• Aucun résultat trouvé

Height function

Dans le document Flips in Tilings (Page 40-73)

Height function: real map defined on the vertices of the tiling.

each tiling determined by its height function; the height is monotone w.r.t. flips.

Yields an intuitive lift inR3, used to prove connexity: Dimers (Thurston)

Rectangles (R´emila)

Kagome (Bodini)

T-tetraminoes(Korn-Pak)

Examples Questions Results Context-sensitive flips

Height function

Height function: real map defined on the vertices of the tiling.

Useful when

each tiling determined by its height function;

the height is monotone w.r.t. flips.

Yields an intuitive lift inR3, used to prove connexity: Dimers (Thurston)

Rectangles (R´emila)

Kagome (Bodini)

T-tetraminoes(Korn-Pak)

Height function

Height function: real map defined on the vertices of the tiling.

Useful when

each tiling determined by its height function;

the height is monotone w.r.t. flips.

Yields an intuitive lift inR3, used to prove connexity:

Dimers (Thurston)

Rectangles (R´emila)

Kagome (Bodini)

T-tetraminoes(Korn-Pak)

Examples Questions Results Context-sensitive flips

Diameter

Easy for dimers via height function.

Logarithmic in the number of tilings in any non-degenerate case.

Not necessarily a good indicator for mixing time. . .

Straightness

Straighttiling graph: any two tilings can be connected by a sequence of flips, with no flip being performed back and forth.

Holds for dimers (the height function orientates flips).

Holds for parallelogram iffn≤4 (Bodini-F.-Rao-R´emila 2011). Does it imply rapid mixing?

Examples Questions Results Context-sensitive flips

Limit shape

Well-studied for dimers(Kenyon, Okounkov, Propp. . . ). Other cases?

Limit shape

Well-studied for dimers(Kenyon, Okounkov, Propp. . . ). Other cases?

Examples Questions Results Context-sensitive flips

Limit shape

Well-studied for dimers(Kenyon, Okounkov, Propp. . . ). Other cases?

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001).

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

1 Examples

2 Questions

3 Results

4 Context-sensitive flips

Examples Questions Results Context-sensitive flips

Principle

Consider the Markov chain

choose a vertex of the tiling uniformly at random,

perform a flip around it with probability P = exp(−∆E)/T, where

T is a temperatureparameter,

theenergy E of a tiling is a sum of local interactions.

This is the Metropolis-Hastings algorithm for the Gibbs distribution P(tiling) = 1

It aims to model the cooling of ordered materials (quasicrystals).

Principle

Consider the Markov chain

choose a vertex of the tiling uniformly at random,

perform a flip around it with probability P = exp(−∆E)/T, where

T is a temperatureparameter,

theenergy E of a tiling is a sum of local interactions.

This is the Metropolis-Hastings algorithm for the Gibbs distribution P(tiling) = 1

It aims to model the cooling of ordered materials (quasicrystals).

Examples Questions Results Context-sensitive flips

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,O(n2.5) atT = 0.

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

Examples Questions Results Context-sensitive flips

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

Examples Questions Results Context-sensitive flips

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

Examples Questions Results Context-sensitive flips

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Examples Questions Results Context-sensitive flips

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Examples Questions Results Context-sensitive flips

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Examples Questions Results Context-sensitive flips

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Examples Questions Results Context-sensitive flips

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

Dans le document Flips in Tilings (Page 40-73)

Documents relatifs