• Aucun résultat trouvé

Future perspective to overcome the limitations

To efficiently measure kidney interstitial fibrosis with MRI, there are some challenges that still need to be overcome. Obviously, these first experiments have to be confirmed, in particular in a larger cohort of non-homogenous patients. The multiparametric study, with T1 and ADC, showed the potential of combining several biomarkers to assess more precisely kidney fibrosis. A non-invasive score must be validated against biopsy in a large population of kidney pathologies with the coupling of the several biomarkers. The addition of non-MRI biomarkers will also help to identify precisely the interstitial fibrosis from others pathologies.

ADC is very sensitive as we showed, however, this specificity should be improved. All pathologies inducing a decrease of interstitial space would lead to a decrease of ADC. Consequently, we need to identify and isolate other pathologies, not necessarily linked to interstitial fibrosis, that could also induce a decrease of ADC.

For that point, dividing patients into subgroups will help. Separation according to the level of inflammation, vascular injury, and oedema needs to be performed. Since ADC is sensitive to every effects on the extracel-lular space, a clear understand of this factors is of major importance. Also, we need to understand which part the perfusion effect plays in the measured ADC. Experiments showed that removing the small b-values would decrease the R2. It would be interesting to include perfusion evaluation in our population, such as Arterial Spin Labeled (ASL) to evaluate the perfusion and integrate this information in an MLR of ASL and ADC at high b-values. I recommend that all renal DWI should be compensated for motion and a more adapted fit and b-values should be used. With a better understanding of the perfusion effect combined with an efficient correction of motion, we should be able to decrease the number of b-values efficiency.

In conclusion, this thesis demonstrated the feasibility of measuring renal interstitial fibrosis more reliably by addressing and minimizing sources of variability and pitfalls.

References

[1] A. L. Alexander, J. S. Tsuruda, and D. L. Parker. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med, 38(6):1016–21, 1997.

149

high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging, 39(4):827–834, April 2014.

[3] S. Barbieri, O. F. Donati, J. M. Froehlich, and H. C. Thoeny. Comparison of intravoxel incoherent motion parameters across mr imagers and field strengths: Evaluation in upper abdominal organs. Radiology, 279(3):784–94, 2016.

[4] K. M. Bennett, K. M. Schmainda, R. T. Bennett, D. B. Rowe, H. Lu, and J. S. Hyde. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med, 50(4):727–34, 2003.

[5] D. Blondin, R. S. Lanzman, C. Mathys, D. Grotemeyer, A. Voiculescu, W. Sandmann, L. C. Rump, U. Modder, and H. J. Wittsack. [functional mri of transplanted kidneys using diffusion-weighted imag-ing]. Rofo, 181(12):1162–7, 2009.

[6] R. Brown. Xxvii. a brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical magazine, 4(21):161–173, 1828.

[7] K. Bruck, V. S. Stel, G. Gambaro, S. Hallan, H. Volzke, J. Arnlov, M. Kastarinen, I. Guessous, J. Vin-has, B. Stengel, H. Brenner, J. Chudek, S. Romundstad, C. Tomson, A. O. Gonzalez, A. K. Bello, J. Ferrieres, L. Palmieri, G. Browne, V. Capuano, W. Van Biesen, C. Zoccali, R. Gansevoort, G. Navis, D. Rothenbacher, P. M. Ferraro, D. Nitsch, C. Wanner, K. J. Jager, and C. K. D. Burden Consor-tium European. Ckd prevalence varies across the european general population. J Am Soc Nephrol, 27(7):2135–47, 2016.

[8] R. W. Chan, C. Von Deuster, C. T. Stoeck, J. Harmer, S. Punwani, N. Ramachandran, S. Kozerke, and D. Atkinson. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach. NMR Biomed, 27(11):1300–12, 2014.

[9] H. Chandarana, S. K. Kang, S. Wong, H. Rusinek, J. L. Zhang, S. Arizono, W. C. Huang, J. Melamed, J. S. Babb, E. F. Suan, V. S. Lee, and E. E. Sigmund. Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol, 47(12):688–96, 2012.

[10] H. Chandarana, V. S. Lee, E. Hecht, B. Taouli, and E. E. Sigmund. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol, 46(5):285–91, 2011.

[11] D. B. Chang, R. L. Cooper, A. C. Young, C. J. Martin, and B. Ancker-Johnson. Restricted diffusion in biophysical systems: theory. J Theor Biol, 50(2):285–308, 1975.

[12] N. C. Chuck, G. Steidle, I. Blume, M. A. Fischer, D. Nanz, and A. Boss. Diffusion tensor imaging of the kidneys: Influence of b-value and number of encoding directions on image quality and diffusion tensor parameters. J Clin Imaging Sci, 3:53, 2013.

[13] R. L. Cooper, D. B. Chang, A. C. Young, C. J. Martin, and D. Ancker-Johnson. Restricted diffusion in biophysical systems. experiment. Biophys J, 14(3):161–77, 1974.

[14] M. Cova, E. Squillaci, F. Stacul, G. Manenti, S. Gava, G. Simonetti, and R. Pozzi-Mucelli. Diffusion-weighted mri in the evaluation of renal lesions: preliminary results. Br J Radiol, 77(922):851–7, 2004.

[15] M. Cutajar, J. D. Clayden, C. A. Clark, and I. Gordon. Test-retest reliability and repeatability of renal diffusion tensor mri in healthy subjects. Eur J Radiol, 80(3):e263–8, 2011.

150

cell carcinoma with diffusion kurtosis imaging: correlation between diffusion kurtosis parameters and tumor cellularity. NMR Biomed, 29(7):873–81, 2016.

[17] Y. Ding, M. Zeng, S. Rao, C. Chen, C. Fu, and J. Zhou. Comparison of biexponential and monoex-ponential model of diffusion-weighted imaging for distinguishing between common renal cell carcinoma and fat poor angiomyolipoma. Korean J Radiol, 17(6):853–863, 2016.

[18] A. Dowling, P. Bourgeat, D. Raffelt, J. Fripp, P. B. Greer, J. Patterson, J. Denham, S. Gupta, C. Tang, P. Stanwell, S. Ourselin, and O. Salvado. Non-rigid correction of interleaving artefacts in pelvis mri.

Proc. of SPIE, 7259, 2009.

[19] A. Einstein. Zur theorie der brownschen bewegung. Annalen der Physik, 324(2):371–381, 1906.

[20] U. Eisenberger, H. C. Thoeny, T. Binser, M. Gugger, F. J. Frey, C. Boesch, and P. Vermathen. Eval-uation of renal allograft function early after transplantation with diffusion-weighted mr imaging. Eur Radiol, 20(6):1374–83, 2010.

[21] U. Eisenberger, H. C. Thoeny, T. Binser, M. Gugger, F. J. Frey, C. Boesch, and P. Vermathen. Eval-uation of renal allograft function early after transplantation with diffusion-weighted mr imaging. Eur Radiol, 20(6):1374–83, 2010.

[22] G. Eknoyan, M. A. McDonald, D. Appel, and L. D. Truong. Chronic tubulo-interstitial nephritis:

correlation between structural and functional findings. Kidney Int, 38(4):736–43, 1990.

[23] R. Faletti, M. C. Cassinis, M. Gatti, J. Giglio, C. Guarnaccia, M. Messina, L. Bergamasco, and P. Fonio.

Acute pyelonephritis in transplanted kidneys: can diffusion-weighted magnetic resonance imaging be useful for diagnosis and follow-up? Abdom Radiol (NY), 41(3):531–7, 2016.

[24] W. J. Fan, T. Ren, Q. Li, P. L. Zuo, M. M. Long, C. B. Mo, L. H. Chen, L. X. Huang, and W. Shen.

Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol, 26(2):567–75, 2016.

[25] Q. Feng, Z. Ma, J. Wu, and W. Fang. Dti for the assessment of disease stage in patients with glomerulonephritis–correlation with renal histology. Eur Radiol, 25(1):92–8, 2015.

[26] I. Friedli, L. A. Crowe, L. Berchtold, S. Moll, K. Hadaya, T. de Perrot, C. Vesin, P. Y. Martin, S. de Seigneux, and J. P. Vallee. New magnetic resonance imaging index for renal fibrosis assess-ment: A comparison between diffusion-weighted imaging and t1 mapping with histological validation.

Sci Rep, 6:30088, 2016.

[27] I. Friedli, L. A. Crowe, T. de Perrot, L. Berchtold, P. Y. Martin, S. de Seigneux, and J. P. Vallee. Com-parison of readout-segmented and conventional single-shot for echo-planar diffusion-weighted imaging in the assessment of kidney interstitial fibrosis. J Magn Reson Imaging, 2017.

[28] I. Friedli, L. A. Crowe, M. Viallon, D. A. Porter, P. Y. Martin, S. de Seigneux, and J. P. Vallee.

Improvement of renal diffusion-weighted magnetic resonance imaging with readout-segmented echo-planar imaging at 3t. Magn Reson Imaging, 33(6):701–8, 2015.

[29] K.J. Friston, S. Williams, R. Howard, R. S. J. Frackowiak, and R. Turner. Movement related effects in fmri time series. Magn Reson Med, 35:346–355, 1996.

[30] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and A. Haase.

Generalized autocalibrating partially parallel acquisitions (grappa). Magn Reson Med, 47(6):1202–10, 2002.

151

weider, and M. Bochud. Clinical and biological determinants of kidney outcomes in a population-based cohort study. Kidney Blood Press Res, 39(1):74–85, 2014.

[32] E.M. Haacke, R W. Brown, M R. Thompson, and R. Venkatesan. Magnetic resonance imaging: Physical principles and sequence design. A John Wiley and Sons, 1999.

[33] E.L. Hahn. Spin echoes. Phys Rev, 80(4):580–594, 1950.

[34] P. Heusch, H. J. Wittsack, G. Pentang, C. Buchbender, F. Miese, J. Schek, P. Kropil, G. Antoch, and R. S. Lanzman. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys. Acta Radiol, 54(10):1210–7, 2013.

[35] Y. Huang, X. Chen, Z. Zhang, L. Yan, D. Pan, C. Liang, and Z. Liu. Mri quantification of non-gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study. NMR Biomed, 28(2):154–61, 2015.

[36] K. Hueper, M. Gutberlet, T. Rodt, W. Gwinner, F. Lehner, F. Wacker, M. Galanski, and D. Hartung.

Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results.

Eur Radiol, 21(11):2427–33, 2011.

[37] K. Hueper, S. Rong, M. Gutberlet, D. Hartung, M. Mengel, X. Lu, H. Haller, F. Wacker, M. Meier, and F. Gueler. T2 relaxation time and apparent diffusion coefficient for noninvasive assessment of renal pathology after acute kidney injury in mice: comparison with histopathology. Invest Radiol, 48(12):834–42, 2013.

[38] S. Ichikawa, U. Motosugi, T. Ichikawa, K. Sano, H. Morisaka, and T. Araki. Intravoxel incoherent motion imaging of the kidney: alterations in diffusion and perfusion in patients with renal dysfunction.

Magn Reson Imaging, 31(3):414–7, 2013.

[39] T. Inoue, E. Kozawa, H. Okada, K. Inukai, S. Watanabe, T. Kikuta, Y. Watanabe, T. Takenaka, S. Katayama, J. Tanaka, and H. Suzuki. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol, 22(8):1429–34, 2011.

[40] P. Jehenson, M. Westphal, and N. Schuff. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic-field gradients in nmr systems. Journal of Magnetic Resonance, 90(2):264–278, 1990.

[41] Jens H. Jensen, J.A Helpern, A. Ramani, H. Lu, and K. Kaczynski. Diffusional kurtosis imaging:

The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic Resonance in Medicine, 53:1432–1440, 2005.

[42] D. K. Jones and M. Cercignani. Twenty-five pitfalls in the analysis of diffusion mri data. NMR Biomed, 23(7):803–20, 2010.

[43] M. Kataoka, A. Kido, A. Yamamoto, Y. Nakamoto, T. Koyama, H. Isoda, Y. Maetani, S. Umeoka, K. Tamai, T. Saga, N. Morisawa, S. Mori, and K. Togashi. Diffusion tensor imaging of kidneys with respiratory triggering: optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. J Magn Reson Imaging, 29(3):736–44, 2009.

[44] B. F. Kjolby, A. R. Khan, A. Chuhutin, L. Pedersen, J. B. Jensen, S. Jakobsen, D. Zeidler, R. Sangill, J. R. Nyengaard, S. N. Jespersen, and B. Hansen. Fast diffusion kurtosis imaging of fibrotic mouse kidneys. NMR Biomed, 29(12):1709–1719, 2016.

[45] A. Kristoffersen. Statistical assessment of non-gaussian diffusion models.Magn Reson Med, 66(6):1639–

48, 2011.

152

Miese, D. Blondin, G. Antoch, and H. J. Wittsack. Kidney transplant: functional assessment with diffusion-tensor mr imaging at 3t. Radiology, 266(1):218–25, 2013.

[47] D. Le Bihan. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed, 8(7-8):375–

86, 1995.

[48] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet. Mr imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.Radiology, 161(2):401–7, 1986.

[49] A. Lemke, F. B. Laun, M. Klauss, T. J. Re, D. Simon, S. Delorme, L. R. Schad, and B. Stieltjes.

Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol, 44(12):769–75, 2009.

[50] A. Lemke, F B. Laun, D. Simon, and Stieltjes B. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med, 64(6):1580–5, 2010.

[51] A. Lemke, B. Stieltjes, L. R. Schad, and F. B. Laun. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging, 29(6):766–76, 2011.

[52] G. Leung, Anish. Kirpalani, S G. Szeto, M. Deeb, W. Foltz, G A. Simmons, and D A. Yuen. Could mri be used to image kidney fibrosis? a review of recent advances and remaining barriers. Clin J Am Soc Nephrol, 2017.

[53] H. Li, L. Liang, A. Li, Y. Hu, D. Hu, Z. Li, and I. R. Kamel. Monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma. J Magn Reson Imaging, 46(1):240–247, 2017.

[54] Q. Li, J. Li, L. Zhang, Y. Chen, M. Zhang, and F. Yan. Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study. Eur J Radiol, 83(5):756–62, 2014.

[55] Q. Li, X. Wu, L. Qiu, P. Zhang, M. Zhang, and F. Yan. Diffusion-weighted mri in the assessment of split renal function: comparison of navigator-triggered prospective acquisition correction and breath-hold acquisition. AJR Am J Roentgenol, 200(1):113–9, 2013.

[56] M. E. Moseley, Y. Cohen, J. Mintorovitch, L. Chileuitt, H. Shimizu, J. Kucharczyk, M. F. Wendland, and P. R. Weinstein. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and t2-weighted mri and spectroscopy. Magn Reson Med, 14(2):330–46, 1990.

[57] M. F. Muller, P. V. Prasad, D. Bimmler, A. Kaiser, and R. R. Edelman. Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology, 193(3):711–5, 1994.

[58] S. Palmucci, G. Cappello, G. Attina, P. V. Foti, R. O. Siverino, F. Roccasalva, M. Piccoli, N. Sinagra, P. Milone, M. Veroux, and G. C. Ettorre. Diffusion weighted imaging and diffusion tensor imaging in the evaluation of transplanted kidneys. Eur J Radiol Open, 2:71–80, 2015.

[59] M. Y. Park and J. Y. Byun. Understanding the mathematics involved in calculating apparent diffusion coefficient maps. AJR Am J Roentgenol, 199(6):W784, 2012.

[60] J. Pekar, C. T. Moonen, and P. C. van Zijl. On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med, 23(1):122–9, 1992.

[61] G. Pentang, R. S. Lanzman, P. Heusch, A. Muller-Lutz, D. Blondin, G. Antoch, and H. J. Wittsack.

Diffusion kurtosis imaging of the human kidney: a feasibility study.Magn Reson Imaging, 32(5):413–20, 2014.

153

echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition.Magn Reson Med, 62(2):468–75, 2009.

[63] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger. Sense: sensitivity encoding for fast mri. Magn Reson Med, 42(5):952–62, 1999.

[64] S. B. Rathod, S. S. Kumbhar, A. Nanivadekar, and K. Aman. Role of diffusion-weighted mri in acute pyelonephritis: a prospective study. Acta Radiol, 56(2):244–9, 2015.

[65] S. Rheinheimer, F. Schneider, B. Stieltjes, C. Morath, M. Zeier, H. U. Kauczor, and P. Hallscheidt.

Ivim-dwi of transplanted kidneys: reduced diffusion and perfusion dependent on cold ischemia time.

Eur J Radiol, 81(9):e951–6, 2012.

[66] M. Ries, R. A. Jones, F. Basseau, C. T. Moonen, and N. Grenier. Diffusion tensor mri of the human kidney. J Magn Reson Imaging, 14(1):42–9, 2001.

[67] P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza, and O. M. Mueller. The nmr phased array.

Magn Reson Med, 16(2):192–225, 1990.

[68] L. I. Schainuck, G. E. Striker, R. E. Cutler, and E. P. Benditt. Structural-functional correlations in renal disease. ii. the correlations. Hum Pathol, 1(4):631–41, 1970.

[69] M. J. Schneider, O. Dietrich, M. Ingrisch, A. Helck, K. S. Winter, M. F. Reiser, M. Staehler, J. Casus-celli, and M. Notohamiprodjo. Intravoxel incoherent motion magnetic resonance imaging in partially nephrectomized kidneys. Invest Radiol, 51(5):323–30, 2016.

[70] M. Seif, H. Lu, C. Boesch, M. Reyes, and P. Vermathen. Image registration for triggered and non-triggered dti of the human kidney: Reduced variability of diffusion parameter estimation. J Magn Reson Imaging, 2014.

[71] E. E. Sigmund, P. H. Vivier, D. Sui, N. A. Lamparello, K. Tantillo, A. Mikheev, H. Rusinek, J. S. Babb, P. Storey, V. S. Lee, and H. Chandarana. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology, 263(3):758–69, 2012.

[72] E. Squillaci, G. Manenti, M. Cova, M. Di Roma, R. Miano, G. Palmieri, and G. Simonetti. Correlation of diffusion-weighted mr imaging with cellularity of renal tumours. Anticancer Res, 24(6):4175–9, 2004.

[73] J.E. Stejskal, E.O.; Tanner. Spin diffusion measurements: Spin echoes in the presence of a timeâĂŘde-pendent field gradient. The Journal of Chemical Physics, 42(288), 1965.

[74] H. Tanaka, S. Yoshida, Y. Fujii, C. Ishii, H. Tanaka, F. Koga, K. Saito, H. Masuda, S. Kawakami, and K. Kihara. Diffusion-weighted magnetic resonance imaging in the differentiation of angiomyolipoma with minimal fat from clear cell renal cell carcinoma. Int J Urol, 18(10):727–30, 2011.

[75] Y. Tang, Y. Zhou, W. Du, N. Liu, C. Zhang, T. Ouyang, and J. Hu. Standard b-value versus low b-value diffusion-weighted mri in renal cell carcinoma: a systematic review and meta-analysis. BMC Cancer, 14:843, 2014.

[76] B. Taouli, R. K. Thakur, L. Mannelli, J. S. Babb, S. Kim, E. M. Hecht, V. S. Lee, and G. M. Israel.

Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced mr imaging.

Radiology, 251(2):398–407, 2009.

[77] H. C. Thoeny, T. Binser, B. Roth, T. M. Kessler, and P. Vermathen. Noninvasive assessment of acute ureteral obstruction with diffusion-weighted mr imaging: a prospective study. Radiology, 252(3):721–8, 2009.

154

ureteral obstruction with diffusion-weighted mr imaging: a prospective study. Radiology, 252(3):721–8, 2009.

[79] H. C. Thoeny, D. Zumstein, S. Simon-Zoula, U. Eisenberger, F. De Keyzer, L. Hofmann, P. Vock, C. Boesch, F. J. Frey, and P. Vermathen. Functional evaluation of transplanted kidneys with diffusion-weighted and bold mr imaging: initial experience. Radiology, 241(3):812–21, 2006.

[80] O. Togao, S. Doi, M. Kuro-o, T. Masaki, N. Yorioka, and M. Takahashi. Assessment of renal fibrosis with diffusion-weighted mr imaging: study with murine model of unilateral ureteral obstruction. Radiology, 255(3):772–80, 2010.

[81] H.C Torrey. Bloch equation with diffusion terms. Physical Review, 104(3), 1956.

[82] P. H. Vivier, A. Sallem, M. Beurdeley, R. P. Lim, J. Leroux, J. Caudron, C. Coudray, A. Liard, I. Michelet, and J. N. Dacher. Mri and suspected acute pyelonephritis in children: comparison of diffusion-weighted imaging with gadolinium-enhanced t1-weighted imaging. Eur Radiol, 24(1):19–25, 2014.

[83] D. O. Walsh, A. F. Gmitro, and M. W. Marcellin. Adaptive reconstruction of phased array mr imagery.

Magn Reson Med, 43(5):682–90, 2000.

[84] W. J. Wang, M. H. Pui, Y. Guo, L. Q. Wang, H. J. Wang, and M. Liu. 3t magnetic resonance diffusion tensor imaging in chronic kidney disease. Abdom Imaging, 39(4):770–5, 2014.

[85] Z. Wen, Z. Sun, and Y. Wang. Diagnostic utility of diffusion-weighted magnetic resonance imaging in two common renal tumors. Oncol Lett, 10(4):2565–2568, 2015.

[86] H. J. Wittsack, R. S. Lanzman, C. Mathys, H. Janssen, U. Modder, and D. Blondin. Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med, 64(2):616–22, 2010.

[87] E. Yildirim, I. Kirbas, M. Teksam, E. Karadeli, H. Gullu, and I. Ozer. Diffusion-weighted mr imaging of kidneys in renal artery stenosis. Eur J Radiol, 65(1):148–53, 2008.

[88] J. L. Zhang, E. E. Sigmund, H. Chandarana, H. Rusinek, Q. Chen, P. H. Vivier, B. Taouli, and V. S.

Lee. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology, 254(3):783–92, 2010.

[89] J. L. Zhang, E. E. Sigmund, H. Rusinek, H. Chandarana, P. Storey, Q. Chen, and V. S. Lee. Optimization of b-value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med, 67(1):89–97, 2012.

[90] J. Zhao, Z. J. Wang, M. Liu, J. Zhu, X. Zhang, T. Zhang, S. Li, and Y. Li. Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted mri. Clin Radiol, 69(11):1117–22, 2014.

[91] Z. Zheng, H. Shi, J. Zhang, and Y. Zhang. Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor mr imaging. PLoS One, 9(12):e113469, 2014.

155

4 Appendix: curriculum vitae

156

Iris FRIEDLI

Friedli.Iris@gmail.com Born in Basel (CH), 23/09/1985 Nationality: Swiss, French Mobile: (+41) 766854874 Office: (+41) 223725212

Department of Radiology Geneva University Hospitals rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

MRI Physicist

PhD student in MRI physics, (November 2012 - )

Title: Renal Fibrosis Assessment by Diffusion-Weighted Magnetic Resonance Imaging Thesis supervisors: Pr. J.-P. Vall´ee (Division of Radiology, Geneva University Hospitals) and Pr. J.-P. Wolf (Biophotonics Group, University of Geneva)

• Research work mainly focused onpre-clinical and clinical validation of novel quantitative MRI methodsfor chronic kidney disease assessment

Participation in the European FP7 NanoDiaRA Project on Rheumatoid Arthritis and Osteoarthritis

• Iron Oxide Nanoparticles (SPION) as contrast agents and quantitative MRI in small animal models MRI Skills:

• Protocol optimisation and MRI acquisitions for research protocols (Siemens, Philips)

• Quantitative MRI (Diffusion-Weighted Imaging (DWI), T1-, T2- and T2* Mapping)

• Image processing, image analysis and statistical analysis Other Skills:

• Languages: French (mother tongue), English (fluent)

• Computer skills: OsiriX, Matlab, R, ImageJ, SPSS, LaTeX

• Ability to work in interdiciplinary environment (radiologist, nephrologist, physicist)

QUALIFICATION and RESEARCH EXPERIENCE MSc degree in Physics, University of Strasbourg, France

• Radiation Physics, Detector, Instrumentation and Imagery (2011-2012)

• Subatomic Physics and Astroparticles (2010-2011) Continued education:

RESAL: LTK Module 1 Swiss Authorization in vivo studies, Lausanne, Switzerland

Course in Laboratory Animal Science accredited by the Federation of European Laboratory Animal Science Associations (FELASA accreditation Nr. 38/12)

1

Study projects:

Master Internship in Particle Physics (2012, 5 months)

Supervisor: Dr C. Jollet and Dr A. Meregaglia, Hubert Curien Institute, University of Strasbourg, France Study of muon-induced background in the Double Chooz experiement

Programming: C++, ROOT

Master Internship in Particle Physics (2011, 4 months)

Supervisor: Pr. A. Nomerotski, Physics Department, University of Oxford, UK

Characterization of PImMS Monolithic Active Pixel Sensor for Imaging Mass Spectrometry Programming: LabVIEW

Theoretical Internship in Particle Physics (2010, 4 months)

Supervisor: Dr. B. Fuks, Hubert Curien Institute, University of Strasbourg, France Symmetry breaking in the Standard Model

Exchange Project with University Politechnika of Wroclaw, Poland (2007, 1 month) Experimental work with Laser and Workshop on quantum dots

AWARDS and DISTINCTION

ISMRM Magna Cum Laude Merit Award for the work entitled:

Multiple Linear Regression for Predicting Fibrosis in the Kidney using T1 Mapping and RESOLVE Diffusion-Weighted MRI, presented at the ISMRM 24th Annual Meeting, Singapore 2016

STIPEND Award for Annual ISMRM 2017 Meeting, Honolulu, HI, USA 2017 TEACHING EXPERIENCE

Teaching Assistant (2012-2016)

Co supervision of bachelor students (medicine and medical imaging technologist) University of Geneva and Haute Ecole de Sant´e, Geneva, Switzerland

ADDITIONAL INFORMATION Sales assistant (2004-2010)

Various retail outlets (Camaieu, Minelli, Darjeeling, Brice, Armand Thiery)

Other interests including: travelling, world food at home and abroad, running (Lausanne half marathon 2016 in 2:13)

2

PUBLICATIONS Peer reviewed journal papers:

• Crowe LA, Montecucco F, Carbone F,Friedli I, Hachulla AL, Braunersreuther V, Mach F, Vall´ee JP.

4D cardiac imaging at clinical 3.0 T provides accurate assessment of murine myocardial function and viability. Magn Reson Imaging. doi: 10.1016/j.mri.2017.07.024

• Berchtold L,Friedli I, Vall´ee JP, Moll S, Martin PY, de Seigneux S Diagnosis and assessment of renal fibrosis: the state of the art. Swiss Med Wkly. 2017;147:w14442. doi: 10.4414/smw.2017.14442

• Friedli I, Crowe LA, de Perrot T, Berchtold L, Martin PY, de Seigneux S, Vall´ee JP; Comparison of Readout-Segmented and Conventional Single-Shot for Echo-Planar Diffusion-Weighted Imaging in the Assessment of Kidney Interstitial Fibrosis. J Magn Reson Imaging 2017. doi: 10.1002/jmri.25687

• Orci LA, Oldani G, Lacotte S, Slits F, Friedli I, Wirth W, Toso C, Vall´ee JP, Crowe LA. Dynamic Volume Assessment of Hepatocellular Carcinoma in Rat Livers Using a Clinical 3T MRI and Novel Segmentation. J Invest Surg. 2017 Jan 20:1-10. doi: 10.1080/08941939.2016.1276987

• Friedli I, Crowe LA, Berchtold L, Moll S, Hadaya K, de Perrot T, Vesin C, Martin PY, de Seigneux S, Vall´ee JP. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation. Sci Rep. 2016 Jul 21;6:30088. doi: 10.1038/srep30088

• Friedli I, Crowe LA, Viallon M, Porter DA, Martin PY, de Seigneux S, Vall´ee JP. Improvement of Renal Diffusion-Weighted Magnetic Resonance Imaging with Readout-Segmented Echo-Planar Imaging at 3T. Magn Reson Imaging. 2015 Jul;33(6):701-8. doi: 10.1016/j.mri.2015.02.023. Epub 2015 Feb 27 International conference proceedings:

International Society for Magnetic Resonance Medicine (ISMRM), 2017, Honolulu, HI, USA Posters

• Friedli I, Crowe LA, Delattre, B MA, de Perrot T, Martin PY, de Seigneux S, Vall´ee JP; The Cortico-Medullary ADC Difference reduces inter-system variability in Renal Diffusion-Weighted Imaging

• Crowe LA, Montecucco F, Carbone F, Friedli I, Hachulla AL, Braunersreuther V, Mach F,Vall´ee JP; 4D cine strategy for assessment of mouse cardiac function and infarct size in a single acquisition optimized for a clinical 3T MR system

International Society for Magnetic Resonance Medicine (ISMRM), 2016, Singapore PowerPitch

• Friedli I, Crowe LA, Berchtold L, Moll S, Hadaya K, de Perrot T, Martin PY, de Seigneux S, Vall´ee

• Friedli I, Crowe LA, Berchtold L, Moll S, Hadaya K, de Perrot T, Martin PY, de Seigneux S, Vall´ee

Documents relatifs