• Aucun résultat trouvé

Les résultats encourageants obtenus au cours de nos expériences nous incitent à poursuivre nos recherches afin de vérifier les similitudes entre régénération pulpo- dentinaire et parodontale :

- vérifier si les fibroblastes parodontaux sont capables de synthétiser l’ensemble des molécules du système du complément et démontrer ainsi si leur stimulation peut entraîner l’activation locale et efficace de ce système

- vérifier si les cellules souches du ligament parodontal migrent selon un gradient de C5a en direction du site lésé (test de migration des populations cellulaires en chambre de Boyden)

- vérifier si le C3a entraîne la prolifération des cellules souches et fibroblastes parodontaux et éventuellement leur migration

Une meilleure compréhension de ces mécanismes est nécessaire afin d’optimiser les traitements : savoir quelle molécule apporter et en quelle quantité, quelles cellules cibler. Une parfaite connaissance du lien entre inflammation et régénération parodontale sera donc nécessaire afin d’envisager des thérapeutiques simples, efficaces et permettant une véritable régénération parodontale qui font aujourd’hui défaut dans le traitement des atteintes parodontales sévères. D’autres approches sont envisagées sur le long terme, notamment l’intégration de cellules iPS (induced pluripotent stem cells) ou de cellules souches mésenchymateuses à des scaffolds avant leur implantation dans un défaut osseux.

I

Bibliographie

1. Charles A Janeway J, Travers P, Walport M, Shlomchik MJ. The complement system and innate immunity. 2001 [cité 17 avr 2018]; Disponible sur: https://www.ncbi.nlm.nih. gov/books/NBK27100/

2. Haeney MR. The role of the complement cascade in sepsis. J Antimicrob Chemother. janv 1998;41 Suppl A:41‑6.

3. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. sept 2010;11(9):785‑97.

4. Walport MJ. Complement. First of two parts. N Engl J Med. 5 avr 2001;344(14):1058‑66. 5. Walport MJ. Complement. Second of two parts. N Engl J Med. 12 avr 2001;344(15):1140‑4. 6. Basiglio CL, Arriaga SM, Pelusa F, Almará AM, Kapitulnik J, Mottino AD. Complement activation

and disease: protective effects of hyperbilirubinaemia. Clin Sci Lond Engl 1979. 12 oct 2009;118(2):99‑113.

7. Sarma JV, Ward PA. The complement system. Cell Tissue Res. janv 2011;343(1):227‑35. 8. Daveau M, Benard M, Scotte M, Schouft M-T, Hiron M, Francois A, et al. Expression of a

functional C5a receptor in regenerating hepatocytes and its involvement in a proliferative signaling pathway in rat. J Immunol Baltim Md 1950. 1 sept 2004;173(5):3418‑24.

9. Ignatius A, Ehrnthaller C, Brenner RE, Kreja L, Schoengraf P, Lisson P, et al. The anaphylatoxin receptor C5aR is present during fracture healing in rats and mediates osteoblast migration in vitro. J Trauma. oct 2011;71(4):952‑60.

10. Lara-Astiaso D, Izarra A, Estrada JC, Albo C, Moscoso I, Samper E, et al. Complement anaphylatoxins C3a and C5a induce a failing regenerative program in cardiac resident cells. Evidence of a role for cardiac resident stem cells other than cardiomyocyte renewal. SpringerPlus. déc 2012;1(1):63.

11. Mastellos D, Papadimitriou JC, Franchini S, Tsonis PA, Lambris JD. A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J Immunol Baltim Md 1950. 15 févr 2001;166(4):2479‑86.

12. Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE, et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med. 15 sept 2003;198(6):913‑23.

13. Chmilewsky F, Jeanneau C, Laurent P, Kirschfink M, About I. Pulp Progenitor Cell Recruitment is Selectively Guided by a C5a Gradient. J Dent Res. juin 2013;92(6):532‑9.

14. Alper C, Johnson A, G. Birtch A, D. Moore F. Human C’3: Evidence for the Liver as the Primary Site of Synthesis. Science. 1 févr 1969;163:286‑8.

15. Naughton Michael A., Walport Mark J., Würzner Reinhard, Carter Martyn J., Alexander Graeme J. M., Goldman John M., et al. Organ‐specific contribution to circulating C7 levels by the bone marrow and liver in humans. Eur J Immunol. 17 nov 2005;26(9):2108‑12.

II 16. Würzner R. Modulation of complement membrane attack by local C7 synthesis. Clin Exp

Immunol. juill 2000;121(1):8‑10.

17. Li K, H Sacks S, Zhou W. The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Vol. 44. 2007. 3866 p.

18. Chmilewsky F, Jeanneau C, Laurent P, About I. Pulp Fibroblasts Synthesize Functional Complement Proteins Involved in Initiating Dentin–Pulp Regeneration. Am J Pathol. 1 juill 2014;184(7):1991‑2000.

19. Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med Camb Mass. avr 2011;17(3‑4):317‑29.

20. Miletic VD, Frank MM. Complement-immunoglobulin interactions. Curr Opin Immunol. févr 1995;7(1):41‑7.

21. Espinosa E, Chillet P. Immunologie. Ellipses; 2010. 510 p. (Parcours LMD).

22. Kang Y-S, Do Y, Lee H-K, Park SH, Cheong C, Lynch RM, et al. A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell. 7 avr 2006;125(1):47‑58.

23. Pangburn MK, Ferreira VP, Cortes C. Discrimination between host and pathogens by the complement system. Vaccine. déc 2008;26 Suppl 8:I15-21.

24. Korb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol Baltim Md 1950. 15 mai 1997;158(10):4525‑8.

25. Moosig F, Damm F, Knorr-Spahr A, Ritgen M, Zeuner RA, Kneba M, et al. Reduced expression of C1q-mRNA in monocytes from patients with systemic lupus erythematosus. Clin Exp Immunol. déc 2006;146(3):409‑16.

26. Nauta AJ, Castellano G, Xu W, Woltman AM, Borrias MC, Daha MR, et al. Opsonization with C1q and mannose-binding lectin targets apoptotic cells to dendritic cells. J Immunol Baltim Md 1950. 1 sept 2004;173(5):3044‑50.

27. Andersson J, Ekdahl KN, Larsson R, Nilsson UR, Nilsson B. C3 Adsorbed to a Polymer Surface Can Form an Initiating Alternative Pathway Convertase. J Immunol. 1 juin 2002;168(11):5786‑91. 28. Andersson J, Ekdahl KN, Lambris JD, Nilsson B. Binding of C3 fragments on top of adsorbed

plasma proteins during complement activation on a model biomaterial surface. Biomaterials. mai 2005;26(13):1477‑85.

29. Nilsson B, Korsgren O, Lambris JD, Ekdahl KN. Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol. janv 2010;31(1):32‑8.

30. Tengvall P, Askendal A, Lundström II. Ellipsometric in vitro studies on the activation of complement by human immunoglobulins M and G after adsorption to methylated silicon. Colloids Surf B Biointerfaces. janv 2001;20(1):51‑62.

31. Cestari I, Evans-Osses I, Schlapbach LJ, de Messias-Reason I, Ramirez MI. Mechanisms of complement lectin pathway activation and resistance by trypanosomatid parasites. Mol Immunol. avr 2013;53(4):328‑34.

III 32. Cedzynski M, Swierzko AS, Kilpatrick DC. Factors of the Lectin Pathway of Complement Activation and Their Clinical Associations in Neonates. J Biomed Biotechnol [Internet]. 2012 [cité 17 avr 2018];2012. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348535/ 33. Matsushita M. Ficolins in complement activation. Mol Immunol. 1 août 2013;55(1):22‑6. 34. Matsushita M, Fujita T. Activation of the classical complement pathway by mannose-binding

protein in association with a novel C1s-like serine protease. J Exp Med. 1 déc 1992;176(6):1497‑502.

35. Matsushita M, Fujita T. Ficolins and the lectin complement pathway. Immunol Rev. avr 2001;180:78‑85.

36. Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 3 avr 1997;386(6624):506‑10.

37. Forneris F, Ricklin D, Wu J, Tzekou A, Wallace RS, Lambris JD, et al. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science. 24 déc 2010;330(6012):1816‑20.

38. Rooijakkers SHM, Wu J, Ruyken M, van Domselaar R, Planken KL, Tzekou A, et al. Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol. juill 2009;10(7):721‑7.

39. Tomlinson S. Complement defense mechanisms. Curr Opin Immunol. févr 1993;5(1):83‑9. 40. Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, et al. Interaction between the

coagulation and complement system. Adv Exp Med Biol. 2008;632:71‑9.

41. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. juin 2006;12(6):682‑7. 42. Santizo F, Zenteno E, Pina-Canseco S, Hernandez-Cruz P, Cruz MM, Mayoral LP-C, et al. Lectin activity of the coagulation factor VIII/von Willebrand complex. Tohoku J Exp Med. mars 2009;217(3):209‑15.

43. Revak SD, Cochrane CG, Johnston AR, Hugli TE. Structural Changes Accompanying Enzymatic Activation of Human Hageman Factor. J Clin Invest. 1 sept 1974;54(3):619‑27.

44. Cochrane CG. The role of immune complexes and complement in tissue injury. J Allergy. 1 sept 1968;42(3):113‑29.

45. Mulligan MS, Schmid E, Beck-Schimmer B, Till GO, Friedl HP, Brauer RB, et al. Requirement and role of C5a in acute lung inflammatory injury in rats. J Clin Invest. 15 juill 1996;98(2):503‑12. 46. Schumacher WA, Fantone JC, Kunkel SE, Webb RC, Lucchesi BR. The anaphylatoxins C3a and

C5a are vasodilators in the canine coronary vasculature in vitro and in vivo. Agents Actions. nov 1991;34(3‑4):345‑9.

47. Johnson AR, Hugli TE, Müller-Eberhard HJ. Release of histamine from rat mast cells by the complement peptides C3a and C5a. Immunology. juin 1975;28(6):1067.

48. Daffern PJ, Pfeifer PH, Ember JA, Hugli TE. C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. - PubMed - NCBI [Internet]. [cité 17 avr 2018]. Disponible sur: https://www.ncbi.nlm.nih.gov/ pubmed/7760001/

IV 49. Fernandez HN, Henson PM, Otani A, Hugli TE. Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vivo conditions. J Immunol Baltim Md 1950. janv 1978;120(1):109‑15.

50. DiScipio RG, Daffern PJ, Jagels MA, Broide DH, Sriramarao P. A Comparison of C3a and C5a- Mediated Stable Adhesion of Rolling Eosinophils in Postcapillary Venules and Transendothelial Migration In Vitro and In Vivo. J Immunol. 15 janv 1999;162(2):1127‑36.

51. Aksamit RR, Falk W, Leonard EJ. Chemotaxis by mouse macrophage cell lines. J Immunol Baltim Md 1950. juin 1981;126(6):2194‑9.

52. Ehrengruber MU, Geiser T, Deranleau DA. Activation of human neutrophils by C3a and C5A. Comparison of the effects on shape changes, chemotaxis, secretion, and respiratory burst. FEBS Lett. 13 juin 1994;346(2‑3):181‑4.

53. Nataf S, Davoust N, Ames RS, Barnum SR. Human T cells express the C5a receptor and are chemoattracted to C5a. J Immunol Baltim Md 1950. 1 avr 1999;162(7):4018‑23.

54. Ottonello L, Corcione A, Tortolina G, Airoldi I, Albesiano E, Favre A, et al. rC5a Directs the In Vitro Migration of Human Memory and Naive Tonsillar B Lymphocytes: Implications for B Cell Trafficking in Secondary Lymphoid Tissues. J Immunol. 1 juin 1999;162(11):6510‑7.

55. Lett-Brown MA, Leonard EJ. Histamine-induced inhibition of normal human basophil chemotaxis to C5a. J Immunol Baltim Md 1950. mars 1977;118(3):815‑8.

56. Hartmann K, Henz BM, Krüger-Krasagakes S, Köhl J, Burger R, Guhl S, et al. C3a and C5a stimulate chemotaxis of human mast cells. Blood. 15 avr 1997;89(8):2863‑70.

57. Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. déc 2009;33(3‑4):222‑30.

58. Gasque P. Complement: a unique innate immune sensor for danger signals. Mol Immunol. nov 2004;41(11):1089‑98.

59. Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A. Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med. 18 déc 2000;192(12):1797‑808.

60. Mevorach D, Mascarenhas JO, Gershov D, Elkon KB. Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med. 21 déc 1998;188(12):2313‑20.

61. Pan H, Shen Z, Mukhopadhyay P, Wang H, Pacher P, Qin X, et al. Anaphylatoxin C5a contributes to the pathogenesis of cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol. mars 2009;296(3):F496-504.

62. Belli WA, Marquis RE. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol. avr 1991;57(4):1134‑8.

63. Love RM, Jenkinson HF. Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med Off Publ Am Assoc Oral Biol. 2002;13(2):171‑83.

64. Loos M, Clas F, Fischer W. Interaction of purified lipoteichoic acid with the classical component pathway. Infect Immun. 1 oct 1986;53:595‑9.

65. Lynch NJ, Roscher S, Hartung T, Morath S, Matsushita M, Maennel DN, et al. L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J Immunol Baltim Md 1950. 15 janv 2004;172(2):1198‑202.

V 66. Gewurz H, Ying SC, Jiang H, Lint TF. Nonimmune activation of the classical complement

pathway. Behring Inst Mitt. déc 1993;(93):138‑47.

67. Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1 nov 1995;182(5):1597‑601.

68. Acevedo F, Vesterberg O. Nickel and cobalt activate complement factor C3 faster than magnesium. Toxicology. 14 mars 2003;185(1‑2):9‑16.

69. KIM S. Pulpal reaction to caries and dental procedure. Pathw Pulp [Internet]. 2002 [cité 17 avr 2018]; Disponible sur: https://ci.nii.ac.jp/naid/10018773694/

70. Goldberg M, Farges J-C, Lacerda-Pinheiro S, Six N, Jegat N, Decup F, et al. Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res. août 2008;58(2):137‑47.

71. Smith AJ, Tobias RS, Cassidy N, Bégue-Kirn C, Ruch JV, Lesot H. Influence of Substrate Nature and Immobilization of Implanted Dentin Matrix Components During Induction of Reparative Dentinogenesis. Connect Tissue Res. 1 janv 1995;32(1‑4):291‑6.

72. Tziafas D. Basic mechanisms of cytodifferentiation and dentinogenesis during dental pulp repair. Int J Dev Biol. févr 1995;39(1):281‑90.

73. Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. févr 2000;28(2):77‑92.

74. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res Off J Am Soc Bone Miner Res. avr 2003;18(4):696‑704.

75. Téclès O, Laurent P, Zygouritsas S, Burger A-S, Camps J, Dejou J, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol. févr 2005;50(2):103‑8.

76. Smith AJ, Tobias RS, Murray PE. Transdentinal stimulation of reactionary dentinogenesis in ferrets by dentine matrix components. J Dent. juill 2001;29(5):341‑6.

77. Cassidy N, Fahey M, Prime SS, Smith AJ. Comparative analysis of transforming growth factor- beta isoforms 1-3 in human and rabbit dentine matrices. Arch Oral Biol. mars 1997;42(3):219‑23.

78. Dobie K, Smith G, Sloan A, Smith A. Effects of Alginate Hydrogels and TGF-β1 on Human Dental Pulp Repair In Vitro. Connect Tissue Res - CONNECT TISSUE RES. 1 avr 2002;43:387‑90.

79. Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays. 31 janv 2000;22(2):108‑12.

80. Gerwins P, Sköldenberg E, Claesson-Welsh L. Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol. juin 2000;34(3):185‑94.

81. Mutsaers SE, Bishop JE, McGrouther G, Laurent GJ. Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol. janv 1997;29(1):5‑17.

82. Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I. Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod. févr 2013;39(2):228‑35.

VI 83. Botero TM, Mantellini MG, Song W, Hanks CT, Nör JE. Effect of lipopolysaccharides on vascular endothelial growth factor expression in mouse pulp cells and macrophages. Eur J Oral Sci. juin 2003;111(3):228‑34.

84. Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. 22 mai 2006;580(12):2879‑87.

85. Howard C, Murray PE, Namerow KN. Dental pulp stem cell migration. J Endod. déc 2010;36(12):1963‑6.

86. About I. Dentin regeneration in vitro: the pivotal role of supportive cells. Adv Dent Res. juill 2011;23(3):320‑4.

87. Tran-Hung L, Laurent P, Camps J, About I. Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol. janv 2008;53(1):9‑13.

88. Nakashima M. Induction of dentine in amputated pulp of dogs by recombinant human bone morphogenetic proteins-2 and -4 with collagen matrix. Arch Oral Biol. déc 1994;39(12):1085‑9. 89. Sloan AJ, Matthews JB, Smith AJ. TGF-beta receptor expression in human odontoblasts and

pulpal cells. Histochem J. août 1999;31(8):565‑9.

90. Unda FJ, Martín A, Hernandez C, Pérez-Nanclares G, Hilario E, Aréchaga J. FGFs-1 and -2, and TGF beta 1 as inductive signals modulating in vitro odontoblast differentiation. Adv Dent Res. août 2001;15:34‑7.

91. Schraufstatter IU, Discipio RG, Zhao M, Khaldoyanidi SK. C3a and C5a are chemotactic factors for human mesenchymal stem cells, which cause prolonged ERK1/2 phosphorylation. J Immunol Baltim Md 1950. 15 mars 2009;182(6):3827‑36.

92. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, et al. Comparison of stem-cell- mediated osteogenesis and dentinogenesis. J Dent Res. déc 2003;82(12):976‑81.

93. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. août 2002;81(8):531‑5.

94. Iohara K, Zheng L, Ito M, Ishizaka R, Nakamura H, Into T, et al. Regeneration of dental pulp after pulpotomy by transplantation of CD31(-)/CD146(-) side population cells from a canine tooth. Regen Med. mai 2009;4(3):377‑85.

95. Rufas P, Jeanneau C, Rombouts C, Laurent P, About I. Complement C3a Mobilizes Dental Pulp Stem Cells and Specifically Guides Pulp Fibroblast Recruitment. J Endod. sept 2016;42(9):1377‑84.

96. Kingham E, Oreffo ROC. Embryonic and induced pluripotent stem cells: understanding, creating, and exploiting the nano-niche for regenerative medicine. ACS Nano. 26 mars 2013;7(3):1867‑81.

97. Bluguermann C, Wu L, Petrigliano F, McAllister D, Miriuka S, Evseenko D. Novel aspects of parenchymal-mesenchymal interactions: From cell types to molecules and beyond. Vol. 31. 2013.

98. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol. 4 sept 2013;4:201.

VII 99. Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R. In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach. BMC Genomics. 15 juill 2009;10:314.

100. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, et al. Dissecting self-renewal in stem cells with RNA interference. Nature. 3 août 2006;442(7102):533‑8.

101. Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. avr 2006;38(4):431‑40.

102. Zhou Q, Chipperfield H, Melton DA, Wong WH. A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 16 oct 2007;104(42):16438‑43.

103. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. mai 2009;10(5):295‑304.

104. Flöttmann M, Scharp T, Klipp E. A Stochastic Model of Epigenetic Dynamics in Somatic Cell Reprogramming. Front Physiol [Internet]. 27 juin 2012 [cité 17 avr 2018];3. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384084/

105. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. sept 2009;18(7):1093‑108.

106. MONK M, ADAMS RLP, RINALDI A. Decrease in DNA methylase activity during preimplantation development in the mouse. :4.

107. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 5 déc 2000;97(25):13625‑30.

108. Handa K, Saito M, Tsunoda A, Yamauchi M, Hattori S, Sato S, et al. Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connect Tissue Res. 2002;43(2‑3):406‑8. 109. Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I. Human periodontal ligament cell sheets

can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng. avr 2005;11(3‑4):469‑78.

110. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of Apical Papilla and its Residing Stem Cells from Human Immature Permanent Teeth –A Pilot Study. J Endod. févr 2008;34(2):166‑71.

111. Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, et al. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells Dayt Ohio. sept 2008;26(9):2408‑18.

112. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 13 mai 2003;100(10):5807‑12.

113. Jeanneau C, Rufas P, Rombouts C, Giraud T, Dejou J, About I. Can Pulp Fibroblasts Kill Cariogenic Bacteria? Role of Complement Activation. J Dent Res. déc 2015;94(12):1765‑72.

114. Byers MR, Taylor PE. Effect of sensory denervation on the response of rat molar pulp to exposure injury. J Dent Res. mars 1993;72(3):613‑8.

VIII 115. Chmilewsky F, About I, Chung S-H. Pulp Fibroblasts Control Nerve Regeneration through

Complement Activation. J Dent Res. 15 juill 2016;95(8):913‑22.

116. Shih C-H, Chen C-J, Chen L. New Function of the Adaptor Protein SH2B1 in Brain-Derived Neurotrophic Factor-Induced Neurite Outgrowth. PLOS ONE. 15 nov 2013;8(11):e79619. 117. Yang J, Ru J, Ma W, Gao Y, Liang Z, Liu J, et al. BDNF promotes the growth of human neurons

through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β. Neuropeptides. 1 déc 2015;54:35‑46.

118. Chmilewsky F, Ayaz W, Appiah J, About I, Chung S-H. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth. Sci Rep [Internet]. oct 2016 [cité 8 févr 2018];6(1). Disponible sur: http://www.nature.com/articles/srep31799

119. Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol. avr 1992;63(4 Suppl):322‑31.

120. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol 2000. 2002;28:12‑55.

121. Hynes K, Menicanin D, Gronthos S, Bartold PM. Clinical utility of stem cells for periodontal regeneration. Periodontol 2000. juin 2012;59(1):203‑27.

122. Melcher AH. On the repair potential of periodontal tissues. J Periodontol. mai 1976;47(5):256‑60.

123. Listgarten MA, Rosenberg MM. Histological Study of Repair Following New Attachment Procedures in Human Periodontal Lesions. J Periodontol. 1 juill 1979;50(7):333‑44.

124. Nyman S, Karring T, Lindhe J, Plantén S. Healing following implantation of periodontitis-affected roots into gingival connective tissue. J Clin Periodontol. oct 1980;7(5):394‑401.

125. Karring T, Nyman S, Lindhe J. Healing following implantation of periodontitis affected roots into bone tissue. J Clin Periodontol. avr 1980;7(2):96‑105.

126. Polimeni G, Xiropaidis AV, Wikesjö UME. Biology and principles of periodontal wound healing/regeneration. Periodontol 2000. 2006;41:30‑47.

127. MARK BARTOLD P, A. G. MCCULLOCH C, SAMPATH NARAYANAN A, Pitaru S. Tissue Engineering: a New Paradigm for Periodontal Regeneration Based on Molecular and Cell Biology. Vol. 24. 2000. 253 p.

128. Garrett JS. Root planing: a perspective. J Periodontol. sept 1977;48(9):553‑7.

129. Wikesjö U, E. Nilvéus R, Selvig K. Significance of Early Healing Events on Periodontal Repair: A Review. Vol. 63. 1992. 158 p.

130. Lang NP, Lindhe J. Clinical Periodontology and Implant Dentistry, 2 Volume Set. John Wiley & Sons; 2015. 1429 p.

131. Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. juill 1982;9(4):290‑6.

132. Pandit N, Malik R, Philips D. Tissue engineering: A new vista in periodontal regeneration. J Indian Soc Periodontol. 10 janv 2011;15(4):328.

IX 133. Langer R, Vacanti JP. Tissue engineering. Science. 14 mai 1993;260(5110):920‑6.

134. Seo B-M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet Lond Engl. 10 juill 2004;364(9429):149‑55.

135. Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res. août 2007;10(3):149‑60.

136. Seo B-M, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res. oct 2005;84(10):907‑12.

137. Huang GT-J, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those

Documents relatifs