• Aucun résultat trouvé

Flips in Tilings

N/A
N/A
Protected

Academic year: 2022

Partager "Flips in Tilings"

Copied!
73
0
0

Texte intégral

(1)

Flips in Tilings

Thomas Fernique CNRS & Univ. Paris 13

(2)

1 Examples

2 Questions

3 Results

4 Context-sensitive flips

(3)

Examples Questions Results Context-sensitive flips

1 Examples

2 Questions

3 Results

4 Context-sensitive flips

(4)

Dimers

Consider the square or triangular grid.

(5)

Examples Questions Results Context-sensitive flips

Dimers

Adimer (domino or lozenge) is the union of two neighboor cells.

(6)

Dimers

Tilings by dimers.

(7)

Examples Questions Results Context-sensitive flips

Dimers

Aflipis a local exchange of tiles.

(8)

Dimers

Aflipis a local exchange of tiles.

(9)

Examples Questions Results Context-sensitive flips

Rectangles

Two dominoes two rectangles.

(10)

Rectangles

Tiling by two rectangles.

(11)

Examples Questions Results Context-sensitive flips

Rectangles

Flip: exchange rectangles which tile alcm(a,c)×lcm(b,d) box.

(12)

Rectangles

Flip: exchange rectangles which tile alcm(a,c)×lcm(b,d) box.

(13)

Examples Questions Results Context-sensitive flips

Rectangles

Flip bis: swap alcm(a,c)×(b+d) or (a+c)×lcm(b,d) box.

(14)

Rectangles

Flip bis: swap alcm(a,c)×(b+d) or (a+c)×lcm(b,d) box.

(15)

Examples Questions Results Context-sensitive flips

Parallelograms

n pairwise non-colinear vectors n2

parallelograms.

(16)

Parallelograms

Tiling by parallelograms (no more underlying lattice).

(17)

Examples Questions Results Context-sensitive flips

Parallelograms

Flip: exchange parallelograms which tile a hexagon.

(18)

Parallelograms

Flip: exchange parallelograms which tile a hexagon.

(19)

Examples Questions Results Context-sensitive flips

Kagome

Kagome or trihexagonal lattice.

(20)

Kagome

Tile: hexagon with two neighboor triangles (three up to rotation).

(21)

Examples Questions Results Context-sensitive flips

Kagome

Tile: hexagon with two neighboor triangles (three up to rotation).

(22)

Kagome

Flip: exchange of two triangles between two neighboor hexagons.

(23)

Examples Questions Results Context-sensitive flips

Kagome

Flip: exchange of two triangles between two neighboor hexagons.

(24)

Kagome

Different types of flips (six up to isometry).

(25)

Examples Questions Results Context-sensitive flips

Kagome

Different types of flips (six up to isometry).

(26)

T -tetraminoes

Two types of flips.

(27)

Examples Questions Results Context-sensitive flips

T -tetraminoes

Two types of flips.

(28)

3-d

Flips/trits on 3d dominoes and flips on parallelotopes.

(29)

Examples Questions Results Context-sensitive flips

3-d

Flips/trits on 3d dominoes and flips on parallelotopes.

(30)

1 Examples

2 Questions

3 Results

4 Context-sensitive flips

(31)

Examples Questions Results Context-sensitive flips

Tiling graph

Graph(region, tiles, flip):

vertices: tilings of the region;

edges: connect tilings which differ by a flip.

Properties? (connexity, diameter, eccentricity, treewidth. . . )

(32)

Limit shape

Does a tiling chosen u.a.r. satisfy a.s. some macroscopic property?

(33)

Examples Questions Results Context-sensitive flips

Mixing time

Ergodic random walkP on a graph stationnary distribution π.

Convergence measured by: d(t) := max

x∈V

1 2

X

y∈V

|Pt(x,y)−π(y)|.

Mixing time(half-life):

τmix:= min{t |d(t)≤1/4}.

The distance toπ is divided by (at least) 2 eachτmix steps. Rapid mixing: τmix logarithmic in the size of the graph.

(34)

Examples Questions Results Context-sensitive flips

Mixing time

Ergodic random walkP on a graph stationnary distribution π.

Convergence measured by:

d(t) := max

x∈V

1 2

X

y∈V

|Pt(x,y)−π(y)|.

τmix:= min{t |d(t)≤1/4}.

The distance toπ is divided by (at least) 2 eachτmix steps. Rapid mixing: τmix logarithmic in the size of the graph.

(35)

Examples Questions Results Context-sensitive flips

Mixing time

Ergodic random walkP on a graph stationnary distribution π.

Convergence measured by:

d(t) := max

x∈V

1 2

X

y∈V

|Pt(x,y)−π(y)|.

Mixing time(half-life):

τmix:= min{t |d(t)≤1/4}.

The distance toπ is divided by (at least) 2 eachτmix steps.

Rapid mixing: τmix logarithmic in the size of the graph.

(36)

Mixing time

Ergodic random walkP on a graph stationnary distribution π.

Convergence measured by:

d(t) := max

x∈V

1 2

X

y∈V

|Pt(x,y)−π(y)|.

Mixing time(half-life):

τmix:= min{t |d(t)≤1/4}.

The distance toπ is divided by (at least) 2 eachτmix steps.

Rapid mixing: τmix logarithmic in the size of the graph.

(37)

Examples Questions Results Context-sensitive flips

Motivation

Flips on tilings: model local rearrangements in materials.

Limit shape: macroscopic properties of materials.

Mixing time: practicability of the model.

(38)

1 Examples

2 Questions

3 Results

4 Context-sensitive flips

(39)

Examples Questions Results Context-sensitive flips

Connexity

For a simply connected region, the following graphs are connected:

Dimers (Thurston 1990)

Parallelograms (Kenyon 1994)

Two rectangles(R´emila 2004)

Kagome (Bodini, 2006)

T-tetraminoes(Korn-Pak 2007)

Additional conditions are necessary:

Parallelotopes(Desoutter-Destainville 2005)

3-d. dominoes (Milet-Saldanha 2017)

(40)

Examples Questions Results Context-sensitive flips

Height function

Height function: real map defined on the vertices of the tiling.

each tiling determined by its height function; the height is monotone w.r.t. flips.

Yields an intuitive lift inR3, used to prove connexity: Dimers (Thurston)

Rectangles (R´emila)

Kagome (Bodini)

T-tetraminoes(Korn-Pak)

(41)

Examples Questions Results Context-sensitive flips

Height function

Height function: real map defined on the vertices of the tiling.

Useful when

each tiling determined by its height function;

the height is monotone w.r.t. flips.

Yields an intuitive lift inR3, used to prove connexity: Dimers (Thurston)

Rectangles (R´emila)

Kagome (Bodini)

T-tetraminoes(Korn-Pak)

(42)

Height function

Height function: real map defined on the vertices of the tiling.

Useful when

each tiling determined by its height function;

the height is monotone w.r.t. flips.

Yields an intuitive lift inR3, used to prove connexity:

Dimers (Thurston)

Rectangles (R´emila)

Kagome (Bodini)

T-tetraminoes(Korn-Pak)

(43)

Examples Questions Results Context-sensitive flips

Diameter

Easy for dimers via height function.

Logarithmic in the number of tilings in any non-degenerate case.

Not necessarily a good indicator for mixing time. . .

(44)

Straightness

Straighttiling graph: any two tilings can be connected by a sequence of flips, with no flip being performed back and forth.

Holds for dimers (the height function orientates flips).

Holds for parallelogram iffn≤4 (Bodini-F.-Rao-R´emila 2011). Does it imply rapid mixing?

(45)

Examples Questions Results Context-sensitive flips

Limit shape

Well-studied for dimers(Kenyon, Okounkov, Propp. . . ). Other cases?

(46)

Limit shape

Well-studied for dimers(Kenyon, Okounkov, Propp. . . ). Other cases?

(47)

Examples Questions Results Context-sensitive flips

Limit shape

Well-studied for dimers(Kenyon, Okounkov, Propp. . . ). Other cases?

(48)

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

(49)

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

(50)

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

(51)

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

(52)

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001).

(53)

Examples Questions Results Context-sensitive flips

Mixing time

Rapid for dimers(Luby-Randall-Sinclair 1995, Randall-Tetali 1999, Wilson 2004, Caputo-Martinelli-Toninelli 2011, Laslier-Toninelli 2013).

Rapid for Kagome without “fish”(Ugolnikova 2016). Connexity still to be characterized in this case.

Conjectured to be rapid for 1×1 and 2×2 squares (Ugolnikova 2016). Claimed rapid for T-tetraminoes(Kayibi-Pirzada 2015).

Conjectured rapid for parallelograms whenn= 4 (Destainville 2001). Conjectured slow for parallelograms whenn= 4 (F. 2016).

(54)

1 Examples

2 Questions

3 Results

4 Context-sensitive flips

(55)

Examples Questions Results Context-sensitive flips

Principle

Consider the Markov chain

choose a vertex of the tiling uniformly at random,

perform a flip around it with probability P = exp(−∆E)/T, where

T is a temperatureparameter,

theenergy E of a tiling is a sum of local interactions.

This is the Metropolis-Hastings algorithm for the Gibbs distribution P(tiling) = 1

Z(T)exp

−E(tiling) T

.

It aims to model the cooling of ordered materials (quasicrystals).

(56)

Principle

Consider the Markov chain

choose a vertex of the tiling uniformly at random,

perform a flip around it with probability P = exp(−∆E)/T, where

T is a temperatureparameter,

theenergy E of a tiling is a sum of local interactions.

This is the Metropolis-Hastings algorithm for the Gibbs distribution P(tiling) = 1

Z(T)exp

−E(tiling) T

.

It aims to model the cooling of ordered materials (quasicrystals).

(57)

Examples Questions Results Context-sensitive flips

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,O(n2.5) atT = 0.

(58)

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

(59)

Examples Questions Results Context-sensitive flips

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

(60)

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

(61)

Examples Questions Results Context-sensitive flips

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

(62)

Example 1: dimer tilings

Ergodic atT >0, Θ(n2) mixing at T =∞,Θ(n2) atT = 0.

(63)

Examples Questions Results Context-sensitive flips

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(64)

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(65)

Examples Questions Results Context-sensitive flips

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(66)

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(67)

Examples Questions Results Context-sensitive flips

Example 2: Beenker tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(68)

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(69)

Examples Questions Results Context-sensitive flips

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(70)

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(71)

Examples Questions Results Context-sensitive flips

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(72)

Example 3: Penrose tilings

Ergodic atT >0,unknown mixing atT =∞,Θ(n2)at T = 0.

(73)

Flips in Tilings

Thomas Fernique CNRS & Univ. Paris 13

Références

Documents relatifs

In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statis- tics courses, and the mosaicData package which includes a number

b laboratoire Cristal, service de biochimie A, centre de recherches et d’informations scientifiques et techniques appliquées aux lithiases, groupe hospitalier

Si la proportion de calculs oxalocalciques générés sur plaque de Randall a nette- ment cru en France, en particulier chez les jeunes depuis deux ou trois décennies, et si le nombre

Si la proportion de calculs oxalocalciques générés sur plaque de Randall a nettement cru en France, en particulier chez les jeunes depuis deux ou trois

Curiously, we find that the metric must be in a static configuration, leaving no room for realistic brane matter, and that there is only one allowed equation of state for the

We find the diphoton mass spectrum to be in agreement with the standard model expectation, and set limits on the cross section times branching ratio for the Randall-Sundrum graviton,

The rules are sim- ple, two horizontal neighbors have the same value on this component and a tile having a gray tile on its left has the same value in A as in T.. At this stage, we

Performing a flip on such a hexagon decreases the area of the island (hence the volume of the tiling) and decreases the number of errors by 2(k − 3), where k is the number of