• Aucun résultat trouvé

Ce rapide tour d’horizon de nos perspectives à court et moyen terme permet d’illustrer à nouveau la double approche amont/aval ou fondamental/appliqué que j’essaye de poursuivre car je la trouve à la fois très féconde

Dans le document Lasers organiques solides (Page 113-118)

et très stimulante. Il faut néanmoins souligner un biais apporté par le financement sur projet, notamment type

ANR, où il me semble qu’il est souvent plus facile d’obtenir de l’argent pour des projets appliqués (voir très

appliqués) que fondamentaux : ainsi, même s’il est courant de plus ou moins discrétement « détourner » une

partie des financements de leur affectation initiale, certaines recherches amont très excitantes ont dû parfois

êtres mises de côté au profit d’aspects plus « valorisables » mieux perçus par les organismes financeurs.

Bibliographie

[1] K. Hayashi, H. Nakanotani, M. Inoue, K. Yoshida, O. Mikhnenko, T.-Q. Nguyen, and C. Adachi,

“Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current

injection/transport area to 50 nm,” Appl. Phys. Lett., vol. 106, no. 9, p. 93301, Mar. 2015.

[2] M. Giovannini, M. Beck, N. Hoyler, and J. Faist, “Second harmonic generation in (111)-oriented InP-based

quantum cascade laser,” J. Appl. Phys., vol. 101, no. 10, p. 103107, May 2007.

[3] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous

wave operation of a mid-infrared semiconductor laser at room temperature.,” Science, vol. 295, no. 5553,

pp. 301–5, Jan. 2002.

[4] C. R. Vidal, “Coherent Vuv Sources For High-Resolution Spectroscopy,” Appl. Opt., vol. 19, no. 23, pp.

3897–3903, 1980.

[5] M. C. Castex, N. Bityurin, C. Olivero, S. Muraviov, N. Bronnikova, and D. Riedel, “VUV laser ablation of

polymers Photochemical aspect,” Appl. Surf. Sci., vol. 168, no. 1–4, pp. 175–177, 2000.

[6] M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-alpha generation

with solid-state lasers,” Opt. Express, vol. 17, no. 14, pp. 11274–11280, 2009.

[7] D. Kolbe, M. Scheid, and J. Walz, “Triple Resonant Four-Wave Mixing Boosts the Yield of Continuous

Coherent Vacuum Ultraviolet Generation,” Phys. Rev. Lett., vol. 109, no. 6, p. 63901, 2012.

[8] C. H. Muller, D. D. Lowenthal, M. A. Defaccio, and A. V Smith, “High-Efficiency, Energy-Scalable,

Coherent 130-Nm Source By 4-Wave Mixing In Hg Vapor,” Opt. Lett., vol. 13, no. 8, pp. 651–653, 1988.

[9] C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett., vol. 51, no. 12,

pp. 913–915, 1987.

[10] A. Kohler and H. Bassler, “Triplet states in organic semiconductors,” Mater. Sci. Eng. R Reports, vol. 66,

no. 4–6, pp. 71–109, 2009.

[11] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence

efficiency in an organic light-emitting device,” J. Appl. Phys., vol. 90, no. 10, pp. 5048–5051, 2001.

[12] K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic

electroluminescent devices,” Opt. Mater. (Amst)., vol. 32, no. 1, pp. 221–233, 2009.

[13] Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded

low-index grids,” Nat Phot., vol. 2, no. 8, pp. 483–487, 2008.

[14] E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-Based White Phosphorescent Organic

Light-Emitting Diodes with Nearly 100 % Internal Quantum Efficiency,” Adv. Mater., vol. 19, no. 2, pp.

197–202, 2007.

[15] S. Mladenovski, K. Neyts, D. Pavicic, A. Werner, and C. Rothe, “Exceptionally efficient organic light

emitting devices using high refractive index substrates,” Opt. Express, vol. 17, no. 9, pp. 7562–7570, 2009.

[16] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic

light-emitting diodes with fluorescent tube efficiency,” Nature, vol. 459, no. 7244, pp. 234-U116, 2009.

[17] M. C. Gather, A. Köhnen, and K. Meerholz, “White Organic Light-Emitting Diodes,” Adv. Mater., vol. 23,

no. 2, pp. 233–248, 2011.

[18] R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting

diodes with doped transport layers,” Appl. Phys. Lett., vol. 89, no. 6, pp. 61111–61113, 2006.

[19] J. Shinar and R. Shinar, “Organic light-emitting devices (OLEDs) and OLED-based chemical and

biological sensors: an overview,” J. Phys. D. Appl. Phys., vol. 41, no. 13, p. 133001, 2008.

[20] M. T. Sajjad, P. P. Manousiadis, H. Chun, D. A. Vithanage, S. Rajbhandari, A. L. Kanibolotsky, G.

Faulkner, D. O’Brien, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Novel Fast Color-Converter

for Visible Light Communication Using a Blend of Conjugated Polymers,” ACS Photonics, vol. 2, no. 2, p.

150203083931000, Feb. 2015.

[21] E. B. Namdas, P. Ledochowitsch, J. D. Yuen, D. Moses, and A. J. Heeger, “High performance light

emitting transistors,” Appl. Phys. Lett., vol. 92, no. 18, p. 183304, 2008.

[22] S. Schols, S. Verlaak, C. Rolin, D. Cheyns, J. Genoe, and P. Heremans, “An Organic Light-Emitting Diode

with Field-Effect Electron Transport,” Adv. Funct. Mater., vol. 18, no. 1, p. 136, 2008.

[23] Y. Zhang, J. Lee, and S. R. Forrest, “Tenfold increase in the lifetime of blue phosphorescent organic

light-emitting diodes,” Nat. Commun., vol. 5, p. 5008, Sep. 2014.

[24] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting

diodes employing thermally activated delayed fluorescence,” Nat. Photonics, vol. 8, no. 4, pp. 326–332,

Mar. 2014.

[25] S. Reineke, “Organic light-emitting diodes: Phosphorescence meets its match,” Nat. Photonics, vol. 8, no.

4, pp. 269–270, Mar. 2014.

[26] F. B. Dias, T. J. Penfold, and A. P. Monkman, “Photophysics of thermally activated delayed fluorescence

molecules,” Methods Appl. Fluoresc., vol. 5, no. 1, p. 12001, Mar. 2017.

[27] K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse

intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics, vol. 6, no. 4, pp. 253–258, Mar.

2012.

[28] P. Gorrn, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser

waveguides using TE[sub 2] modes,” Appl. Phys. Lett., vol. 91, no. 4, p. 41113, 2007.

[29] M. Tabachnyk, B. Ehrler, S. Gélinas, M. L. Böhm, B. J. Walker, K. P. Musselman, N. C. Greenham, R.

H. Friend, and A. Rao, “Resonant energy transfer of triplet excitons from pentacene to PbSe

nanocrystals.,” Nat. Mater., vol. 13, no. 11, pp. 1033–8, Nov. 2014.

[30] N. J. Thompson, M. W. B. Wilson, D. N. Congreve, P. R. Brown, J. M. Scherer, T. S. Bischof, M. Wu, N.

Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Energy harvesting of

non-emissive triplet excitons in tetracene by emissive PbS nanocrystals.,” Nat. Mater., vol. 13, no. 11, pp.

1039–43, Nov. 2014.

[31] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics,

vol. 8, no. 7, pp. 506–514, Jun. 2014.

[32] M. Grätzel, “The light and shade of perovskite solar cells,” Nat. Mater., vol. 13, no. 9, pp. 838–842, Aug.

2014.

[33] F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D.

Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency

and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys.

Chem. Lett., vol. 5, pp. 1421–1426, 2014.

[34] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C.

Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing.,” Nat. Mater., vol.

13, no. March, pp. 476–80, 2014.

[35] R. Bornemann, E. Thiel, and P. H. Bolívar, “High-power solid-state cw dye laser,” Opt. Express, vol. 19,

no. 27, p. 26382, 2011.

[36] R. Bornemann, E. Thiel, and U. Siegen, “The dye laser disk : CW lasing from a polymer,” pp. 2006–2008,

2007.

[37] Y. Zhang and S. R. Forrest, “Existence of continuous-wave threshold for organic semiconductor lasers,”

Phys. Rev. B, vol. 84, no. 24, p. 241301, 2011.

[38] S. Kéna-Cohen, A. Wiener, Y. Sivan, P. N. Stavrinou, D. D. C. Bradley, A. Horsfield, and S. A. Maier,

“Plasmonic Sinks for the Selective Removal of Long-Lived States,” ACS Nano, vol. 5, no. 12, pp. 9958–

9965, 2011.

[39] Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. a. Turnbull, and I. D. W. Samuel, “LED

pumped polymer laser sensor for explosives,” Laser Photonics Rev., vol. 7, no. 6, pp. 71–76, 2013.

[40] A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by

lasing action in organic polymers,” Nature, vol. 434, no. 7035, pp. 876–879, 2005.

[41] C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T.

Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA

substrate,” Microelectron. Eng., vol. 87, no. 5–8, pp. 693–695, 2010.

[42] C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence

excitation with integrated organic semiconductor lasers,” Opt. Express, vol. 19, no. 9, p. 8179, 2011.

[43] J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics, vol. 4, no. 7, pp. 438–

446, 2010.

[44] H. Benisty, A. Degiron, A. Lupu, A. De Lustrac, S. Chénais, S. Forget, M. Besbes, G. Barbillon, A.

Bruyant, S. Blaize, and G. Lérondel, “Implementation of PT symmetric devices using plasmonics: principle

and applications,” Opt. Express, vol. 19, no. 19, p. 18004, 2011.

[45] M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat Phot., vol. 5, no. 7, p. 406, 2011.

[46] M. C. Gather and S. H. Yun, “Lasing from Escherichia coli bacteria genetically programmed to express

green fluorescent protein,” Optics Letters, vol. 36, no. 16. p. 3299, 2011.

[47] E. Ishow, A. Brosseau, G. Clavier, K. Nakatani, P. Tauc, C. Fiorini-Debuisschert, S. Neveu, O. Sandre,

and A. Leaustic, “Multicolor Emission of Small Molecule-Based Amorphous Thin Films and Nanoparticles

with a Single Excitation Wavelength,” Chem. Mater., vol. 20, no. 21, pp. 6597–6599, 2008.

[48] R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of

organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl.

Phys., vol. 105, no. 5, 2009.

[49] O. Mikhnenko, P. Blom, and T.-Q. T. Nguyen, “Exciton Diffusion in Organic Semiconductors,” Energy

Environ. Sci., vol. 8, no. 7, pp. 1867–1888, Jul. 2015.

[50] L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, L. D. Negro, P. Bettotti, M. Cazzanelli, D.

Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length

method for gain measurements,” Opt. Commun., vol. 229, no. 1–6, pp. 337–348, 2004.

[51] B. Valeur, “Molecular Fluorescence, Principles and Applications.” Nature Publishing Group, 2002.

[52] T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell,

and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys.

Lett., vol. 88, no. 24, p. 241116, 2006.

[53] Y. Yang, G. a. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a

nitride light-emitting diode,” Appl. Phys. Lett., vol. 92, no. 16, pp. 2–3, 2008.

[54] S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T.

Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers

pumped by laser diode.,” Opt. Express, vol. 20, no. 6, pp. 6357–64, Mar. 2012.

[55] H. Sakata, H. Takeuchi, K. Natsume, and S. Suzuki, “Vertical-cavity organic lasers with

distributed-feedback structures based on active Bragg reflectors,” Opt. Express, vol. 14, no. 24, p. 11681, 2006.

[56] S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of

semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett., vol. 91, no. 26, 2007.

[57] M. Debije and P. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the

built environment,” Advanced Energy Materials, vol. 2. pp. 12–35, 2012.

[58] A. J. C. Kuehne and M. C. Gather, “Organic Lasers: Recent Developments on Materials, Device

Geometries, and Fabrication Techniques,” Chem. Rev., p. acs.chemrev.6b00172, Aug. 2016.

of Conjugated Polymers,” ChemPhysChem, vol. 10, no. 7, pp. 1071–1076, 2009.

[60] H. Nakanotani, T. Furukawa, and C. Adachi, “Light Amplification in an Organic Solid-State Film with

the Aid of Triplet-to-Singlet Upconversion,” Adv. Opt. Mater., p. n/a-n/a, Jul. 2015.

[61] U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.,

vol. 429, no. 2, pp. 67–120, 2006.

[62] F. Bonaccorso, Z. Sun, T. Hasan, and a. C. Ferrari, “Graphene Photonics and Optoelectronics,” vol. 4, no.

August, pp. 611–622, 2010.

[63] O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-Efficiency Bragg

Gratings in Photothermorefractive Glass,” Appl. Opt., vol. 38, no. 4, p. 619, Feb. 1999.

[64] T. Rabe, K. Gerlach, T. Riedl, H. H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T.

Weimann, P. Hinze, F. Galbrecht, and U. Scherf, “Quasi-continuous-wave operation of an organic thin-film

distributed feedback laser,” Appl. Phys. Lett., vol. 89, no. 8, 2006.

[65] N. C. Giebink, Y. Sun, and S. R. Forrest, “Transient analysis of triplet exciton dynamics in amorphous

organic semiconductor thin films,” Org. Electron., vol. 7, no. 5, pp. 375–386, 2006.

[66] J. D. A. Lin, O. V. Mikhnenko, J. Chen, Z. Masri, A. Ruseckas, A. Mikhailovsky, R. P. Raab, J. Liu, P.

W. M. Blom, M. A. Loi, C. J. García-Cervera, I. D. W. Samuel, and T.-Q. Nguyen, “Systematic study of

exciton diffusion length in organic semiconductors by six experimental methods,” Mater. Horizons, vol. 1,

no. 2, p. 280, Feb. 2014.

Dans cette section je reproduis, avec mise en contexte et en perspective, une sélection d’une douzaine

Dans le document Lasers organiques solides (Page 113-118)