• Aucun résultat trouvé

Chapitre 4. An intriguing relationship between Mg/Ca and S/Ca skeletal ratios

3. Perspectives

Il apparaît clairement que la détermination des voies d’incorporation du magnésium est primordiale. Contrairement au calcium, l’utilisation d’isotopes radioactifs permettant une visualisation directe des flux au travers l’épiderme n’est que difficilement applicable dans le cas du magnésium: en effet, les seuls isotopes utilisables de cet élément ont des durées de demi-vie particulièrement courtes (le 28Mg n’a qu’une durée de demi-vie de 21 heures, Lusk & Kennedy 1969). Les voies d’incorporation pourraient être déterminées via l’exposition à différents rapports Mg/Ca. Le magnésium pourrait être détecté en microscopie électronique à transmission couplée à une sonde de micro-analyses à rayons X, une technique déjà utilisée chez les coraux (Marshall 2002, Marshall et al 2007). De manière à éviter les artéfacts chimiques, des techniques de cryofixations et de cryosubstitution permettraient d’observer des coupes de spécimens non décalcifiés. Si elle ne pose pas de problème dans le cas de l’éponge, où l’espace de minéralisation est relativement simple à situer, l’application de cette technique aux échinodermes se révèle de prime abord possible mais extrêmement aléatoire. En effet, chez ces organismes, l’espace de calcification est intradermique et de très petite taille (1 à 5 µm, Ameye et al 1998, 1999), et ne peut être localisé avec certitude comme c’est le cas de l’espace extra-pinacodermal des éponges hypercalcifiées

L’application de la spectrométrie de masse à ionisation secondaire (SIMS et nano-SIMS à haute résolution) sur ces coupes, qui présente les mêmes aléas chez les échinodermes que la précédente méthode, permettrait une visualisation directe des ions dans la cellule et le compartiment de minéralisation (cf Marshall et al 2007 chez les coraux). On pourrait ainsi comparer des spécimens soumis à des incubations dans des eaux de mer de différents rapports Mg/Ca ou à des rapports d’isotopes stables du magnésium et du calcium modifiés.

La détermination du rapport Mg/Ca au niveau du site de calcification résoudrait de nombreuses incertitudes. La minéralisation a-t-elle lieu à un rapport Mg/Ca équivalent à celui de l’eau de mer ou diminué par exclusion du magnésium du site de calcification ? Les colorants fluorescents sont couramment utilisés pour étudier le transport et la régulation des éléments dans les systèmes biologiques. Le Furaptra (mag-fura-2) est un colorant fluorescent liant le magnésium qui permet de déterminer la concentration intracellulaire en ce cation, de manière similaire au FURA-2 pour le calcium (Raju et al 1989, Günther 2006). Il émet une fluorescence proportionnelle à la concentration

Discussion générale

intracellulaire. Nous suggérons des expériences de cultures cellulaires de cellules mésenchymateuses primaires1 de larve d’oursins en présence de ces colorants, à différents rapports Mg/Ca. De même, les larves d’oursins, translucides, permettent des mesures in vivo en microscopie confocale. Néanmoins, l’exactitude de cette technique reste limitée par l’existence d’une certaine affinité du Furaptra pour le calcium.

Une approche moléculaire pourrait être intéressante. En effet, la caractérisation génétique et biochimique de plusieurs transporteurs du magnésium a été réalisée dans une grande diversité d’organismes allant des bactéries (Gardner 2003) jusqu’aux mammifères (Quamme 2010). Le génome de l’oursin ayant été décrit (The Sea Urchin Genome Sequencing Consortium 2006), il serait possible, via leurs séquences, de retrouver quels types de transporteurs sont présents et dans quels tissus ils s’expriment.

1 Les cellules mésenchymateuses primaires sont les seules cellules squelettogènes d’échinoderme qui ont été mises en culture avec succès (pour une synthèse, voir Wilt & Benson 2004)

Références bibliographiques

RÉFÉRENCES BIBLIOGRAPHIQUES

Addadi L., Weiner S. (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proceedings of the National Academy of Sciences of the USA 82: 4110-4114

Addadi L., Moradian J., Shay E., Maroudas N.G., Weiner S. (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance for biomineralization. Proceedings of the National Academy of Sciences of the USA 84: 2732-2736

Addadi L., Weiner S. (1992) Control and design principles in biological mineralization. Angewandte Chemie International Edition 31 (2): 153 - 169

Addadi L., Raz S., Weiner S. (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced materials 15 (12): 959-970

Addadi L., Politi Y., Nudelman F., Weiner S. (2008) Biomineralization design strategies and mechanims of mineral formation: operating at the edge of instability. Engineering of crystalline materials properties 1-15

Aizenberg J., Hanson J., Ilan M., Leiserowitz L., Koetzle T.F., Addadi L., Weiner S. (1995) Morphogenesis of calcitic sponge spicules : a role for specialized proteins interacting with growing crystals. The FASEB journal 9: 262-268

Aizenberg J., Lambert G., Addadi L., Weiner S. (1996a) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Advanced Materials, 8 (3): 222-226

Aizenberg J., Ilan M., Weiner S., Addadi L. (1996b) Intracrystalline macromolecules are involved in the morphogenesis of calcitic sponge spicules. Connective Tissue Research, 34 (4):255-261

Aizenberg J., Hanson J., Koetzle F., Weiner S., Addadi L. (1997) Control of macromolecule distribution within synthetic and biogenic single calcite crystals. Journal of the American Chemical Society 119 (5): 881–886

Aizenberg J., Weiner S., Addadi L. (2003) Coexistence of amorphous and crystalline calcium in skeletal tissues. Connective Tissue Research 44: 20-25

Albeck S., Aizenberg J., Addadi L., Weiner S. (1993) Interactions of various skeletal intracrystalline components with calcite crystals. Journal of the American Chemical Society 115: 11691-11697

Albeck S., Addadi L., Weiner S. (1996) Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Connective Tissue Research 35 (1-4): 365-370

Références bibliographiques

Ameye L., Compère Ph., Dille J., Dubois Ph. (1998) Ultrastructure and cytochemistry of the early calcification site and of its mineralization organic matrix in Paracentrotus lividus (Echinodermata: Echinoidea). Histochemistry and Cell Biology 110 (3): 285-294 Ameye L., Hermann R., Killian C., Wilt F., Dubois Ph. (1999) Ultrastructural localization of proteins involved in sea urchin biomineralization. The Journal of Histochemistry and Cytochemistry, 47 (9):1189-1200

Ameye L., De Becker G., Killian C., Wilt F., Kemps R., Kuypers S., Dubois Ph. (2001) Proteins and saccharides of the sea urchin matrix of mineralization: characterization and localization in the spine skeleton. Journal of Structural Biology 134: 56-66

Anand P., Elderfield H., Conte M.H. (2003) Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18 (2), 1050 10.1029/2002PA000846

Andersson A.J., Mackenzie F.T., Bates N.R. (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series 373: 265-273

Auernheimer C., Chinchon S. (1997) Calcareous skeletons of sea urchins as indicators of heavy metals pollution. Portman Bay, Spain. Environmental Geology 29: 78-83

Azzolina J.F. (1988) Contribution à l’étude de la dynamique des populations de l’oursin comestible Paracentrotus lividus (Lmck). Croissance, recrutement, mortalité, migrations. PhD thesis. Université d’Aix-Marseille II, Marseille, France

Barthélemy-Saint-Hilaire J. (1887) Traité de la Génération des Animaux d’Aristote. Tome 1. Hachette eds., Paris, 562 pp

Bavestrello G., Cattaneo-Viette C.C., Giovine M., Sarà M. (1994) Rate of spiculogenesis in some common Mediterranean Calcispongiae: a tetracycline and 45Ca++ labelling study. Italian Journal of Zoology 61: 197-201

Benavides L.M., Druffel E.R.M. (1986) Sclerosponge growth rate as determined by 210Pb and Δ14C chronologies. Coral Reefs 4: 221-224

Beniash E., Aizenberg J., Addadi L., Weiner S. (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proceedings of the Royal Society of London – B: Biological Sciences 264: 461-465

Beniash E., Addadi L., Weiner S. (1999) Cellular control over spicule formation in sea urchin embryos: a structural approach. Journal of Structural Biology 125: 50-62

Bentov S., Erez J. (2006) Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective. Geochemistry, Geophysics, Geosystems, 7, Q01P08, doi: 10.1029/2005GC001015

Références bibliographiques

Bergbauer M., Lange R., Reitner J. (1996) Characterization of organic matrix proteins enclosed in high Mg-calcite crystals of the coralline sponge Spirastrella

(Acanthochaetetes) wellsi. In: Global and regional controls on biogenic sedimentation. I. Reef evolution research reports (Ed. by J. Reitner, F. Neuweiler and F; Gunkel), Goettinger Arbeiten zur Geologie und Palaeontologie 2: 9-12

Berman A., Addadi L., Weiner S. (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals: a study of intracrystalline proteins. Nature 331: 546-549

Binyon J. (1962) Ionic regulation and mode of adjustment to reduced salinity of the starfish Asterias rubens L.. Journal of the Marine Biological Association of United Kingdom 42: 49-64

Blake D.F., Peacor D.R. (1981) Biomineralization in crinoid echinoderms: characterization of crinoid skeletal elements using TEM and SEM microanalysis. Scanning Electron Microscopy 224: 321-328

Böhm F., Joachimsky M.M., Lehnert H., Morgenroth G., Kretschmer W., Vacelet J., Dullo W.C. (1996) Carbon isotope records from extant Caribbean and South Pacific sponges: Evolution of δ13C in surface water DIC. Earth and Planetary Science Letters 139: 291-303

Böhm F., Joachimsky M.M., Dullo W.C., Eisenhauer A., Lehnert H., Reitner J., Wörheide G. (2000) Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochimica et Cosmochimica Acta 10: 1695-1703

Borremans C., Hermans J., Baillon S., André L., Dubois Ph. (2009) Salinity effects on the Mg/Ca and Sr/Ca in starfish skeletons and the echinoderm relevance for paleoenvironmental reconstructions. Geology 37 (4): 351-354

Borzecka-Prokop B., Weselucha-Birczyńska A., Koszowska E. (2007) MicroRaman, PXRD, EDS and microsopic investigation of magnesium calcite biomineral phases. The case of sea urchin biominerals. Journal of Molecular Structure 828: 80-90

Boury-Esnault N., Rützler K. (1997) Thesaurus of Sponge Morphology. Smithsonian Contributions to Zoology 596: i-iv, 55 pp

Brečević L., Nielsen A.E. (1989) Solubility of amorphous calcium carbonate. Journal of Crystal Growth 98: 504-510

Busenberg E., Plummer L.N. (1985) Kinetic and thermodynamic factors controlling the distribution of SO42- and Na+ in calcites and selected aragonites. Geochimica et Cosmochimica Acta 49: 713-725

Calcinai B., Arillo A., Cerrano C., Bavestrello G. (2003) Taxonomy-related differences in the excavating micro-patterns of boring sponges. Journal of the Marine Biological Association of the United Kingdom 83: 37-39

Références bibliographiques

Carré M., Bentaleb I., Bruguier O., Ordinola E., Barret N.T., Fontugne M. (2006) Calcification rate influence on trace element concentrations in aragonitic bivalves shells: evidences and mechanisms. Geochimica et Cosmochimica Acta 70: 4906-4920

Carter J.G. (1990)Skeletal biomineralization: patterns, processes and evolutionary trends. Carter J.G. (ed.),New York: Van Norstrand Reinhold. 832 pp

Cefaratti C., Romani A., Scarpa A. (1998) Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver. American Journal of Physiology 275, C995-C1008

Cefaratti C., Romani A., Scarpa A. (2000) Differential localization and operation of distinct Mg2+ transporters in apical and basolateral sides of rat liver plasma membrane. The Journal of Biological Chemistry 275(6): 3772–3780

Chave K.E. (1954) Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. Journal of Geology 62: 266-283

Cheng X., Varona P.L., Olszta M.J., Gower L.B. (2007) Biomimetic synthesis of calcite films by a polymer-induced liquid-precursor (PILP) process - 1. Influence and incorporation of magnesium. Journal of Crystal Growth 307: 395-404

Chia F.S., Koss R. (1994) Asteroidea. In: Microscopic Anatomy of Invertebrates, Volume 14. Echinodermata. Harrison F.W., Chia F.S. (eds.), Wiley-Liss Inc., New York, pp. 169-245

Clarke A.H. (1911) On the inorganic constituents of the skeletons of two recent crinoids. Proceedings of the United States National Museum 39, p. 487

Clarke F.W., Wheeler W.C. (1922) The inorganic constituents of marine invertebrates. Geological Survey Professional Paper (United States) 124, 56 pp

Cölfen H., Mann S. (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition 42: 2350-2365

Crenshaw M.A., Ristedt H. (1976) The histochemical localization of reactive groups in septal nacre from Nautilus pompilus L. In: Watabe N., Wilbur K.M. (eds.) The Mechanisms of Mineralization in the Invertebrates and Plants. Univ South. Carolina Press, Columbia, pp 79-92

Cuif J.P., Dauphin Y., Doucet J., Salomé M., Susini J. (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochimica et Cosmochimica Acta 67: 75-83

Cusack M., Dauphin Y., Cuif J.P., Salomé M., Freer A., Yin H. (2008a) Micro-XANES mapping of sulphur and its association with magnesium and phosphorus in the shell of the brachiopod Terebratulina retusa. Chemical Geology 253: 172-179

Références bibliographiques

Cusack M., Pérez-Huerta A., Janousch M., Finch A.A. (2008b). Magnesium in the lattice of calcite-shelled brachiopods. Chemical Geology 257 (1-2): 59-64

Dafni J., Erez J. (1987) Skeletal calcification patterns in the sea urchin Trypneustes gratillaelatensis (Echinoidea, Regularia). 1. Basic patterns. Marine Biology 95: 275-287 Dahl K., Buchardt B. (2006) Monohydrocalcite in the Artic Ikka fjord, SW Greenland: first reported marine occurrence. Journal of Sedimentary Research 76: 460-471

Dauphin Y., Cuif J.P. (1999) Relation entre les teneurs en soufre des biominéraux calcaires et leurs caractéristiques minéralogiques. Annales des Sciences naturelles 2: 73-85

Dauphin Y., Cuif J.P., Salomé M., Susini J. (2005) Speciation and distribution of sulfur in a mollusk shell as revealed by in situ maps using X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge. American Mineralogist 90: 1748-1758

De Deckker P., Chivas A.R., Shelley J.M.G. (1999) Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments. Palaeogeography, Palaeoclimatology, Palaeoecology 148: 105-116

Dickson J.A.D. (2002) Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298: 1222-1224

Dickson J.A.D. (2004) Echinoderm skeletal preservation: calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. Journal of Sedimentary Research 74 (3): 355-365 Dissard D., Nehrke G., Reichart G.J., Bijma J. (2010) Impact of seawater pCO2 changes on calcification and on Mg/Ca and Sr/Ca in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida. Biogeosciences 7: 81-93

Dodd J.R., Crisp E.L. (1982) Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies. Palaeogeography, Palaeoclimatology, Palaeoecology 38: 45–56

Dodd J.R. (1967) Magnesium and strontium in calcareous skeletons: a review. Journal of Paleontology, 41 (6): 1313-1329

Donnay G., Pawson D.L. (1969) X-Ray diffraction studies of echinoderm plates. Science 166: 1147-1150

Dubois Ph., Chen C.P. (1989) Calcification in echinoderms. In: Jangoux M. and Lawrence J.M. (eds.). Echinoderm Studies, A.A. Balkema, Rotterdam, Volume 3, pp 109-178

Dueñas-Bohórquez A., da Rocha R.E., Kuroyanagi A., Bijma J., Reichart G.J. (2009) Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic foraminifera. Marine Micropaleontology 73: 178-189

Références bibliographiques

Dustan Ph., Sacco W.K. (1983) Hidden reef builders: the Sclerosponges of Chalet Caribe Reef. Discovery 16 (2): 12-17

Elderfield H., Vautravers M., Cooper M. (2002) The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera. Geochemistry, Geophysics, Geosystems 3: U1–U13, doi: 10.1029/2001GC000194

Elhadj S., De Yoreo J.J., Hoyer J.R., Dove P.M. (2006) Role of molecular charge and hydrophilicity in regulating the kinetic of crystal growth. Proceedings of the National Academy of Sciences 103b (51): 19327-19242

England J., Cusack M., Lee R.L. (2007) Magnesium and sulphur in the calcite shells of two brachiopods, Terebratulina retusa and Novocrania anomala. Lethaia, 40: 2-10

Erez J. (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanic proxies. In: J.J. Rosso (ed.) Reviews in Mineralogy and Geochemistry, Volume 54, Mineralogical Society of America, Washington D.C., pp 115-144

Falini G., Gazzano M., Ripamonti A. (1994) Crystallization of calcium carbonate in presence of magnesium and polyelectrolytes. Journal of crystal growth 137: 577-584 Falini G., Albeck S., Weiner S., Addadi L. (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271 (5245): 67-69

Fallon S.J., McCulloch M., Guilderson T.P. (2005) Interpreting environmental signals from the coralline sponge Astrosclera willeyana. Palaeogeography, Palaeoclimatology, Palaeoecology 228: 58-69

Farre B., Dauphin Y. (2009) Lipids from the nacreous and prismatic layers of two Pteriomorpha mollusc shells. Comparative Biochemistry and Physiology 152: 103-109 Feely R.A., Sabine C.L., Lee K., Berelson W., Kleypas J., Fabry V.J., Milleros F.J. (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362-366

Feng Q.L., Pu G., Pei Y., Cui F.Z., Li H.D., Kim T.N. (2000) Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell. Journal of Crystal Growth 216: 459-465

Fergusson J.E., Henderson G.M., Kucera M., Rickaby R.E.M. (2008) Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient. Earth and Planetary Science Letters 265: 153-166

Flatman P.W. (1984) Magnesium transport across cell membranes. Journal of Membrane Biology 80: 1-14

Références bibliographiques

Freitas P.S., Clarke L.J., Kennedy H.A., Richardson C.A. (2008) Inter- and intra-specimen variability masks reliable temperature control on shell Mg/Ca ratios in laboratory- and field-cultured Mytillus edulis and Pecten maximus (bivalvia). Biogeosciences 5: 1245-1258

Gardner R.C. (2003) Genes for magnesium transport. Current Opinion in Plant Biology 6: 263-267

Garrels R.M., Thompson M.E. (1962) A chemical model for sea water at 25°C and one atmosphere total pressure. American Journal of Science 260: 57-66

Gayathri S., Lakshminarayanan R., Weaver J.C., Morse D.E., Kini R.M., Valiyaveettil S. (2007) In vitro study of magnesium-calcite biomineralization in the skeletal materials of the seastar Pisaster giganteus. Chemistry - a European Journal 13:3262-3268

Goldschmidt J.R., Graf D.L., Joensuu O.I. (1955) The occurrence of magnesian calcites in nature. Geochimica et Cosmochimica Acta 7: 212-230

Goldschmidt J.R., Graf D.L. (1958) Relation between lattice constants and composition of the Ca-Mg carbonates. The American Mineralogist 43:84-101

Gordon I. (1926) The development of the calcareous test of Echinus miliaris. Philosophical Transactions of the Royal Society of London 214: 259-321

Gotliv B.A., Kessler N., Sumerel J.L., Morse D.E., Tuross N., Addadi L., Weiner S. (2005) Asprich: a novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. Chembiochem (6): 304-314

Grosjean Ph., Spirlet Ch., Jangoux M. (1996) Experimental study of growth in the echinoid Paracentrotus lividus (Lamarck, 1816). Journal of Experimental Marine Biology and Ecology 201: 173-184

Günther T. (2006) Concentration, compartmentation and metabolic function of intracellular free Mg2+. Magnesium Research 19 (4): 225-236

Han Y.J., Wysocki L.M., Thanwala M.S., Siegrist T., Aizenberg J. (2005) Template-dependent morphogenesis of oriented calcite crystals in the presence of magnesium ions. Angewandte Chemie International Edition 44: 2386-2390

Hardie L.A. (1996) Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology 24: 279-283

Harrison F.W., De Vos L. (1991) Porifera. In: Microscopic Anatomy of Invertebrates. Volume 2. Placozoa, Porifera, Cnidaria, and Ctenophora. Harrison F.W., Westfall J.A. (eds.), Wiley-Liss, New York, pp 29-89

Harrison F.W., Chia F.S. (1994) Echinodermata. In: Microscopic Anatomy of Invertebrates. Harrison F.W. (ed.), Wiley-Liss Inc, New York, 510 pp

Références bibliographiques

Hartman W.D., Goreau T.F. (1970) Jamaican coralline sponges: their morphology, ecology and fossil relatives. In: The Biology of the Porifera. Fry W.G. (ed.) Symposia of the Zoological Society of London, Academic Press, London, pp 205-243

Hartman W.D., Goreau T.F. (1975) A Pacific tabulate sponge, living representative of a new order of sclerosponges. Postilla 167: 1–21

Henderson G.M. (2002) New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203: 1-13

Hermans J., Dubois Ph., André L., Vacelet J., Willenz Ph. (2010a) Growth rate and chemical features of the massive calcium carbonate skeleton of Petrobiona massiliana

(Baeriida: Calcaronea: Calcispongiae). Journal of the Marine Biological Association of the United Kingdom 90 (4): 749-754

Hermans J., Borremans C., Willenz Ph., André L., Dubois Ph. (2010b) Temperature, salinity and growth rate dependences of Mg/Ca and Sr/Ca ratios of the skeleton of the sea urchin Paracentrotus lividus (Lamarck): an experimental approach. Marine Biology 157: 1293-1300

Hintz C.J., Shaw T.J., Chandler G.T., Bernhard J.M., McCorkle D.C., Blanks J.K. (2006) Trace/minor element: calcium ratios in cultured benthic foraminifera. Part I: Inter-species and inter-individual variability. Geochimica et Cosmochimica Acta 70: 1952-1963

Hoogaker B.A.A., Klinkhammer G.P., Elderfield H., Rohling E.J., Hayward C. (2009) Mg/Ca paleothermometry in high salinity environments. Earth and Planetary Science Letters 284: 583-589

Hooper N.A., van Soest R.W.M. (2002) Systema Porifera. A Guide to the Classification of Sponges. Volumes 1 & 2. Kluwer Academic/ Plenum Publishers, New York, 1810 pp Hyman L.H. (1955) Echinodermata: the Coelomate Bilateria. In: The Invertebrates, Volume 4, Boell E.J. (ed.), McGraw-Hill Book company Inc, 763 pp

Ilan M., Aizenberg J., Gilor O. (1996) Dynamics and growth patterns of calcareous sponge spicules. Proceedings of the Royal Society of London –B: Biological Sciences 263: 133–139

Ingram B.L., De Deckker P., Chivas A.R., Conrad M.E., Byrne A.R. (1998) Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA. Geochimica et Cosmochimica Acta 62: 3229–3237

Jackson D.J., Macis L., Reitner J., Degnan B.M., Wörheide G. (2007) Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science 316 (5833): 1893-1895

Jacob D.E., Soldati A.L., Wirth R., Huth J., Wehrmeister U., Hofmeister W. (2008) Nanostructure, composition and mechanisms of bivalve shell growth. Geochimica et Cosmochimica Acta 72: 5401-5415

Références bibliographiques

Jones W.C. (1979) The microstructure and genesis of sponge biominerals. In: Lévi C., Boury-Esnault N. (eds), Biologie des Spongiaires - Sponge Biology. Colloques Internationaux du Centre National de la Recherche Scientifique. CNRS, Paris, 291, pp 425-447

Jones W.C., Jenkins D.A. (1970) Calcareous Sponge Spicules: A study of Magnesian Calcites. Calcified Tissue Research 4: 314-329

Jope M. (1967) The protein of brachiopod shell 1- Amino acid composition and implied protein taxonomy. Comparative Biochemistry and Physiology 20:593-600

Kampschulte A., Strauss H. (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology 204 (3-4): 255-286

Katz A. (1973) The interaction of magnesium with calcite during crystal growth at 25-90°C and one atmosphere. Geochimica et Cosmochimica Acta 37: 1563-1586

Kester D.R., Pytkowicz R.M. (1969) Sodium, magnesium, and calcium sulphate ion-pairs in seawater at 25°C. Limnology and Oceanography 14 (5): 686-692

Kester D.R., Pytkowicz R.M. (1970) Effect of temperature and pressure on sulfate ion association in sea water. Geochimica et Cosmochimica Acta 34: 1039-1051

Killian C.E., Wilt F. (2008) Molecular aspects of biomineralization of the echinoderm endoskeleton. Chemical Reviews 108: 4463-4474

King K.K., Hare P.E. (1972) Amino acid composition of the test as a taxonomic character for living and fossil planktonic foraminifera. Micropaleontology 18 (3): 285-293

Kısakürek B., Eisenhauer A., Böhm F., Garbe-Schönberg D., Erez J. (2008) Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber

(white). Earth and Planetary Science Letters 273 (3-4): 260-269

Kitano Y. (1962) The behaviour of various inorganic ions in the separation of calcium carbonate from a bicarbonate solution. Bulletin of the Chemical Society of Japan 35 (12): 1973-1980

Kitano Y., Hood D.W. (1962) Calcium carbonate crystal forms formed from sea water by inorganic processes. The journal of Oceanological Society of Japan: 18 (3): 141-145 Kitano Y., Hood D.W. (1965) The influence of organic material on the polymorphic crystallization of calcium carbonate. Geochimica et Cosmochimica Acta 29: 29-41

Kitano Y., Kanamori N. (1966) Synthesis of magnesian calcite at low temperature and pressure. Geochemical Journal 1: 1-13

Klein R.T., Lohmann K.C., Thayer C.W. (1996) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: Covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochimica et Cosmochimica Acta 60: 4207-4221

Références bibliographiques

Kolesar P.T. (1978) Magnesium in calcite from a coralline alga. Journal of Sedimentary Petrology 48 (3): 815-820

Kontrec J., Kralj D., Brečević L., Falini G., Fermani S., Nöthig-Laslo V., Mirosavljević

(2004) Incorporation of inorganic ions in calcite. European Journal of Inorganic Chemistry 4579-4585

Kralj D., Kontrec J., Brečević L., Falini G., Nöthig-Laslo V. (2004) Effect of inorganic ions on the morphology and structure of magnesium calcite. Chemistry - a European Journal 10: 1647-1656

Kristjánsdóttir G.B., Lea D.W., Jennings A.E., Pak D.K., Belanger C. (2007) New spatial Mg/Ca-temperature calibrations for three Arctic, benthic foraminifera and reconstruction

Documents relatifs