• Aucun résultat trouvé

hypothesis that elevated free fatty acids are causally implicated in pancreatic B-cell insensitivity to glucose by down-regulating the enzymatic activity and the expression of genes

encoding

key

regulatory enzymes

involved in the

pathway

of malonyl-CoA

and long-chain acyl-CoA production from glucose, we have begun

to

study the effects

of

prolonged exposure

of INS-I

cells

to fatty

acids on glucose-induced

ACC mRNA

accumulation. Our pretiminary data show that

fatty

free acids antagonize the action

of

glucose on

ACC

gene expression. To our knowledge,

it

is the

first

time that an action

of

fatty acids on metabolic gene expression

in

the

B-cell is

described. These observations

could

have implications

in type 2

diabetes and obesity where circulatory lipids and free fatty acids are abundant.

It

is becoming apparent that glucose and

fatty

acids are involved

in insulin

resistance, diabetes

and obesity. Indeed,

nutrients

and specially the fatty acids affect

important

physiological and

pathological processes such

as thrombotic,

atherosclerotic, immune, inflammatory and proliferative processes. Therefore, defining the genes whose expression

are

modulated

by

nutrients

and the

mechanism(s)

involved should have

considerable biological and

clinical

implications.

4.

5.

6.

8

9 7

REFERENCES

)

3

1

Entian

K.D.,

and Barnett J.A. (1992). Regulation of sugar utilization by Saccharomyces cerevisiae.

TIBS 17,506-510.

Hargrove

J.L.,

and Berdanier C.D. (1992). Nutrient receptors and gene expression.

ln

CRC Press Reviews @erdanier C.D., and Hargrove J.L. eds) CRC Press, Boca Raton, Florida. l-19.

Clarke S.D., and Abraham S. (1992). Gene expression : nutrient control of pre- and post-transcriptional events. FASEB J. 6,31Æ-3152.

Meglasson

M.D.,

and Matschinsky F.M. (1986). Pancretic islet glucose metabolism and regulation of insulin secretion. Diabetes/Metabolism Rev.

2,

163-214.

Johnston

M.

(1987). A model fungal gene regulatory mechanism: the GAL genes 9f Microbiol. Rew.

51,458476.

Chambers

A.,

Stanway C., Kingsman A.J., and Kingsgman S.M. (1988). The UAS of the yeast gene is composed of multiple functional elements. Nucl. Acids Res. 16,8245-826I.

Chambers A., Tsang J.S.H., Stanway C., Kingsman A.J., and Kingsgman S.M. (1989).

Transcriptional control of the Saccharomyces cerevisiae PGK gene by RAP-I. Mol.Cell.Biol. 9, 5516-5524..

Chambers

4.,

Stanway C., Tsang J.S.H., Henry

Y.,

Kingsman A.J., and Kingsgman S.M. (1989).

ARS binding factor 1 binds adjacent to RAPI at the UASs of the yeast glycolytic genes PGK and PYK1

.

Nucl. Acids Res.18, 5393-5399.

Baker

H.V.

(1991). GCRI

of

Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CÏ-[CC sequence

motif.

Proc.Natl.Acad.Sci. USA,88, 9M3-9447.

10 Rose M., Albig

W.,

and Entian K.D. (1991). Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinæes PI and PlI. Eur.J.Biol. 199, 511-518.

11.

Lamphier M.S., and Ptashne M. (1992). Multiple mechanisms mediate glucose repression of the

yeast. GALI gene. Proc.Natl.Acad.Sci. USA, E9, 5922-5926.

12.

Stone G., and Sadowski

t.

(1993). GAL4 is regulated by a glucose-responsive functional domain.

EMBO

J.

t2,1375-1385.

13 Niederacher

D.,

Schuller H-J., Grzesitza D., Gutlich H., Hauser H.P., Wagner

T.,

and Entian K.D (1992). Identification of UAS elements and binding proteins necessary for derepression

of

Saccharomyces cerevisiae fructose-l,6 bisphosphatæe. Curr. Genet.22,36337A

14.

Cohen R., Holland J.P., Yokoi

T.,

and Holland M.J. (1986). Identification of a regulatory region that

l9

mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol.

Cell

Biol.

6,2287-2297 .

15 Kim K.S., Park S.W., and Kim Y.S. (1992). Regulation of ATP-citrate lyase at transcriptional and post-transcriptional levels in rat liver. Biochem.Biophys.Res.Commun. 189,264-271.

16.

Fukuda

H.,

Katsurada A., and Iritani

N.

(1992). Effect of nutrients and hormones on gene expression of ATP-citrate lyase in rat liver. Eur.J.Biochem. 209,217-222.

î7 Katsurada

A.,

Iritani N., Fukuda

H.,

Matsumura

Y.,

Nishimoto

N.,

Noguchi

T.,

and Tanaka T (1990). Effects of nutrients and hormones on transcriptional and post-fianscriptional regulation of acetyl-CoA carboxylase in rat liver. Eur. .1. Biochem. 190,435-441.

18. Pape

M.E.,

Lopez-Casillas F., and Kim K-H. (1988). Physiological regulation of acetyl-CoA carboxylase gene expression: effects

ofdiet,

diabetes and lactation on acetyl-CoA carboxylase mRNA. Arch. Biochem.Biophys. 267, 104-109.

Allred

J.8.,

and Bowers D.F. (1992). Regulation of acetyl CoA carboxylase and gene regulation. In CRC Press Reviews @erdanier C.D., and Hargrove J.L. eds) CRC Press, Boca Raton, Florida. 269-295.

Katsurada

A.,

Iritani N., Fukuda

H.,

Matsumura

Y.,

Nishimoto

N.,

Noguchi

T.,

and Tanaka T.

(1990). Effects of nutrients and hormone.s on transcriptional and post-transcriptional regulation

of

fatty acid synthæe in rat liver. Eur.

l.

Biochem. 190, 427-433.

Jacoby

D.8.,

Zilz N.D., and Towle H.C. (1989). Sequences within the S'-flanking region of the St4 gene confer responsiveness to glucose in primary hepatocytes. J.Biol.Chem. 264, 17623-17626.

Shih

H-M.,

and Towle H.C. (1992). Definition of the carbohydrate response element of the rat S14 gene. J. Biol. Chem. 267, 13222-13228.

Hamblin P.S., Ozawa Y., Jefferds

A.,

and Mariæh C.N. (1989). Interaction between fructose and glucose on the regulation of the nuclear precursor for mRNA Sl4. J.Biol.Chem.264,2læ6-21651.

Jump

D.8.,

Bell

A.,

and Santiago

V.

(1990). Thyroid hormone and dietary carbohydrate interact to regulate rat liver S14 gene transcription and chromatin structure. J.Biol.Chem. 265,3474-3478.

Mariash C.N. (1989). A novel hepatic nucleotide is correlated with the carbohydrate induction of

messenger ribonucleic acid S14. Endocrinology 124, 212-217 "

NtambiJ.M. (1992). Dietary regulationof stearoyl-CoA desaturase

I

gene expression in mouse

liver. J. Biol. Chem. 267, 10925- 10930.

Rongnoparut P., Verdon C.P., Gehnrich S.C., and Sul H.S. (1991). Isolation and characterization

of

the transcriptionally regulated mouse liver @-type) phosphofructokinase gene and its promoter.

J.Biol. Chem. 266, 8086-809 1.

30

t7065-17071

29 Thompson K.S., and Towle H.C. (1991). Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene. J.Biol.Chem.

266,8679-8682-LiuZ.,

Thompson K.S., and Towle H.C. (1993). Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors:

LF-AI

and a member of the c-myc family. J.Biol.Chem.26E,

12787-12795.

Decaux J-F., Antoine

8.,

and Kahn

A.

(1989). Regulation of the expression of the L-type pyruvate kinase gene in adult rat hepatocytes in primary culture. J.Biol.Chem.2M,11584-11590.

Strobl W., Gorder

N.L.,

Fienup G.A., Lin-Lee Y-C., Gotto

A.M.,

and Patsch \ry. (1989). Effect

of

sucrose diet on apolipoprotein biosynthesis in rat liver. J.Biol.Chem. 264, LI90-LI94.

Prostko C.R., Fritz R.S., and Kletzien R.F. (1989). Nutritional regulation of hepatic glucose{-phosphate dehydrogen ase. Bio chem. J. 25E, 295 -299 .

German M.S., Moss

L.G.,

and Rutter W.J. (1990). Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J.Biol.Chem. 265,22M3-22M6.

Marie S., Diaz-Guerra M-J., Miquerol

L.,

Kahn

A.,

and lynedjian P.B. (1993). The pyruvate kinase gene as a model for studies of glucose-dependent regulation of gene expression in the endocrine pancreatic R-cell type. J. Biol. Chem. 268, 2388 1 -23890.

Decaux J-F., Marcillat O., Pichard A-L., Henry J., and Kahn

A.

(1991). Glucose-dependent and -independent effect of insulin on gene expression. J.Biol.Chem. 266,3432-3438.

37

.

Foufelle F., Gouhot

8.,

Pégorier J-P., Perdereau

D.,

Girard J., and Ferré P. (1992). Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. J.Biol.Chem 267,24543-20546.

Brun

T.,

Roche E., Kim K-H., and Prentki

M.

(1993). Glucose regulates acetyl-CoA carboxylase gene expression in a pancreatic fj-cell line [NS-1). J.Biol.Chem.268, 18905-18911.

Burmeister

L.A.,

and Mariash C.N. (1991). Dietary sucrose enhances processing of mRNA S14 nuclear precursor. J . Biol. Chem. 266, 22905 -229 I I .

Baum C.L., Teng B-8., and Davidson N.O. (1990). Apolipoprotein B messenger RNA editing in the rat

liver.

J.Biol.Chem. 265, 19263-19270.

Bostrom

K.,

Garcia

2.,

Poksay K.S., Johnson D.F., Lusis A.J., and Innerarity

T.L.

(1990).

Apol ipoprotein B mRNA editing. J. Biol. Chem. 265, 224M-22452.

Semenkovich C.F., Coleman T., and Goforth R. (1993). Physiologic concentrations of glucose regulate fatty acid synthase activity in HepG2 cells by mediating fatty acid synthase mRNA stability. J. Biol. Chem. 268, 6961497 0.

44

45

46

and messenger RNA levels by a high carbohydrate diet. Proc.Natl.Acad.Sci. USA,83, 4705-4709.

Ferrer J., Gomis R., Alvarez J.F., Casamitjana R., and Vilardell E. (1993). Signals derived from glucose metabolism are required for glucose regulation of pancreatic islet Glut mRNA and protein.

Diabetolo gia 42, 127 3-1280.

McDonald M.J., Kaysen J.H., Moran S.M., and Pomije C.E. (1991). Pyruvate dehydrogenase and pyruvate carboxylase . J. Biol. Chem. 266, 22392-22397 .

Ohtaka

M.,

Tawata

M.,

Hosaka Y., and Onaya

T.

(1992). Glucose modulation of aldose reductase mRNA expression and its activity in cultured calf pulmary artery endothelial cells. Diabetologia35, 730:734.

47.

McDonald M.J., McKenzie

D.I.,

Kaysen J.H., Walker

T.M.,

Moran S.M., Fahien

L.A.,

and Towle H.C. (1991). Glucose regulates leucine-induced insulin release and the expression of the branched chain ketoacid dehydrogenase E1a subunit gene in pancreatic islets. J.Biol.Chem266,1335-1340.

48,

Bushman

F.D.

(1992). Activators, deactivators and deactivated activators.

Curr.Biol.2,673475.

Henry

M.F.,

and Cronan J.E. (1992). A new mechanism of transcriptional regulation: release

of

an activator triggered by small molecule binding.

Ce\|70,67t479.

Chirala S.S. (1992). Co-ordinated regulation and inositol-mediated and fatty acid-mediated repression of fatty acid synthase genes in Saccharotnyces cerevisiae. Proc.Natl.Acad.Sci. USA 89, I0232-L0236.

51.

Schuller H.J., Hahn

A.,

Troster F., Schutz

A.,

and Schweizer E. (1992). Co-ordinate genetic control of yeast fatty acid synthase genes FASI and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthasis. EMBO

J. ll,

I07-1I4.

Hasslacher

M.,

Ivessa 4.S., Paltauf F., and Kohlwein S.D. (1993). Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism.

J.Biol. Chem. 268, 10946-1W52.

McDonough

V.M.,

Stukey J.E., and Martin C.E. (1992). Specifrcity of unsaturated fatty acid regulated expression of the Sacchnromyces cerevisiae OLEI gene. J.Biol.Chem. 26, 5931-5936.

Igual J.C., Gonzalez-Bosch C., Franco

L.,

and Perez-Ortin J.E. (1992). The POTI gene for yeast peroxisomal thiolase is subject to three different mechanisms of regulation. MoL Microbiol. 6,

I 867-l 875.

Clarke S.D., and Jump D.B. (1992). Regulation of hepatic gene expression by dietary fats: a unique

rolefor

polyunsaturated fatty acids. In CRC Press Reviews @erdanier C.D., and HargroveJ.L. eds) CRC Press, Boca Raton, Florida, 227-246.

56.

Blake

W.L.,

and Clarke S.D. (1990). Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat. J.Nutr. 120, 1727-1729.

Clarke S.D., Armstrong

M.K.,

and Jump D.B. (1990). Nutritional conrol of rat liver fatty acid synthase and S14 mRNA abundance. J.Nutr. 120,218-224.

49

58.

Clarke S.D., Armstrong

M.K.,

and Jump D.B. (1990). Dietary polyunsaturated fats uniquely suppress rat liver fatty acid synthase and S14 nRNA content. J.Nutr. 120,225-23L.

Armstrong

M.K.,

Blake

W.L.,

and Clarke S.D. (1991). Arachidonic acid suppression of fatty acid synthase gene expression in cultured rat hepatocytes. Biochem.Biophys.Res.Commun.lTT,1056-lA6I.

Storlien

L.H.,

Kraegen E.W., Chisholm D.J., Ford G.L., Bruce D.G., and Pascoe W.S. (1987). Fish

oil

prevents insulin resistance induced by high fat feeding in rats. Science 237, 885-888.

McDougal O.A., Clarke S.D., and Jump D.B. (1992). Tissue specificity of S14 and fatty acid synthase in vitro transcription. Biochem. Biophy s. Res. Commun. 182, 631437 .

Jump

8.D.,

Clarke S.D., McDougald O., and Thelen

A.

(1993). Polyunsaturated fatty acid inhibit S14 gene transcription in rat liver and cultured hepatocytes . Proc.Natl.Acad.Sci. UïA,90,8454-8458.

Roncero C., and Goodridge A.G. (1992). Hexanoate and octanoate inhibit transcription of the malic enzyme and fatty acid synthase genes in chick embryo hepatocytes in culture. J.Biol.Chem.267, t49t8-14927.

DeWille J., and Farmer S.J. (1993). Linoleic acid controls neonatal tissue-specific stearoyl-CoA desaturase mRNA levels. Biochem. Biophy. Acta 1170, 29 I-295.

Tebbey P.W., and Buttke

T.M.

(1992). Arachidonic acid regulates unsaturated fatty acid synthesis in lymphocytas by inhibiting stearoyl-CoA desaturase gene expression. Biochem.Biophy.Acta

ll7l,

27-34.

Distel R.J., Robinson G,S., and Spiegelman B.M. (1992). Fatty acid regulation of gene expression.

l.Biol. Chem. 267, 5937 -5941.

Grimaldi P.A., Knobel S.M., Whitesell R.R., and Abumrad

N.A.

(1992) Induction of aP2 gene expression by nonmetabolized long-chain fatty acids Proc.Natl.Acad.Sci. UïA,89,1930-10934.

Kaminski W.E., Jendraschak

8.,

Kielf R., and von Schacky C. (1993). Dietary omega-3 fatty acids

lower levels of plateletderived growth factor mRNA in human mononuclear cells. Blood 81, 1871-1879.

Docherty

K.,

and Clark

A.R.

(1994). Nutrient regulation of insulin gene expression. FA.IEB./. 8, 20-27.

70.

Welsh

M.,

Scherberg N., Gilmore R., and Steiner

D.F.

(1986). Translational control of insulin biosynthesis. Evidence for regulation of elongation, initiation and signal-recognition-particle-mediated translational arrest by glucose. Biochem.

J.

235, 13590-13594.

7l

Giddings S.G., Chirgwin J., and Permutt

M.A.

(1981).The effect of fasting and feeding on preproinsulin messenger RNA in rats.

J.

Clin. Invest. 67,952-9ffi.

Giddings S.G., Chirgwin J., and Permutt M.A. (1982)- Effect of glucose on preproinsulin messenger RNA in rats in vivo. Diabetes 31,624429.

72.

73

H.

(1989). Short term effects of glucose and arginine on the preproinsulin messenger ribonucleic acid level in the perfused rat pancreas : comparison with insulin secretion. Endocrinology 124,707-711.

Brundstedt J., and Chan S.J. (1982). Direct effect of glucose on the preproinsulin mRNA level in isolated pancreatic islets. Biochem. Biophys. Res. Commun. 106,1383-1389.

Itoh

N.,

and Okamoto

H.

(1980). Translational control of proinsulin by glucose. Nature 283, 100-102.

Giddings S.G., Chirgwin J., and Permutt M.A. (1985). Glucose regulated insulin biosynthesis in isolated rat pancreatic islets is accompanied by changes in proinsulin mRNA. Diabetes Res.2,7l-75 Hammonds P., Schofield P.N., Ashcroft S.J.H., Sutton R., and Gray

D.W.R.

(1987). Regulation and specificity of glucose-stimulated insulin gene expression in human islets

of

Langerhans .FEBS Len.223, I3t-137.

Hammonds P., Schofield P.N., and Ashcroft S.J.H. (1987). Glucose regulates preproinsulin messenger

RNA levels in a clonal cell line of simian virus 4O-transformed B-cells. FEBS

Len.2l3,

149-154.

Welsh

M.,

Nielsen

D.4.,

MacKrell A.J., and Steiner

D.F.

(1985). Control of insulin gene expression in pancreatic R-cells and in an insulin-secreting cell line RIN-5F cells

II.

Regulation of insulin mRNA stability. J. Biol. chem. 260, 13590-13594.

80.

Efrat S., Surana

M.,

and Fleischer N. (1991). Glucose induces insulin gene transcription in a murine pancreatic R-cell line. J. Biol. Chem. 266,

Il ll4l-ll

143.

81.

Goodison S., Kenna S., ans Aschroft S.J.H. (1992). Control of insulin gene expression by glucose.

Biochem.

J.

285, 563-568.

Melloul

D.,

Ben-Neriah

Y.,

and Cesari E. (1993). Glucose modulates the binding of an islet specific factor to a conserved sequence within the rat

I

and human insulin promoters. Proc.Natl.Acad.Sci. USA 90,3865-3869.

German M.S. (1993). Glucose sensing in pancreatic islet R cells: the key role of glucokinase and

glycolytic intermediates. Proc. Natl. Acad. Sci. USA 90, I 78 1 - 1785.

Boam D.S.W., and Docherty

K.

(1989). A tissue-specific nuclear factor binds to multiple sites in the human insulin gene enhancer. Biochem. J. 264,233-239.

Scott

V.,

Clark A.R., Hutton J.C., and Docherty

K.

(1991). Two proteins act as the UIF-1 insulin gene enhancer binding factors. FEBS

lzn.

290,27-30.

Olson

K.L,

Redmon, J.B., Towle H.C., and Robertson R.P. (1993). Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein.

J.

Clin. Invest.92,514-519.

82

83

84

85

86

87.

88.

89.

90.

Ashcroft F.M., and Ashcroft S.J.H. (1992).Insulin. Molecular biology to pathology. Published by IRL press at Oxford University Press.

Orci

L.,

and Unger R.H. (1975). Functional subdivision of islets of Langerhans and possible role

of

D cells. Lancet

2,

1243-1247.

Hedeskov C. V. (1980). Mechanism of glucose-induced insulin seuetion. Physiol. Rev. 60,442-5W.

Prentki

M.,

and Matschinsky F.

M.

(19S7). Ca2*,cAMP and phospholipid derived messengers in the coupling mechanisms of insulin secretion. Physiol. Rev. 67, 1185-1248.

91.

Wollheim C.W., and Sharp G.\ry.G. (1981)" Regulation of insulin release by calcium. Physiol. Rev.

61,914-973.

Meglasson M. D., and Matschinsky F.

M.

(1986). Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes/Metabolism Rev.

2,

163-214.

Turk J., Wolf

8.A.,

and McDaniel

M.L.

(1987).'Ihe role of phospholipid-derived mediators including arachidonic acid, its metabolites, and inositoltrisphosphate and of intracellular

C&+

in glucose-induced insulin secretion by pancreatic islets. Prog. Lipid Res.26, 125-181,.

Wollheim C.8., and Pralong W.F. (1989). Sur les chemins de la sécrétion d'insuline: rôle du calcium et autres messagers intracellulaires. Ed Flammarion médecine-sciences.

Pfanner N., Orci

L.,

Glick B. S., Amherdt M., Arden S. R., Malhotra

V.,

and Rothman J.E. (1989) Fatty acyl-eoenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell59, 95-102.

96.

Pfanner N., Glick B. S., Arden S. R., and Rothman, J.E. (1990). Fatty acylation promotes fusion of transport vesicles with Golgi cisternae.

J.

CeU Biol. 110,955-961.

Corkey B.

8.,

Glennon

M.

C., Chen K. S., Deeney J.

T.,

Matschinsky

F.M.,

and Prentki M.

(1989). A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic

R-cells.

"I. Biol. Chem. 264,21608-21612.

Prentki M., Vischer S., Brun

T.,

Glennon M. C., and Corkey, B. E. (1991). Metabolic coupling factors in R-cell insulin secretion. Excerpta Medica Int. Congress Series. 14th Int. Diabetes Federation Congress.

Prentki

M.,

Vischer S., Glennon M.C., Regazzi R., and Corkey, B.E. (1992). Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion.

J.Biol. Chem. 267, 5802-58 10.

100.

Brun

T.,

Roche E., Assimacopoulos-Jeannet F., Gjinovci

A.,

Kim

K.-H.,

and Prentki

M.

(1993).

Nutrient regulation of pancreatic B-cell signal transduction. Role of acetyl-CoA carboxylase and

fatty acid synthase. Submitted to J. Biol. Chem.

102.

Vranic

M.

(1992). Glucose turnover. A key to understanding the pathogenesis of diabetes. Diabetes 41,1188-1206.

103.

Guyton

A.C.

(1986). Textbook of medical physiology. W.B. Saunders Company, Philadelphia.

104.

Sun X.J., Rothenberg P., Kahn C.R., Backer J.M., Arachi E., Wilden

P.4.,

Cahill

D.A.,

Goldstein 8.J., and White M.F. (1991). Structure of the insulin receptor substrate IRS-I defines a unique signal transduction protein. Nature 352, 73-77 .

105.

Kahn

A.

(1992). La transmission du signal en amont et en aval de Ras. Mëdecine/sciences

8,

1097-1099.

106.

Cook

D. L.,

Satin L.S., Ashford M.L.J, and Hales C. N. (1938). ATP-sensitive

K*

channels in pancreatic p-cells: spare-channel hypothæis. Diabetes 37, 495498.

"l'07.

Ashmoft

F.

M., Harrison

D. 8.,

and Ashcroft S. J. (1986). A potassium channel modulated by glucose metabolism in rat pancreatic R-cells. Adv. in Exp. Med. and

Biol.2l1,5342.

108.

Corkey B.

8.,

Tornheim

K.,

Deeney J. T., Glennon

M.

C., Parker J. C-., Matschinsky F. M., Ruderman N.

8",

and Prentki

M.

(1988). Linked oscillations of free CaZ* and the ATP/ADP ratio in permeabilized RINm5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J. Biol. Chem. 263, 4254-4258.

109.

Longo E.

4.,

Tornheim K., Deeney J. T., Varnum B. A., Tillotson D., Prentki

M.,

and Corkey B. E. (1991). Oscillations in cytosolic free Caz+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. "/. Biol. Chem. 266,9314-9319.

110.

AtwaterI. J., Carroll

P.8.,

Brower A. and Opara E. (1989). Glucosesensitive insulin secretion occurs independant of effects on potassium permeability and membrane potential in mouse islets of Langerhans. Diabetologia 32, A462.

111.

Gembal

M.,

Gilon P., and Henquin J.-C. (1992). Evidence that glucose can control insulin release independently from its action on ATP-sensitive

K*

channels in mouse B cells.

J.

Ctin. Invest. 89, 1288-1295.

Il2.

Hutton J. C., Sener

A.,

Herchuelz

A.,

Atwater

L,

Kawazu S., Boschero A. C., Somers G., Devis G., and Malaisse W. J. (1980). Similarities in the stimulus-secretion coupling mechanisms of glucose-and 2-keto acid-induced insulin release. Endorinology. 106, 203-219.

I

13.

Corkey B. E., Deeney J.

T.,

Glennon M. C., Matchinsky F. M., and Prentki

M.

(198S).Regulation of the steady state free Ca2+ levels by the ATP/ADP ratio and orthophosphate in permeabilized RINmSF insulinoma cells. "1. Biol. Chem.26F,4247-4253.

ll4.

Ashcroft S. J., Weerasinghe

L.

C. C., and Randle, P. J. (1973). Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem.

J.

132,223-231.

115.

Malaisse W. J., Sener J.

A.,

Herchuelz A., and Hutton, J. C. (1979). Insulin release: the fuel hypothesis. Metabolism 2E, 373-385.

116.

Pralong W. F., Bartley C., and Wollheim C. B. (1990L Single islet p-cell stimulation by nutrients:

relationship between pyridine nucleotides, cytosolic

CaZ*

and secretion. EMBO J.

9,5340.

II7.

Malaisse W. J., Best

L.,

Kawazu S., Malaisse-Lagae F., and Sener

A.

(1983). The stimulus-secretion coupling of glucose-induced insulin release: fuel metabolism in islets deprived of exogenous nutrient.

Arch. Biochem. Biophys. 224, 102-110.

118.

Malaisse W. J., Malaisse-Lagae F., Sener

A.,

and Hellerstrom C. (1985). Participation of endogenous fatty acids in the secretory activity of the pancreatic R-cell. Biochcm. J.227,995-1002.

119.

Farese R.

V.,

DiMarco P. E., Barnes D.

8.,

Sabir

M.A.,

Larson R.E., Davis J. S., and Morrison

A.D.

(1986). Rapid glucose-dependent increases in phosphatidic acid and phosphoinositides in rat pancreatic islets. Enlo crinolo gy 118, I 498- 1503.

l2O.

McGarry J.

D.,

and Foster, D. W. (1979).In support of the roles of malonyl-CoA and carnitine acyltransferase

I

in the regulation of hepatic fatty acid oxidation and ketogenesis . J. Biol. Chem.

254, 8163-8168.

121.

McGarry J.

D.,

and Foster

D.

W. (1980). Regulation of hepatic fatty acid oxidation and ketone body production. Ann. Rev. Biochem. 49,395420.

l2Z.

Metz S.A. (1988). Is protein kinase C required for physiologic insulin release 2 Diabetes 37,3-7.

123.

Wollheim

C.8.,

and Regazzi R. (1990). Protein kinase C in insulin releasing cells. FEB.I

kn.268,

376-380.

124.

Magee

A.I.

(1990). Lipid modification of proteins and its relevance to protein targeting.

J.

Cell Sci.97,581-584.

125.

Mcllhinney R.A.J. (1990). The fats of life : the importance and function of protein acylation. TIBS 15,397-391.

126.

Deeney J.T., Tornheim

K.,

Korchak

H.M.,

Prentki M., and Corkey B.E. (1992). Acyl-CoA esters modulate intracellular CaZ+ handling by permeabilized clonal pancreatic R-cells.

J.

Biol. Chem 267, 19840-19845.

127.

Liang

Y.

and Matschinsky F.

M.

(1991). Content of CoA-esters in perifused rat istets stimulated by glucose and other fuels. Diabetes 40,327-333.

128.

Wolf B. A., Eæom R. A., Hughes J.

H.,

McDaniel M.

L.,

and Turk, J. (1989). Secretagogue-induced diacylglycerol accumulation in isolated islets. Mæs spectrometric characterization of fatty acyl

content indicates multiple mechanisms of generation. Biochemistry

28,4291430t.

129.

Vara E., Fernandez-Martin O., Garcia C., and Tamarit-Rodriguez J. (198S). Palmitate dependence

of insulin secretion, "de novo" phospholipid synthesis and 45Ca2+-turnover in glucose stimulated rat islets. Diabetologia 31, 687 493.

130.

Bocckino S.

8.,

Blackmore P. F., Wilson P.8., and Exton J.

H.

(1987). Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J. Biol. Chem.31, 15309-15315.

131.

Bocckino S.

8.,

Wilson P.8., and Exton J.

H.

(1991). Phosphatidate-dependent protein phosphoryl ation. Bio chemistry E8, 6210-6213

I32.

Metz S. and Dunlop M. E. (1990). Phospholipase D in the pancreatic islet: evidence suggesting the involvement of phosphatidic acid in signal transduction. Adv. Prostaglandine Thromboxane Leukotriene Res. 21, 287 -290.

133.

Peter-Riesch

8.,

Fathi M., Schlegel W., and Wollheim, C. B. (1988). Glucose and carbachol generate l,2diacylglycerols by different mechanisms in pancreatic islets.

J.

Clin. Invest. 81, 1154-1161.

134.

Regazzi R.,

Li

G., Deshusses J., and Wollheim C.B. (1990). Stimulus-response coupling in insulin-secreting

HIT

cells. J. BioI. Chem.265, 15003-15009.

135.

Ganesan, S., Calle R., Zawalich K., Smallwood J.I., Zawalieh W.S., and Rasmussen,

H.

(1990).

Glucose-induced ranslocation of protein kinase C in rat pancreatic islets. Proc. Natl. Acad. Sci.

usA. 87,9893-9897.

136.

De Camilli P (1993). Exocytosis goes wittt a SNAP. Nature 364,387

137.

Asfari, M., Janjic,

D.,

Meda, P.,

Li,

G., Halban, P.

4.,

and Wollheim, C. B. (1992) Establishement of 2-mercaptoethanol dependent differentiated insulin-secreting cell lines. Endocrinology 130, 167-178

138.

Chomczynsky, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol-chloroform extraction. Anal. Biochem. 162, 156-159.

139.

Lopez-Casillas F., Pape

M.8.,

Bai D.H., Kuhn D.N., Dixon J.E., and Kim

K.H.

(1987). Preparation of functional acetyl-CoA carboxylase mRNA from rat mammary gland. Arch. Biochem.Biophys.2ST, 63-66.

140.

Bai

D. H.,

Pape

M.

E., Ldpez-Casillas F., Luo

X.,

Dixon J.E., and Kim,

K.-H.

(1986) Molecular cloning of cDNA for acetyl-coenzyme A carboxylase. J. Biol. Chem. 261, 12395-12399.

I4l.

Collart

M.A.,

Belin

D.,

Vassalli J.-D., and Vassalli P. (1987). Modulations of functional activity in differentiated macrophages are accompagnied by early and transient increase or decrease in c-fos gene trans. J. ImmunoL

l39,

949-955.

142.

Barthel F., Remy J.-S., Loeffler J.-P., and Behr J.-P. (1993). Gene transfer optimization with lipospermine-coated DNA. DNA Cell

Biol.

12,553-560.

143.

Gorman

C.M.,

Moffat

L.F.,

and Howard B.H. (1982). Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. MoL Cell. Biol.21 1044-1051.

144.

Evans, J.

L.,

and Witters,

L. A.

(1988) Quantitation by immunoblotting of the in vivo induction and subcellular distribution of hepatic acetyl-CoA carboxylase. Arch. Biochem. Biophys. 264, 103-113.

145.

Halestrap,

A.

P., and Denton, R. M. (1974) Hormonal regulation of adipose-tissue acetyl-CoA carboxylase by changes in the polymeric state of the enzyme. The role of long-chain fatty

Documents relatifs