCA), Technical Report 2-02, Center for Intelligent Systems and Complex Processes (CISCP), Faculty of Information and Communication Technologies (ICT), Swinburne University of Technology, Victoria, Australia, 2005

[BRO 11] Brownlee, J.: Clever Algorithms: Nature-inspired Programming Recipes, Jason Brownlee, 2011

[BUR 59] Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity, University Press Cambridge, 1959.

[CAL 09] Calas, G.: Optimisation par Essaim Particulaire, Technical report, Ecole pour l‘Informatique et les Technique Avancées (EPITA), Paris, France, 2009

[CAL 10] Calvo, J.C., Ortega, J., Anguita, M.: A Hybrid Scheme to Solve the Protein Structure Prediction Problem, in M.P. Rocha, F.F. Riverola, H. Shatkay, J.M. Corchado (Eds.), Advances in Bioinformatics, Advances in Intelligent and Soft Computing, 74, Springer Berlin Heidelberg, pp. 233–240, 2010.

[CAM 06] Campelo, F., Guimarães, F.G., Igarashi, H., Ramírez, J.A., Noguchi, S.: A Modified Immune Network Algorithm for Multimodal Electromagnetic Problems, IEEE Transactions on Magnetics, vol. 42, issue 4, pp. 1111–1114, 2006.

[CAO 13a] Cao, J., Liu, W., He, J., Gu, H.: Identifying the Singleplex and Multiplex Proteins based on Transductive Learning for Protein Subcellular Localization Prediction,

Biotechnology Letters, vol. 35, issue 7, pp. 1107–1113, 2013

[CAO 13b] Cao, D.S., Xu, Q. S., Liang, Y.Z.: Propy: A Tool to Generate Various Modes of Chou‘s PseAAC, Bioinformatics, vol. 29, issue 7, pp. 960–962, 2013.

[CER 09] Cerri, R., Da Silva, R.R., de Carvalho, A.C.: Comparing Methods for Multilabel Classification of Proteins using Machine Learning Techniques, in K.S. Guimarães A. Panchenko, T.M. Przytycka (Eds.), Advances in Bioinformatics and Computational Biology, Lecture Notes in Bioinformatics, 5676, Springer Berlin Heidelberg, pp. 109–120, 2009.

[CER 13] Cerri, R., Barros, R.C., De Carvalho, A.C.: Neural Networks for Hierarchical Classification of G-Protein Coupled Receptors, Brazilian Conference on Intelligent Systems (BRACIS), pp. 125–130, 2013.

[CHA 06] Chan, A., Freitas, A.A.: A New Ant Colony Algorithm for Multi-label Classification with Applications in Bioinfomatics, Annual Conference on Genetic and Evolutionary Computation (GECCO), ACM, pp. 27–34, 2006.

[CHE 05] Chen, X., Murphy, R.F.: Objective Clustering of Proteins based on Subcellular Location Patterns, Journal of Biomedicine and Biotechnology, vol. 2, pp. 87–95, 2005.

[CHM 10] Chmielnicki, W., Stapor, K., Roterman-Konieczna, I.: An Efficient Multi-class Support Vector Machine Classifier for Protein Fold Recognition, in M.P. Rocha, F.F. Riverola, H. Shatkay, J.M. Corchado (Eds.), Advances in Bioinformatics, Advances in Intelligent and Soft Computing, 74, Springer Berlin Heidelberg, pp. 77–84, 2010.

[CHO 01] Chou, K.C.: Prediction of Protein Cellular Attributes using Pseudo-Amino Acid Composition, Proteins, vol. 43, pp. 246–255, 2001.

[CHO 05a] Chou, K.C.: Prediction of G-protein-coupled receptor classes, Journal of Proteome

Research, vol. 4, issue 4, pp. 1413–1418, 2005.

[CHO 05b] Chou, K.C.: Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme Subfamily Classes, Bioinformatics, vol. 21, issue 1, pp. 10–19, 2005.

[CHO 06] Cho, K.C., Park, D.H., Ma, Y.B., Lee, J.S.: Optimal Clustering-based ART1 Classification in Bioinformatics: G-Protein Coupled Receptors Classification, in L. Jiao et al. (Eds.), Advances in Natural Computation, Lecture Notes in Computer Science, 4221, Springer Berlin Heidelberg, pp. 588–597, 2006.

[CHO 09] Chou, K.C.: Pseudo Amino Acid Composition and its Applications in Bioinformatics, Proteomics and System Biology, Current Proteomics, vol. 6, pp. 262–27, 2009.

[CHO 14] Chowdhury, A., Konar, A., Rakshit, P., Ramadoss, J.: An Immune System Inspired Algorithm for Protein Function Prediction, in M.K. Kundu, D.. Mohapatra, A. Konar, A. Chakraborty (Eds.), Advanced Computing, Networking and Informatics- vol.1, Smart Innovation, Systems and Technologies, 27, Springer International Publishing, pp. 687–695, 2014.

[CHU 06] Chu, D., Zomaya, A.: Parallel Ant Colony Optimization for 3D Protein Structure Prediction using the HP Lattice Model, in N. Nedjah, L.M. Mourelle, E. Alba (Eds.), Parallel Evolutionary Computations, Studies in Computational Intelligence, 22, Springer Berlin Heidelberg, pp. 177–198, 2006.

[CHU 10] Chuang, L.Y., Tsai, J.H., Yang, C.H.: Binary Particle Swarm Optimization for Operon Prediction, Nucleic Acids Research, vol. 38, issue 12, pp. e128, 2010.

[COB 11] Cobanoglu, M.C., Saygin, Y., Sezerman, U.: Classification of GPCRs using Family Specific Motifs. Computational Biology and Bioinformatics, vol. 8, issue 6, pp. 1495–1508, 2011.

[COE 06] Coelho, G.P., Von Zuben, F.J.: omni-aiNet: An Immune-inspired Approach for Omni Optimization, in H. Bersini, J. Carneiro (Eds.), Artificial Immune Systems, Lecture Notes in Computer Science, 4163, Springer Berlin Heidelberg, pp. 294– 308, 2006.

[COH 04] Cohen, J.: Bioinformatics—An Introduction for Computer Scientists, ACM

Computing Surveys, vol. 36, issue 2, pp. 122–158, 2004.

[COR 08] Correa, E.S., Freitas, A.A., Johnson, C.G.: Particle Swarm for Attribute Selection in Bayesian Classification: An Application to Protein Function Prediction, Journal

of Artificial Evolution and Applications, vol. 17, 2008.

[COS 07] Costa, E.P., Lorena, A.C., Carvalho, A.C., Freitas, A.A., Holden, N.: Comparing Several Approaches for Hierarchical Classification of Proteins with Decision Trees, in M.F. Sagot, M.E.M.T. Walter (Eds.), Advances in Bioinformatics and Computational Biology, Lecture Notes in Computer Science, 4643, Springer Berlin Heidelberg, pp. 126–137, 2007.

[COS 08] Costa, E.P., Lorena, A.C., Carvalho, A.C., Freitas, A.A.: Top-down Hierarchical Ensembles of Classifiers for Predicting G-Protein-Coupled-Receptor Functions, in A.L.C. Bazzan, M. Craven, N.F. Martins (Eds.), Advances in Bioinformatics and Computational Biology, Lecture Notes in Computer Science, 5167, Springer Berlin Heidelberg, pp. 35–46, 2008.

[CUT 07] Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An Immune Algorithm for Protein Structure Prediction on Lattice Models, in IEEE Transactions on Evolutionary Computation, vol. 11, issue 1, pp. 101–117, 2007.

[CUT 10] Cutello, V., Nicosia, G., Pavone, M., Scollo, G.: On Discrete Models and Immunological Algorithms for Protein Structure Prediction, Natural Computing, vol. 10, pp. 91–102, 2010.

[CUT 11] Cutello, V., Nicosia, G., Pavone, M., Prizzi, I.: Protein Multiple Sequence Alignment by Hybrid Bio-inspired Algorithms, Nucleic Acids Research, vol. 39, pp. 1980–1992, 2011.

[DAS 08a] Das, S., Abraham, A., Konar, A.: Swarm Intelligence Algorithms in Bioinformatics, in A. Kelemen, A. Abraham, Y. Chen (Eds.), Computational Intelligence in Bioinformatics, Studies in Computational Intelligence, 94, Springer Berlin Heidelberg, pp. 113–147, 2008.

[DAS 08b] Dastmalchi, S., Church, W.B., Morris, M.B.: Modelling the Structures of G Protein-Coupled Receptors aided by Three-dimensional Validation, BMC

bioinformatics, vol. 9 (Suppl 1), S14, 2008.

[DAS 09] Dasgupta, D., Nino, F.: Immunological Computation: Theory and Applications, CRC Press, 2009.

[DAV 07] Davies, M.N., Secker, A., Freitas, A.A., Mendao, M., Timmis, J., Flower, D.R.: On the Hierarchical Classification of G Protein-Coupled Receptors,

Bioinformatics, vol. 23, issue 23, pp. 3113–3118, 2007.

[DAV 08] Davies, M.N., Secker, A., Freitas, A.A., Clark, E., Timmis, J., Flower, D.R.: Optimizing Amino Acid Groupings for GPCR Classification, Bioinformatics, vol. 24, issue 18, pp. 1980–1986, 2008.

[DAV 11a] Davies, M.N., Gloriam, D.E., Secker, A., Freitas, A.A., Timmis, J., Flower, D.R.: Present Perspectives on the Automated Classification of the G-Protein Coupled Receptors (GPCRs) at the Protein Sequence Level, Current Topics in Medicinal

Chemistry, vol. 11, issue 15, pp. 1994–2009, 2011.

[DAV 11b] Davies, M.N., Gloriam, D.E., Flower, D.R.: In Silico Identification of Novel G Protein-Coupled Receptors, in C.W. Stevens (Ed.), Methods for the Discovery and Characterization of G Protein-Coupled Receptors, Neuromethods, 60, Springer Berlin Heidelberg, pp. 3–18, 2011.

[DEC 00] De Castro, L.N., Von Zuben, F.J.: The Clonal Selection Algorithm with Engineering Applications, Workshop on Artificial Immune Systems and their Applications, pp. 36–37, 2000.

[DEC 02a] De Castro, L.N., Von Zuben, F.J.: Learning and Optimization using the Clonal Selection Principle, IEEE Transactions on Evolutionary Computation, vol. 6, issue 3, pp. 239–251, 2002

[DEC 02b] De Castro, L.N., Von Zuben, F. J.: aiNet: An Artificial Immune Network for Data Analysis, in H.A. Abbass, C.S. Newton, R. Sarker (Eds.), Data Mining: A Heuristic Approach, IGI Global, pp. 231–260, 2002.

[DEC 02c] De Castro, L.N., Timmis, J.: An Artificial Immune Network for Multimodal Function Optimization, Congress on Evolutionary Computation (CEC), vol. 1, pp. 699–704, 2002.

[DIL 85] Dill, K.A.: Theory for the Folding and Stability of Globular Proteins,

[DIN 10] Dinh, H.Q., Minh, B.Q., Huan, H.X., Von Haeseler, A.: ACOPHY: A Simple and General Ant Colony Optimization Approach for Phylogenetic Tree Reconstruction, in M. Dorigo et al. (Eds.), Swarm Intelligence, Lecture Notes in Computer Science, 6234, Springer Berlin Heidelberg, pp. 360–367, 2010.

[DOR 97] Dorigo, M., Gambardella, L.M.: Ant Colonies for the Travelling Salesman Problem, BioSystems, vol. 43, issue 2, pp. 73–81, 1997.

[DOR 03] Dorigo, M., Stützle, T.: The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances, in F. Glover, G.A. Kochenberger (Eds.), Handbook of Metaheuristics, International Series in Operations Research & Management Science, 57, Springer US, pp. 250–285, 2003.

[DOS 09] Dos Santos T.C., Bazzan, A.L.C., Lemke, N.: Automatic Classification of Enzyme Family in Protein Annotation, in K.S. Guimarães A. Panchenko, T.M. Przytycka (Eds.), Advances in Bioinformatics and Computational Biology, Lecture Notes in Bioinformatics, 5676, Springer Berlin Heidelberg, pp. 86–96, 2009.

[DU 12] Du, P., Wang, X., Chao X., Gao, Y.: PseAAC-Builder: A Cross-platform Stand-

alone Program for Generating Various Special Chou‘s Pseudo-Amino Acid Compositions, Analytical Biochemistry, vol. 425, pp. 117–119, 2012.

[DUA 14] Duan, H., Qiao, P.: Pigeon-inspired Optimization: A New Swarm Intelligence Optimizer for Air Robot Path Planning, International Journal of Intelligent

Computing and Cybernetics, vol. 7, issue 1, pp. 24–37, 2014.

[DZI 10] Dzuida, D.M.: Data Mining for Genomics and Proteomics, Analysis of Gene and

Protein Expression Data, John Wiley & Sons, 2010.

[ELD 12] El Dor, A. : Perfectionnement des Algorithmes d’Optimisation par Essaim

Particulaire : Applications en Segmentation d’Images et en Electronique, thèse,

Université Paris-Est, 2012.

[ELR 02] Elrod, D.W., Chou, K.C.: A Study on the Correlation of G-Protein-Coupled Receptor Types with Amino Acid Composition, Protein Engineering, vol. 15, issue 9, pp. 713–715, 2002.

[ESM 13] Esmin, A.A., Coelho, R.A., Matwin, S.: A Review on Particle Swarm Optimization Algorithm and its Variants to Clustering High-dimensional Data,

Artificial Intelligence Review, pp. 1–23, 2013.

[FAL 06] De Falco, I., Della Cioppa, A., Tarantino, E.: Evaluation of Particle Swarm Optimization Effectiveness, in I. Bloch, A. Petrosino, A.G.B. Tettamanzi (Eds.), Classification, Fuzzy Logic and Applications, Lecture Notes in Computer Science, 3849, Springer Berlin Heidelberg, pp. 164–171, 2006.

[FAY 07] Fayyaz, M., Khan, A., Mujahid, A., Kavokin, A.: Using Multi Level Nearest Neighbor Classifiers for G-Protein Coupled Receptor Sub-families Prediction, in I. Măndoiu, A. Zelikovsky (Eds.), Bioinformatics Research and Applications, Lecture Notes in Computer Science, 4463, Springer Berlin Heidelberg, pp. 564– 576, 2007.

[FID 06] Fidanova, S.: 3D HP Protein Folding Problem using Ant Algorithm, BioPS International Conference, pp. III.3–III.26, 2006.

[FOR 94] Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself Discrimination in a Computer, IEEE Computer Society Symposium on Research in Security and Privacy, pp. 102–112, 1994.

[FRE 08] Freitas, A.A., Parpinelli, R.S., Lopes, H.S.: Ant Colony Algorithms for Data Classification, Encyclopedia of Information Science and Technology, vol. 1, pp. 154–159, 2008.

[GAB 09] Gabriel, P.H.R., Delben, A.C.B.: Representations for Evolutionary Algorithms Applied to Protein Structure Prediction Problem Using HP Model, in K.S. Guimarães A. Panchenko et T.M. Przytycka (Eds.), Advances in Bioinformatics and Computational Biology, Lecture Notes in Bioinformatics, 5676, Springer Berlin Heidelberg, pp. 97–108, 2009.

[GAO 06] Gao, Q.B., Wang, Z.Z.: Classification of G Protein Coupled Receptors at Four Levels, Protein Engineering, Design & Selection, vol. 19, issue 11, pp. 511–516, 2006.

[GAO 13] Gao, Q.B., Ye, X.F., He, J.: Classifying G-Protein-Coupled Receptors to the Finest Subtype Level, Biochemical and Biophysical Research Communications, vol. 439, issue 2, pp. 303–308, 2013.

[GAR 04] Garrett, S.M.: Parameter-free, Adaptive Clonal Selection, Congress on Evolutionary Computation (CEC), vol. 1, pp. 1052–1058, 2004.

[GAR 05] Garrett, S.M.: How Do We Evaluate Artificial Immune Systems? Evolutionary

computation, vol. 13, issue 2, pp. 145–177, 2005.

[GAR 07] Garnier, S., Gautrais, J., Theraulaz, G.: The Biological Principles of Swarm Intelligence, Swarm Intelligence, vol. 1, issue 1, pp. 3–31, 2007.

[GAT 11] Gatica, E.A., Cavasotto, C.N.: Ligand and Decoy Sets for Docking to G Protein- Coupled Receptors, Journal of Chemical Information and Modeling, vol. 52, issue 1, pp. 1–6, 2011.

[GIA 08] Giannopoulou, E. G., Kossida, S.: Data Mining Applications in the Post-Genomic Era, in E.G. Giannopoulou (Ed.), Data Mining in Medical and Biological Research, pp. 237–252, 2008.

[GIL 10] Gilchrist, A. (Ed.): GPCR Molecular Pharmacology and Drug Targeting: Shifting

Paradigms and New Directions, John Wiley & Sons, 2010.

[GIR 11] Giraldo, J., Pin, J.P.: G Protein-Coupled Receptors From Structure to Function, RSC Drug Discovery Series No. 8, The Royal Society of Chemistry, 2011.

[GLO 15] Gloriam, D.E.: GPCRDB: GPCR data, diagrams and tools, NC-IUPHAR news, No 6, pp. 3, 2015.

[GON 03] Gonzalez, F., Dasgupta, D., Niño, L.F.: A Randomized Real-valued Negative Selection Algorithm, in J. Timmis, P.J. Bentley, E. Hart (Eds.), Lecture Notes in Computer Science, 2787, Artificial Immune Systems, Springer Berlin Heidelberg, pp. 261–272, 2003.

[GON 12] Gong, M., Zhang, J., Ma, J., Jiao, L.: An Efficient Negative Selection Algorithm with Further Training for Anomaly Detection, Knowledge-Based Systems, vol. 30, pp. 185–191, 2012.

[GRE 06] Greensmith, J., Aickelin, U., Twycross, J.: Articulation and Clarification of the Dendritic Cell Algorithm, in H. Bersini, J. Carneiro (Eds.), Artificial Immune Systems, Lecture Notes in Computer Science, 4163, Springer Berlin Heidelberg, pp. 404–417, 2006.

[GU 09] Gu, Q., Ding, Y.: Binary Particle Swarm Optimization based Prediction of G- Protein-coupled Receptor Families with Feature Selection, ACM/SIGEVO Summit on Genetic and Evolutionary Computation (GEC), pp. 171–176, 2009.

[GU 15] Gu, Q., Ding, Y.S., Zhang, T.L.: An Ensemble Classifier based Prediction of G- Protein-Coupled Receptor Classes in Low Homology, Neurocomputing, vol. 154, pp.110–118, 2015.

[GUA 07] Guangyou, Y.: A Modified Particle Swarm Optimizer Algorithm, 8th International Conference on Electronic Measurement and Instruments (ICEMI), pp. 318– 321, 2007.

[GUO 06] Guo, Y.Z., Li, M., Lu, M., Wen, Z., Wang, K., Li, G., Wu, J.: Classifying G Protein-Coupled Receptors and Nuclear Receptors on the Basis of Protein Power Spectrum from Fast Fourier Transform, Amino Acids, vol. 30, issue 4, pp. 397– 402, 2006.

[HAJ 14] Hajisharifi, Z., Piryaiee, M., Mohammad Beigi, M., Behbahani, M., Mohabatkar, H.: Predicting Anticancer Peptides with Chou′ s Pseudo Amino Acid Composition and Investigating their Mutagenicity via Ames Test, Journal of theoretical biology, vol. 341, pp. 34–40, 2014.

[HOL 05] Holden, N., Freitas, A.A.: A Hybrid Particle Swarm/Ant Colony Algorithm for the Classification of Hierarchical Biological Data, IEEE swarm intelligence symposium (SIS), pp. 100–107, 2005

[HOL 06] Holden, N., Freitas, A.A.: Hierarchical Classification of G-Protein-Coupled Receptors with a PSO/ACO Algorithm, IEEE Swarm Intelligence Symposium (SIS), pp. 77–84, 2006.

[HOL 07] Holden, N., Freitas, A.A.: A hybrid PSO/ACO Algorithm for Classification, 9th Annual Conference Companion on Genetic and Evolutionary Computation, ACM, pp. 2745–2750, 2007.

[HOL 09] Holden, N., Freitas, A.A.: Hierarchical Classification of Protein Function with Ensembles of Rules and Particle Swarm Optimization, Soft Computing, vol. 13, issue 3, pp. 259–272, 2009.

[HUA 04a] Huang, Y., Li, Y.: Prediction of Protein Subcellular Locations using Fuzzy k-NN

Method, Bioinformatics, vol. 20, issue 1, pp. 21–28, 2004.

[HUA 04b] Huang, Y., Cai, J., Ji, L., Li, Y.: Classifying G-Protein Coupled Receptors with Bagging Classification Tree, Computational biology and chemistry, vol. 28, issue 4, pp. 275–280, 2004.

[HUA 10] Huang,Y., Niu, B., Gao, Y., Fu, L., Li, W.: CD-HIT Suite: A Web Server for Clustering and Comparing Biological Sequences, Bioinformatics, vol. 26, pp. 680– 682, 2010.

[HUA 13] Huang, C., Yuan, J.Q.: Predicting Protein Subchloroplast Locations with Both Single and Multiple Sites via Three Different Modes of Chou‘s Pseudo Amino Acid Compositions, Journal of Theoretical Biology, vol. 335, pp. 205–212, 2013.

[INZ 10] Inza, I., Calvo, B., Armañanzas, R., Bengoetxea, E., Larrañaga, P., Lozano, J. A.: Machine Learning: An Indispensable Tool in Bioinformatics, in R. Matthiesen (ed.), Bioinformatics Methods in Clinical Research, Humana Press, pp. 25–48, 2010.

[ISB 13] Isberg, V., Vroling, B., van der Kant, R., Li, K., Vriend, G., Gloriam, D.: GPCRDB: An Information System for G Protein-Coupled Receptors, Nucleic

Acids Research, vol. 42 , Database issue, 2013.

[JAH 07] Jahandideh, S., Abdolmaleki, P., Jahandideh, M., Asadabadi, E.B.: Novel Two- stage Hybrid Neural Discriminant Model for Predicting Proteins Structural Classes, Biophysical chemistry, vol. 128, issue 1, pp. 87–93, 2007.

[JER 74] Jerne, N.K.: Towards a Network Theory of the Immune System, Annales d‘immunologie (Annals of Immunology), Institut Pasteur (Paris,France), Société Française d'Immunologie, vol. 125, pp. 373–389, 1974.

[JI 04] Ji, Z., Dasgupata, D.: Augmented Negative Selection Algorithm with Variable- Coverage Detectors, Congress on Evolutionary Computation (CEC), vol. 1, pp. 1081-1088, 2004.

[JI 05] Ji, Z.: A Boundary-aware Negative Selection Algorithm, 9th International Conference on Artificial Intelligence and Soft Computing, ACTA Press, 2005.

[JIA 11] Jiang, J.Q.: Multi-label Correlated Semi-supervised Learning for Protein Function Prediction, in J. Chen, J. Wang, A. Zelikovsky (Eds.), Bioinformatics Research and Applications, Lecture Notes in Computer Science, 6674, Springer Berlin Heidelberg, pp. 368–379, 2011.

[JIN 09] Jinquan, Z., Xiaojie, L., Tao, L., Caiming, L., Lingxi, P., Feixian, S.: A Self- Adaptive Negative Selection Algorithm used for Anomaly Detection, Progress in

Natural Science, vol. 19, issue 2, pp. 261–266, 2009.

[JON 05] Jonassen, I.: Integrative Models for the Prediction and Understanding of Protein Structure Patterns, in F. Azuaje, J. Dopazo (Eds.), Data Analysis and Visualization in Genomics and Proteomics, Wiley, pp. 239–256, 2005.

[KAB 11] Kabziński, J.: Following the Leader–Particle Dynamics in Constricted PSO, in P.