• Aucun résultat trouvé

Chapitre 3 : Discussion

3.4 Perspectives

maternel) à différents stades de la gestation, puis à terme. Cela permettrait de vérifier s’il y a bel et bien une accumulation de sorbitol lors de la grossesse, et si ce phénomène est accentué en prééclampsie. Aussi, la suite logique du projet serait de vérifier si le niveau de sFlt-1 augmente dans les placentas issus de grossesses prééclamptiques. D’autre part, il serait aussi très pertinent de vérifier si les niveaux de sorbitol présents corrèlent avec les niveaux de sFlt-1, ce qui appuierait l’hypothèse de l’induction de la libération de ce dernier par le sorbitol. De plus, tel qu’il en a été question dans la section précédente, puisque nous n’avons pas observé de variation dans le niveau d’expression génique de Gadd45α au niveau de nos échantillons placentaires, il aurait été intéressant de mesurer le niveau de phospho-p38 dans nos placentas afin de déterminer si ces derniers sont augmentés en prééclampsie. Si cela est le cas, la suite logique du projet serait de déterminer si le sorbitol peut activer la voie MKK3-p38, et s’il y a augmentation de la libération de sFlt-1 par le tissu placentaire en prééclampsie.

Une autre perspective intéressante au projet serait de vérifier si les autres substrats de l’aldose réductase sont affectés en prééclampsie. Par exemple, puisque le PGF2α a une activité vasoconstrictrice, ceci suggère que

l’activité PGF synthase de AKR1B1 pourrait elle aussi être impliquée dans la pathologie. De ce fait, afin de vérifier si les niveaux d’expression génique de l’aldose réductase ont un impact sur la synthèse du PGF2α,

nous avons investigué à savoir s’il y a corrélation entre l’expression de AKR1B1 et les niveaux de PGF2α

obtenus après dosage dans les placentas par LC-MS/MS. Les résultats présentés dans la Tableau 1 montrent qu’il y aurait effectivement une tendance vers une corrélation entre PGF2α et le niveau d’expression de

AKR1B1 dans la section péri-ombilicale de la membrane amniochorionique. Ceci laisse penser qu’une augmentation du niveau d’expression de AKR1B1 pourrait avoir un impact sur son niveau de production de PGF2α par la membrane amniochorionique placentaire. Cependant, aucune étude comparant les niveaux de

PGF2α produits par des placentas prééclamptiques par rapport à un groupe témoin n’a été concluante. En

effet, aucune différence significative du niveau de PGF2α n’a été observée dans nos placentas de mères

AR/YWHAZ NOR et PE groupés NOR PE PGF2α A+V ns ns ns A r = 0,527ξ (p = 0,0883) n = 11 ns ns V ns ns ns

Les valeurs (r) sont des coefficients de corrélation de Spearman

ξDans la section péri-ombilicale seulement

NOR: placentas du groupe témoin, PE: placentas PE ns = non-significatif (p > 0,1)

*p < 0,05 est considéré comme étant significatif. 0,05 < p < 0,1 est considéré comme étant une tendance.

Bibliographie

1. Haymann J, Kanfer A, Legallicier B, Peraldi M, Ronco P, Rondeau E, et al. Néphrologie. 4e ed: Éditions MED-LINE; 2002.

2. Duley L, Meher S, Abalos E. Management of pre-eclampsia. Bmj. 2006 Feb 25;332(7539):463-8. 3. Leeman L, Fontaine P. Hypertensive disorders of pregnancy. American family physician. 2008 Jul

1;78(1):93-100.

4. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011 Jun 21;123(24):2856-69.

5. Barton JR, Sibai BM. Prediction and prevention of recurrent preeclampsia. Obstetrics and gynecology. 2008 Aug;112(2 Pt 1):359-72.

6. Trogstad L, Magnus P, Stoltenberg C. Pre-eclampsia: Risk factors and causal models. Best Practice & Research Clinical Obstetrics & Gynaecology. 2011;25(3):329-42.

7. Clausen T, Slott M, Solvoll K, Drevon CA, Vollset SE, Henriksen T. High intake of energy, sucrose, and polyunsaturated fatty acids is associated with increased risk of preeclampsia. American journal of obstetrics and gynecology. 2001 Aug;185(2):451-8.

8. Conde-Agudelo A, Althabe F, Belizan JM, Kafury-Goeta AC. Cigarette smoking during pregnancy and risk of preeclampsia: a systematic review. American journal of obstetrics and gynecology. 1999 Oct;181(4):1026-35.

9. Chesley L. Hypertensive disorders of pregnancy. New-York: Appleton-Century-Crofts; 1978. 10. Kanter D, Lindheimer MD, Wang E, Borromeo RG, Bousfield E, Karumanchi SA, et al. Angiogenic

dysfunction in molar pregnancy. American journal of obstetrics and gynecology. 2010 Feb;202(2):184 e1-5.

11. Barcena A, Muench MO, Kapidzic M, Gormley M, Goldfien GA, Fisher SJ. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation. Transfusion. 2011 Nov;51 Suppl 4:94S-105S.

12. Benirschke K, Burton GJ, Baergen RN. Pathology of the Human Placenta. 6th ed: Springer; 2012. 943 p.

13. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem cells. 2008 Feb;26(2):300-11.

14. Baergen RN. Manual of Pathology of the Human Placenta. 2nd ed: Springer; 2011. 15. Huppertz B. The anatomy of the normal placenta. Journal of clinical pathology. 2008

Dec;61(12):1296-302.

16. Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional, epigenetic, and physiological integration during development. The Journal of clinical investigation. 2010 Apr;120(4):1016-25. 17. Thibault C, Levasseur M-C. La reproduction chez les mammifères et l'homme2001.

18. Lager S, Powell TL. Regulation of Nutrient Transport across the Placenta. Journal of pregnancy. 2012;2012:179827.

19. Tuckey RC. Progesterone synthesis by the human placenta. Placenta. 2005;26(4):273-81. 20. Andraweera PH, Dekker GA, Roberts CT. The vascular endothelial growth factor family in adverse

pregnancy outcomes. Hum Reprod Update. 2012 Jul;18(4):436-57. eng. 21. Heffner L. Reproduction humaine: Blackwell; 2001. 89 p.

24. Jauniaux E, Gulbis B, Burton GJ. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus--a review. Placenta. 2003 Apr;24 Suppl A:S86-93. 25. Farquharson RG, Stephenson MD. Early pregnancy. Cambridge, United Kingdom: Cambridge

University Press; 2010. 295 p.

26. Karumanchi SA, Bdolah Y. Hypoxia and sFlt-1 in preeclampsia: the "chicken-and-egg" question. Endocrinology. 2004 Nov;145(11):4835-7.

27. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. The Journal of clinical investigation. 2003 Mar;111(5):649-58.

28. Rahimi N. Vascular endothelial growth factor receptors: molecular mechanisms of activation and therapeutic potentials. Experimental eye research. 2006 Nov;83(5):1005-16.

29. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature medicine. 2006 Jun;12(6):642-9.

30. Cudmore MJ, Hewett PW, Ahmad S, Wang KQ, Cai M, Al-Ani B, et al. The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis. Nature

communications. 2012;3:972.

31. Polliotti BM, Fry AG, Saller DN, Mooney RA, Cox C, Miller RK. Second-trimester maternal serum placental growth factor and vascular endothelial growth factor for predicting severe, early-onset preeclampsia. Obstetrics and gynecology. 2003 Jun;101(6):1266-74.

32. McKeeman GC, Ardill JE, Caldwell CM, Hunter AJ, McClure N. Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is increased throughout gestation in patients who have preeclampsia develop. American journal of obstetrics and gynecology. 2004 Oct;191(4):1240-6.

33. Andraweera PH, Dekker GA, Laurence JA, Roberts CT. Placental expression of VEGF family mRNA in adverse pregnancy outcomes. Placenta. 2012 Jun;33(6):467-72.

34. Hunter A, Aitkenhead M, Caldwell C, McCracken G, Wilson D, McClure N. Serum levels of vascular endothelial growth factor in preeclamptic and normotensive pregnancy. Hypertension. 2000 Dec;36(6):965-9.

35. Xiong Y, Liebermann DA, Tront JS, Holtzman EJ, Huang Y, Hoffman B, et al. Gadd45a stress signaling regulates sFlt-1 expression in preeclampsia. Journal of cellular physiology. 2009 Sep;220(3):632-9.

36. Lyall F, Belfort M. Pre-eclampsia: Etiology and Clinical Practice: Cambridge Médecine; 2007. 37. Schaarschmidt W, Rana S, Stepan H. The course of angiogenic factors in early- vs. late-onset

preeclampsia and HELLP syndrome. Journal of perinatal medicine. 2013 Apr 11:1-6.

38. Sibai BM, Stella CL. Diagnosis and management of atypical preeclampsia-eclampsia. American journal of obstetrics and gynecology. 2009 May;200(5):481 e1-7.

39. Bulletins--Obstetrics ACoP. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstetrics and gynecology. 2002 Jan;99(1):159-67.

40. LaMarca B, Parrish MR, Wallace K. Agonistic autoantibodies to the angiotensin II type I receptor cause pathophysiologic characteristics of preeclampsia. Gender medicine. 2012 Jun;9(3):139-46. 41. Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jupner A, et al. Patients with

preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. The Journal of clinical investigation. 1999 Apr;103(7):945-52.

42. Beleza P. Acute symptomatic seizures: a clinically oriented review. The neurologist. 2012 May;18(3):109-19.

43. Kayem G, Mandelbrot L, Haddad B. [Use of magnesium sulfate in obstetrics]. Gynecologie, obstetrique & fertilite. 2012 Oct;40(10):605-13. Utilisation du sulfate de magnesium en obstetrique. 44. Mattar F, Sibai BM. Eclampsia. VIII. Risk factors for maternal morbidity. American journal of obstetrics

and gynecology. 2000 Feb;182(2):307-12.

45. Indicateurs de la santé périnatale au Canada 2011. In: Canada Adlspd, editor. Ottawa: Gouvernement du Canada; 2011.

46. Ducarme G, Bernuau J, Luton D, College national des gynecologues et o, Societe francaise de medecine p, Societe francaise de n, et al. [Liver and preeclampsia]. Annales francaises d'anesthesie et de reanimation. 2010 Apr;29(4):e97-e103. Foie et preeclampsie.

47. Gaber LW, Spargo BH, Lindheimer MD. Renal pathology in pre-eclampsia. Bailliere's clinical obstetrics and gynaecology. 1994 Jun;8(2):443-68.

48. Mustafa R, Ahmed S, Gupta A, Venuto RC. A comprehensive review of hypertension in pregnancy. Journal of pregnancy. 2012;2012:105918.

49. Agatisa PK, Ness RB, Roberts JM, Costantino JP, Kuller LH, McLaughlin MK. Impairment of endothelial function in women with a history of preeclampsia: an indicator of cardiovascular risk. American journal of physiology Heart and circulatory physiology. 2004 Apr;286(4):H1389-93. 50. Haukkamaa L, Salminen M, Laivuori H, Leinonen H, Hiilesmaa V, Kaaja R. Risk for subsequent

coronary artery disease after preeclampsia. The American journal of cardiology. 2004 Mar 15;93(6):805-8.

51. Tenhola S. Blood Pressure, Serum Lipids, Fasting Insulin, and Adrenal Hormones in 12-Year-Old Children Born with Maternal Preeclampsia. Journal of Clinical Endocrinology & Metabolism. 2003;88(3):1217-22.

52. Mishell DRJ, Goodwin TM, Brenner PF. Management of common problems in obstetrics and gynecology. 4th ed: Blackwell Publishing; 2002.

53. Roberge S, Giguere Y, Villa P, Nicolaides K, Vainio M, Forest JC, et al. Early administration of low- dose aspirin for the prevention of severe and mild preeclampsia: a systematic review and meta- analysis. American journal of perinatology. 2012 Aug;29(7):551-6.

54. Savaj S, Vaziri N. An overview of recent advances in pathogenesis and diagnosis of preeclampsia. Iranian journal of kidney diseases. 2012 Sep;6(5):334-8.

55. Hofmeyr GJ, Lawrie TA, Atallah AN, Duley L. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane database of systematic reviews. 2010 (8):CD001059.

56. Rosas-Rodriguez JA, Valenzuela-Soto EM. Enzymes involved in osmolyte synthesis: how does oxidative stress affect osmoregulation in renal cells? Life Sci. 2010 Oct 23;87(17-18):515-20.

57. Hyndman D, Bauman DR, Heredia VV, Penning TM. The aldo-keto reductase superfamily homepage. Chemico-Biological Interactions. 2003;143-144:621-31.

58. Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol. 2002;50:325-92. eng.

59. O'Connor T, Ireland LS, Harrison DJ, Hayes JD. Major differences exist in the function and tissue- specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. The Biochemical journal. 1999 Oct 15;343 Pt 2:487-504. 60. Hers HG. [Aldose reductase]. Biochimica et biophysica acta. 1960 Jan 1;37:120-6.

61. Oates PJ. Polyol pathway and diabetic peripheral neuropathy. International review of neurobiology. 2002;50:325-92.

62. Berry GT. The role of polyols in the pathophysiology of hypergalactosemia. European journal of pediatrics. 1995;154(7 Suppl 2):S53-64.

63. Vander Jagt DL, Kolb NS, Vander Jagt TJ, Chino J, Martinez FJ, Hunsaker LA, et al. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochimica et biophysica acta. 1995 Jun 12;1249(2):117-26.

64. Yabe-Nishimura C. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacological reviews. 1998 Mar;50(1):21-33.

68. Takeuchi M, Iwaki M, Takino J, Shirai H, Kawakami M, Bucala R, et al. Immunological detection of fructose-derived advanced glycation end-products. Laboratory investigation; a journal of technical methods and pathology. 2010 Jul;90(7):1117-27.

69. Ko BC, Lam KS, Wat NM, Chung SS. An (A-C)n dinucleotide repeat polymorphic marker at the 5' end of the aldose reductase gene is associated with early-onset diabetic retinopathy in NIDDM patients. Diabetes. 1995 Jul;44(7):727-32.

70. Kao YL, Donaghue K, Chan A, Knight J, Silink M. A novel polymorphism in the aldose reductase gene promoter region is strongly associated with diabetic retinopathy in adolescents with type 1 diabetes. Diabetes. 1999 Jun;48(6):1338-40. eng.

71. Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes. 2009 Sep;58(9):2137-47.

72. Shah VO, Scavini M, Nikolic J, Sun Y, Vai S, Griffith JK, et al. Z-2 microsatellite allele is linked to increased expression of the aldose reductase gene in diabetic nephropathy. J Clin Endocrinol Metab. 1998 Aug;83(8):2886-91.

73. Xu M, Chen X, Yan L, Cheng H, Chen W. Association between (AC)n dinucleotide repeat

polymorphism at the 5'-end of the aldose reductase gene and diabetic nephropathy: a meta-analysis. Journal of molecular endocrinology. 2008 May;40(5):243-51.

74. Moczulski DK, Scott L, Antonellis A, Rogus JJ, Rich SS, Warram JH, et al. Aldose reductase gene polymorphisms and susceptibility to diabetic nephropathy in Type 1 diabetes mellitus. Diabet Med. 2000 Feb;17(2):111-8.

75. Donaghue KC, Margan SH, Chan AK, Holloway B, Silink M, Rangel T, et al. The association of aldose reductase gene (AKR1B1) polymorphisms with diabetic neuropathy in adolescents. Diabetic medicine : a journal of the British Diabetic Association. 2005 Oct;22(10):1315-20.

76. Sivenius K, Pihlajamaki J, Partanen J, Niskanen L, Laakso M, Uusitupa M. Aldose reductase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes. Diabetes care. 2004 Aug;27(8):2021-6.

77. Schemmel KE, Padiyara RS, D'Souza JJ. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. Journal of diabetes and its complications. 2010 Sep-Oct;24(5):354- 60.

78. Yamagishi S-I, Sugai S, Yagihashi N, Yagihashi S, Kasajima H. Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients. Virchows Archiv. 2001;439(1):46-54.

79. Klapacz J, Lingaraju GM, Guo HH, Shah D, Moar-Shoshani A, Loeb LA, et al. Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Molecular cell. 2010 Mar 26;37(6):843-53.

80. Tong EH, Guo JJ, Xu SX, Mak K, Chung SK, Chung SS, et al. Inducible nucleosome depletion at OREBP-binding-sites by hypertonic stress. PloS one. 2009;4(12):e8435.

81. Lam AK, Ko BC, Tam S, Morris R, Yang JY, Chung SK, et al. Osmotic response element-binding protein (OREBP) is an essential regulator of the urine concentrating mechanism. The Journal of biological chemistry. 2004 Nov 12;279(46):48048-54.

82. Arroyo JA, Teng C, Battaglia FC, Galan HL. Determination of the NFAT5/TonEBP transcription factor in the human and ovine placenta. Systems biology in reproductive medicine. 2009 Aug;55(4):164-70. 83. Kabututu Z, Manin M, Pointud JC, Maruyama T, Nagata N, Lambert S, et al. Prostaglandin F2alpha

synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7. Journal of biochemistry. 2009 Feb;145(2):161-8.

84. Breuiller-Fouche M, Leroy MJ, Dubois O, Reinaud P, Chissey A, Qi H, et al. Differential expression of the enzymatic system controlling synthesis, metabolism, and transport of PGF2 alpha in human fetal membranes. Biology of reproduction. 2010 Jul;83(1):155-62.

85. Aid S, Bosetti F. Targeting cyclooxygenases-1 and -2 in neuroinflammation: Therapeutic implications. Biochimie. 2011 Jan;93(1):46-51.

86. Madore E, Harvey N, Parent J, Chapdelaine P, Arosh JA, Fortier MA. An aldose reductase with 20 alpha-hydroxysteroid dehydrogenase activity is most likely the enzyme responsible for the production of prostaglandin f2 alpha in the bovine endometrium. The Journal of biological chemistry. 2003 Mar 28;278(13):11205-12.

87. Bresson E, Boucher-Kovalik S, Chapdelaine P, Madore E, Harvey N, Laberge PY, et al. The human aldose reductase AKR1B1 qualifies as the primary prostaglandin F synthase in the endometrium. The Journal of clinical endocrinology and metabolism. 2011 Jan;96(1):210-9.

88. Bresson E, Lacroix-Pepin N, Boucher-Kovalik S, Chapdelaine P, Fortier MA. The Prostaglandin F Synthase Activity of the Human Aldose Reductase AKR1B1 Brings New Lenses to Look at Pathologic Conditions. Frontiers in pharmacology. 2012;3:98.

89. Pepin NL, Chapdelaine P, Fortier MA. Evaluation of the prostaglandin F synthase activity of human and bovine aldo-keto reductases: AKR1A1s complement AKR1B1s as potent PGF synthases. Prostaglandins & other lipid mediators. 2013 Jun 6.

90. Ruef J, Liu SQ, Bode C, Tocchi M, Srivastava S, Runge MS, et al. Involvement of Aldose Reductase in Vascular Smooth Muscle Cell Growth and Lesion Formation After Arterial Injury. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000;20(7):1745-52.

91. Shinmura K. Aldose Reductase Is an Obligatory Mediator of the Late Phase of Ischemic Preconditioning. Circulation Research. 2002;91(3):240-6.

92. Srivastava S, Watowich SJ, Petrash JM, Srivastava SK, Bhatnagar A. Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry. 1999 Jan 5;38(1):42-54. 93. Spite M, Baba SP, Ahmed Y, Barski OA, Nijhawan K, Petrash JM, et al. Substrate specificity and

catalytic efficiency of aldo-keto reductases with phospholipid aldehydes. Biochem J. 2007 Jul 1;405(1):95-105.

94. Stemmer U, Dunai ZA, Koller D, Purstinger G, Zenzmaier E, Deigner HP, et al. Toxicity of oxidized phospholipids in cultured macrophages. Lipids in health and disease. 2012;11:110.

95. Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacological reviews. 2004 Sep;56(3):331-49. 96. Warren JC, Murdock GL, Ma Y, Goodman SR, Zimmer WE. Molecular cloning of testicular 20 alpha-

hydroxysteroid dehydrogenase: identity with aldose reductase. Biochemistry. 1993 Feb 16;32(6):1401-6.

97. Matsuura K, Deyashiki Y, Bunai Y, Ohya I, Hara A. Aldose reductase is a major reductase for isocaproaldehyde, a product of side-chain cleavage of cholesterol, in human and animal adrenal glands. Archives of biochemistry and biophysics. 1996 Apr 15;328(2):265-71.

98. Carr IM, Markham AF, Coletta PL. Identification and characterisation of a sequence related to human sorbitol dehydrogenase. European journal of biochemistry / FEBS. 1997 May 1;245(3):760-7.

99. Iwata T, Popescu NC, Zimonjic DB, Karlsson C, Hoog JO, Vaca G, et al. Structural organization of the human sorbitol dehydrogenase gene (SORD). Genomics. 1995 Mar 1;26(1):55-62.

100. Siebens AW, Spring KR. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells. The American journal of physiology. 1989 Dec;257(6 Pt 2):F937-46.

101. Schuttert JB, Fiedler GM, Grupp C, Blaschke S, Grunewald RW. Sorbitol transport in rat renal inner medullary interstitial cells. Kidney Int. 2002 Apr;61(4):1407-15. eng.

102. Kracke GR, Preston GG, Stanley TH. Identification of a sorbitol permease in human erythrocytes. The American journal of physiology. 1994 Feb;266(2 Pt 1):C343-50. eng.

103. Garty H, Furlong TJ, Ellis DE, Spring KR. Sorbitol permease: an apical membrane transporter in cultured renal papillary epithelial cells. The American journal of physiology. 1991 May;260(5 Pt 2):F650-6. eng.

105. Ho HT, Chung SK, Law JW, Ko BC, Tam SC, Brooks HL, et al. Aldose reductase-deficient mice develop nephrogenic diabetes insipidus. Molecular and cellular biology. 2000 Aug;20(16):5840-6. 106. Holmes RS, Duley JA, Hilgers J. Sorbitol dehydrogenase genetics in the mouse: a 'null' mutant in a

'European' C57BL strain. Animal blood groups and biochemical genetics. 1982;13(4):263-72. 107. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005

Jun;54(6):1615-25.

108. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010 Apr;139(4):685-95. 109. Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and oxidative damage in

diabetes and the consequent potential for therapeutic options. Endocrine reviews. 2005 May;26(3):380-92. eng.

110. Burger-Kentischer A, Muller E, Neuhofer W, Marz J, Thurau K, Beck F. Expression of aldose reductase, sorbitol dehydrogenase and Na+/myo-inositol and Na+/Cl-/betaine transporter mRNAs in individual cells of the kidney during changes in the diuretic state. Pflugers Archiv : European journal of physiology. 1999 Jan;437(2):248-54.

111. Burger-Kentischer A, Muller E, Marz J, Fraek ML, Thurau K, Beck FX. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. Kidney Int. 1999 Apr;55(4):1417-25. 112. Burg MB. Molecular basis of osmotic regulation. The American journal of physiology. 1995 Jun;268(6

Pt 2):F983-96.

113. Schrijvers BF, De Vriese AS, Flyvbjerg A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocrine reviews. 2004 Dec;25(6):971-1010.

114. Shah VO, Dorin RI, Sun Y, Braun M, Zager PG. Aldose reductase gene expression is increased in diabetic nephropathy. The Journal of clinical endocrinology and metabolism. 1997 Jul;82(7):2294-8. 115. Seland JH, Chylack LT, Jr. Acute glucose-derived osmotic stress in rabbit lenses. Acta

ophthalmologica. 1986 Oct;64(5):533-9.

116. Kinoshita JH. Mechanisms initiating cataract formation. Proctor Lecture. Investigative ophthalmology. 1974 Oct;13(10):713-24.

117. Hohman TC, Nishimura C, Robison WG, Jr. Aldose reductase and polyol in cultured pericytes of human retinal capillaries. Experimental eye research. 1989 Jan;48(1):55-60.

118. Ciulla TA, Harris A, Latkany P, Piper HC, Arend O, Garzozi H, et al. Ocular perfusion abnormalities in diabetes. Acta ophthalmologica Scandinavica. 2002 Oct;80(5):468-77.

119. Chakrabarti S, Sima AA. Effect of aldose reductase inhibition and insulin treatment on retinal capillary basement membrane thickening in BB rats. Diabetes. 1989 Sep;38(9):1181-6.

120. McCaleb ML, McKean ML, Hohman TC, Laver N, Robison WG, Jr. Intervention with the aldose reductase inhibitor, tolrestat, in renal and retinal lesions of streptozotocin-diabetic rats. Diabetologia. 1991 Oct;34(10):695-701.

121. Hotta N, Kawamori R, Atsumi Y, Baba M, Kishikawa H, Nakamura J, et al. Stratified analyses for selecting appropriate target patients with diabetic peripheral neuropathy for long-term treatment with an aldose reductase inhibitor, epalrestat. Diabetic medicine : a journal of the British Diabetic Association. 2008 Jul;25(7):818-25.

122. Oka M, Kato N. Aldose reductase inhibitors. Journal of enzyme inhibition. 2001 Dec;16(6):465-73. 123. Hers HG. [The mechanism of the transformation of glucose in fructose in the seminal vesicles].

Biochimica et biophysica acta. 1956 Oct;22(1):202-3. Le mecanisme de la transformation de glucose en fructose par les vesicules seminales.

124. Frenette G, Thabet M, Sullivan R. Polyol pathway in human epididymis and semen. Journal of andrology. 2006 Mar-Apr;27(2):233-9.

Documents relatifs