• Aucun résultat trouvé

CHAPITRE I LA MICROSCOPIE A FORCE ATOMIQUE

I.6 Technique dérivée de l’AFM pour la mesure du potentiel de surface

I.6.5 La résolution latérale, différence entre EFM et KFM

Les deux techniques présentées précédemment dépendent de la capacité C qui se crée entre la pointe et l’échantillon. Comme le montre la Figure I.23, cette capacité n’est pas uniquement due à la zone proche du bout de la pointe qu’on cherche à étudier. Elle comporte également des contributions parasites dues à la présence d’hétérogénéité sur la surface. La présence de ces capacités parasites a plusieurs conséquences. Tout d’abord le potentiel mesuré en un point sera différent du potentiel réel du fait d’un effet de moyenne. Une autre conséquence est la dégradation de la résolution spatiale.

40

Schéma des capacités C1t(z), C2t(z), …, Cit(z), crée entre la sonde AFM et la

Figure I.23.

surface de l’échantillon, avec des potentiels de surface non-homogène [55]

Dans le cas du KFM, la force à ω dépend de la dérivée de la capacité entre la pointe échantillon (capacité utile et parasité). En revanche la mesure en EFM, dépendant de la dérivée seconde de la capacité. Par conséquent, l’EFM sera moins sensible que le KFM aux capacités parasites et aura donc une meilleure résolution latérale.

41

Références Bibliographiques

[1] G. Binning, H. Rohrer, C. Gerber, E. Weibel, "Surface Studies by Scanning Tunneling

Microscopy” Phys. Rev. Lett., vol. 49, no. 1, 57–61, 1982.

[2] G. Binnig, C. F. Quate, C. Gerber, “Atomic force microscopy” Phys. Rev. Lett., vol. 56, no. 9, 930–934, 1986.

[3] S. A. Mann, G. Hoffmann, A. Hengstenberg, W. Schuhmann, I. D. Dietzel, “Pulse-mode

scanning ion conductance microscopy--a method to investigate cultured hippocampal cells” J. Neurosci. Methods, vol. 116, no. 2, 113–7, May 2002.

[4] D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, T. Yogi, “Magnetic force microscopy: General principles and application to longitudinal recording

media” J. Appl. Phys., vol. 68, no. 3, 1169, 1990.

[5] I. Giaever, “Energy Gap in Superconductors Measured by Electron Tunneling” Phys. Rev. Lett., vol. 5, no. 4, 147–148, Aug. 1960.

[6] G. Binnig, H.Roher, C. Gerber, E. Weibel, “Tunneling through a controllable vacuum

gap” Appl. Phys. Lett., vol. 40, no. 2, 178, 1982.

[7] E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R.L. Kostelak, “Breaking the

Diffraction Barrier : Optical Microscopy” Science, Vol. 251, no. 5000, 1468-1470, 1991.

[8] D. Van Labeke, Technique d'ingenieur, “Microscopie optique en champ proche,” 862– 878, 1998.

[9] S. W. Howell, “Electrostatic force microscopy studies of nanoscale systems” Thesis of Purdue University, 2001.

[10] W. Melitz, J. Shen, A. C. Kummel, S. Lee, “Kelvin probe force microscopy and its

application” Surf. Sci. Rep., vol. 66, no. 1, 1–27, Jan. 2011.

[11] U. Hartmann, “Magnetic force microscopy: Some remarks from the micromagnetic

point of view” J. Appl. Phys., vol. 64, no. 3, 1561, 1988.

[12] L. Zhang, T. Sakai, N. Sakuma, T. Ono, K. Nakayama, “Nanostructural conductivity and

surface-potential study of low-field-emission carbon films with conductive scanning probe microscopy” Appl. Phys. Lett., vol. 75, no. 22, 3527, 1999.

[13] J. B. Xu, K. Läuger, K. Dransfeld, I. H. Wilson, “Thermal sensors for investigation of

heat transfer in scanning probe microscopy” Rev. Sci. Instrum., vol. 65, no. 7, 2262, 1994.

[14] E. Meyer, H. J. Hug, R. Bennewitz, "Scanning probe microscopy - The lab on a tip". Springer, 2003.

42

[15] G. C. Stevens and P. J. Baird, “Nano- and meso-measurement methods in the study of

dielectrics” IEEE Trans. Dielectr. Electr. Insul., vol. 12, no. 5, 979–992, 2005.

[16] H. N. Hansen, K. Carneiro, H. Haitjema, L. De Chiffre, “Dimensional Micro and Nano

Metrology” CIRP Ann. - Manuf. Technol., vol. 55, no. 2, 721–743, 2006.

[17] J. Miles, “Nanometrology The Critical Role of Measurement in supporting Australien Nanotechnology.” 1st Edition, 2006.

[18] Z. Yu, D.- Hannover, S. Boseck, “Scanning acoustic microscopy and its applications to material characterization,” vol. 67, no. 4, pp. 863–891, 1995.

[19] B.T. Khuri-Yakub, S. Akamine, B. Hadimioglut, H. Yamada, C. F. Quate, P. Alto, “Near

filed accoustic microscopy" SPIE, vol. 1556, 30–39, 1991.

[20] R. K. Leach, R. Boyd, T. Burke, H.-U. Danzebrink, K. Dirscherl, T. Dziomba, M. Gee, L. Koenders, V. Morazzani, A. Pidduck, D. Roy, W. E. S. Unger, A. Yacoot, “The European

nanometrology landscape” Nanotechnology, vol. 22, no. 6, 62001, Feb. 2011.

[21] H. N. Hansen, “Dimensional Metrology in Micro Manufacturing” Ann. CIRP, 1-7, 2006. [22] I. Giaever, “Energy Gap in Superconductors Measured by Electron Tunneling” Phys. Rev. Lett., vol. 5, no. 4, 147–148, Aug. 1960.

[23] R. Dianoux, F. Martins, F. Marchi, C. Alandi, F. Comin, J. Chevrier, “Detection of

electrostatic forces with an atomic force microscope: Analytical and experimental dynamic force curves in the nonlinear regime” Phys. Rev. B, vol. 68, no. 4, 045403, 2003.

[24] J. N. Israelachvili, "Intermolecular and Surface Forces" 2nd editio. New York, 1– 599, 1992.

[25] M. Tortonese, R. C. Barrett, C. F. Quate, “Atomic resolution with an atomic force

microscope using piezoresistive detection” Appl. Phys. Lett., vol. 62, no. 8, 834, 1993.

[26] S. Akamine, R. C. Barrett, C. F. Quate, “Improved atomic force microscope images

using microcantilevers with sharp tips” Appl. Phys. Lett., vol. 57, no. 3, 316, 1990.

[27] O. Wolter, “Micromachined silicon sensors for scanning force microscopy”, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 9, no. 2, 1353, Mar. 1991.

[28] M. Hrouzek, "Atomic force microscopy, modeling, estimation and control", thèse université de Josephe Fournier Grenoble, 2007.

[29] G. Binnig and D. P. E. Smith, “Single-tube three-dimensional scanner for scanning

43

[30] C. J. Chen, “Electromecanical deflections of piozoelectric tubes with quartred

electrodes”, no. 4, 132–134, 1992.

[31] G. Schitter, A. Stemmer, F. Allgower, “Robust 2DOF-control of a piezoelectric tube

scanner for high speed atomic force microscopy”, IEEE, 3720–3725, 2003.

[32] Y. Martin, D. W. Abraham, H. K. Wickramasinghe, “High-resolution capacitance

measurement and potentiometry by force microscopy” Appl. Phys. Lett., vol. 52, 13, p.

1103, 1988.

[33] R. Wiesendanger, “Scanning probe microscopy and spectroscopy - Methods and

applications” Cambridge university press, 1994.

[34] R. Arinero, C. Riedel, C. Guasch, “Numerical simulations of electrostatic interactions

between an atomic force microscopy tip and a dielectric sample in presence of buried nano-particles” J. Appl. Phys., vol. 112, no. 11, 114313, 2012.

[35] N. Laboratorium and G. Eindhoven, “The London-van der Waals attraction between

spherical particles,” Phys. IV, vol. 10, no. 1, 1058–1072, 1937.

[36] H. C. Hamaker, "The London-Van der Waals attraction between spherical particles", Physica, vol. 4, 1058-1072, 1937.

[37] A. Schirmeisen, D. Weiner, H. Fuchs, “Measurements of metal–polymer adhesion

properties with dynamic force spectroscopy” Surf. Sci., vol. 545, no. 3, 155–162, 2003.

[38] F. J. Giessibl, E. Correlations, “Advances in atomic force microscopy” Rev. Mod. Phys., no 75, 949, 2003.

[39] D. L. Malotky, M. K. Chaudhury, “Investigation of Capillary Forces Using Atomic Force

Microscopy” Langmuir, vol. 17, no. 25, 7823–7829, 2001.

[40] J. Sprakel, N. Besseling, F. Leermakers, M. Cohen Stuart, “Equilibrium Capillary

Forces with Atomic Force Microscopy” Phys. Rev. Lett., vol. 99, no. 10, 104504, 2007.

[41] L. Nony, “Analyse de la microscopie de force dynamique : application à l’étude de

l'A.D.N.” Thèse de l'université de Bordeaux I, 2000.

[42] Z. Wei, M. He, W. Zhao, Y. Li, “Thermodynamic analysis of liquid bridge for fixed

volume in atomic force microscope” Sci. China Physics, Mech. Astron., vol. 56, no. 10,

1962–1969, 2013.

[43] L. Sirghi, “Effect of capillary-condensed water on the dynamic friction force at

nanoasperity contacts” Appl. Phys. Lett., vol. 82, no. 21, p. 3755, 2003.

[44] B. Cappella, G. Dietler, “Force-distance curves by atomic force microscopy”, Surf. Sci. Rep., vol. 34, 1, 1999.

44

[45] A. Hinaut, “Etude par microscopie à force atomique en mode non contact et

microscopie à sonde de Kelvin de dérivés du triphénylène sur KBr(001) dans l’ultra vide”

Thèse de l'université de Paul Sabatier, 2012.

[46] Y. Martin, C. C. Williams,H. K. Wickramasinghe, “Atomic force microscope–force

mapping and profiling on a sub 100-Å scale” J. Appl. Phys., vol. 61, no. 10, p. 4723, 1987.

[47] P. Gleyzes, P. K. Kuo, a. C. Boccara, “Bistable behavior of a vibrating tip near a solid

surface” Appl. Phys. Lett., vol. 58, no. 25, p. 2989, 1991.

[48] J. Stern, B. Terris, H. Mamin, D. Rugar, “Deposition and imaging of localized charge on

insulating surfaces using a force microscope”. Appl. Phys. Lett. no. 53, 2717, 1988.

[49] B. Terris, J. Stern, D. Rugar, H. Mamin, “Contact electrification using force

microscopy” Phys.Rev. Lett., no 63, 2669 1989.

[50] C. Schönenberger, “Charge flow during metal-insulator contact”, Phys. Rev. B., no 45, 3861, 1992.

[51] J. Erskine-Murray, “On contact electricity of metals”. Proceedings of the Royal Society of London, no 63, 389-400, 1898.

[52] R. Shikler, T. Meoded, N. Fried, B. Mishori, Y. Rosenwaks, “Two-dimensional surface

band structure of operating light emitting devices”, Journal of Applied Physics, no 86,

107–113, 1999.

[53] S. V. Kalinin, A. Gruverman, “Scanning Probe Microscopy: Electrical and

Electromechanical Phenomena at the Nanoscale”. Springer, Berlin, Germany, 2007.

[54] Y. Martin, D. W. Abraham, H. K. Wickramasinghe, “High-resolution capacitance

measurement and potentiometry by force microscopy”. Appl. Phy. Let., no 52, 1103–1105,

1988.

[55] H. O. Jacobs, P. Leuchtmann, O. J. Homan, A. Stemmer, “Resolution and contrast in

Documents relatifs