• Aucun résultat trouvé

Flutuations of the height funtion

Dans le document The die de (Page 41-49)

In this setion we address the question of the utuations of the height funtion around its

mean. We restritourselvesto the aseof the uniform dimermodel on theinnitehoneyomb

lattie

H

,withnomagnetield. Thegoalistoprovethatthelimitingutuationsoftheheight funtion are desribed by a Gaussian free eldof the plane, a behavior whih is harateristi

of theliquidphase.

Resultspresentedhere, and extensionsan be found in[Ken00 ,Ken01 ,Ken08 , dT07℄.

3.5.1 Uniform dimermodel on the honeyomb lattie

Letusspeifytheresultsobtainedintheprevioussetionstotheasewhere

H

isthehoneyomb lattie,edges areassignedweights

1

,and thereisno magneti eld. Thehoie offundamental domain isgiven inFigure3.10.

1/w

γ x γ y

z 1 1

1 1

1

Figure3.10: Choieof fundamentaldomain of thehoneyomb lattie

Theharateristi polynomialis:

P (z, w) = 1 + z + 1 w .

The Gibbs measure

µ

obtained asweak limit of the Boltzmann measures

µ n

on

M ( G n )

(with

no magnetield) hasthefollowing expressionon ylindersets:

µ( e 1 , . . . , e k ) = det K 1 ( b i , w j ) 1 i,j ≤ k

,

(3.10)

where

K 1 ( b 0,0 , w x,y ) = 1 (2πi) 2

Z

T 2

1

1 + z + w 1 z y w x dz z

dw w ,

and

w x,y

representsthewhitevertexofthe

(x, y)

opyofthefundamentaldomain,andsimilarly for

b x,y

.

on the unit torus

T

:

(z 0 , w 0 ) = (e i 3 , e i 3 ),

and

(z 0 , w 0 ).

The uniform dimer model on the

honeyomb lattie isthus intheliquid phase.

InSetion 2.4, we dened Thurston'sheight funtionon lozenge tilingsof thetriangular lattie

T

,whih wasa funtion onvertiesof

T

. Equivalently, itis afuntion on dimerongurations of the honeyomb lattie

H

,dened on faesof

H

. For onveniene, from now on, we onsider

1

3

of Thurston's height funtion.

The following lemma gives an expression of the height funtion using indiator funtions of

edges. We will use this inthe proof of the onvergene of the height funtion. Let

u , v

be two faes of

H

,and let

γ

be an edge-path in thedual graph from

u

to

v

. Denote by

e 1 , . . . , e m

the dualedgesofedgesof

γ

whihhaveablakvertexontheleft,andby

f 1 , . . . , f n

thosewhihhave awhite vertexon theleft. Then,

Lemma 21.

γ

. Then, returning to the orientation of the edges of the triangular lattie introdued in the

onstrutionofThurston'sheightfuntion,seeSetion2.4,weknowthattheedge

u i v i

isoriented from

u i

to

v i

. Thus bydenition, we have:

h( v i ) − h( u i ) = ( 1

3

iftheedge

e i

isnot inthedimeronguration

2 3

iftheedge

e i

isinthedimeronguration

.

Thisan be summarized as:

h( v i ) − h( u i ) = − I e

i + 1 3

.

A similar argument holds for edges whih have a white vertex on the left. Summing over all

edges inthe path

γ

yields the result.

3.5.2 Gaussian free field of the plane

We nowdene the Gaussian freeeld ofthe plane, whih is, aswe will see, thelimiting objet

of theheight funtion.

The Green's funtion of the plane, denoted by

g

satises

∆ x g(x, y) = δ x (y)

, where

δ x

is the

Diradistribution at

x

. Upto an additive onstant,

g

is given by

g(x, y) = − 1

implying that the bilinear form

G

is positive denite. Thequantity

G(ϕ 1 , ϕ 1 )

is known asthe

Dirihlet energy of

f 1

.

A random generalized funtion

F

assigns to every test funtion

ϕ

in

C c,0 ( R 2 )

, a real random

variable

F ϕ

. Itisassumedtobelinearandontinuous,whereontinuitymeansthatonvergene

of the funtions

ϕ n j

(

1 ≤ j ≤ k

) to

ϕ j

, implies onvergene in law of the random vetor

(F ϕ n 1 , . . . , F ϕ n k )

to

(F ϕ 1 , . . . , F ϕ k )

. Arandomgeneralized funtionissaidtobeGaussianiffor every linearly independent funtions

ϕ 1 , . . . , ϕ k ∈ C c,0 ( R 2 )

, therandom vetor

(F ϕ 1 , . . . , F ϕ k )

isGaussian.

Theorem22. [Bo55 ℄If

B : C c,0 ( R 2 ) × C c,0 ( R 2 ) → R

isabilinear,ontinuous,positivedenite form,then there existsaGaussian random generalized funtion

F

,whose ovariane funtionis

given by:

E [F ϕ 1 F ϕ 2 ] = B (ϕ 1 , ϕ 2 ).

Bydenition aGaussian free eldof the plane GFFisa Gaussianrandom generalized funtion

whose ovariane funtionis the bilinear form

G

dened above,i.e.

E [

GFF

(ϕ 1 )

GFF

(ϕ 2 )] = − 1

There areother ways of deningtheGaussian freeeld, seefor example [GJ81 ℄ and[She07 ℄.

3.5.3 Convergene of the height funtion to a Gaussian free field

Let

H ε

be the graph

H

whose edge-lengths have been multiplied by

ε

, and onsider the

un-normalized height funtion

h

on faesof

H ε

. Dene,

H ε : C c,0 ( R 2 ) → R

ϕ 7→ H ε ϕ = ε 2 X

v ∈ F( H ε )

ϕ( v )h( v ).

Theorem 23. The random generalized funtion

H ε

onverges weakly in law to

1 π

times a

Gaussian free eld,i.e. for every

ϕ 1 , . . . , ϕ k ∈ C c,0 ( R 2 )

,

(H ε ϕ 1 , . . . , H ε ϕ k )

onverges in law(as

where

g( u , v , u ′ , v ′ ) = g( v , v ′ ) + g( u , u ′ ) − g( v , u ′ ) − g( u , v ′ )

,

g

isthe Green'sfuntionof the plane,

and the sumisover all

(k − 1)!!

pairings of

{ 1, . . . , k }

.

Proof. We prove this proposition ina partiular ase. The proof of thegeneral ase issimilar,

although notationally muh more umbersome. Let us assume that

k = 2

, and suppose that

u 1 , v 1 , u 2 , v 2

are suh that we an hoose

u ε

2

respetively asinFigure 3.11.

ε

ε lim → 0

E [(h( v ε

1 ) − h( u ε

1 ))(h( v ε

2 ) − h( u ε

2 ))] = − 2 Re Z v 1

u 1

Z v 2 u 2

1

2 (z 2 − z 1 ) 2 dz 1 dz 2

= − 1 2π 2 log

( v 1 − v 2 )( u 1 − u 2 ) ( v 1 − u 2 )( u 1 − v 2 )

= 1

π g( u 1 , v 1 , u 2 , v 2 ).

One Proposition 24 is available, one then introdues test funtions and prove onvergene of

all moments of (3.11) . This implies handling moments of height dierenes involving verties

whiharelose. Theasymptoti formulafor theinverse Kasteleynmatrix doesnot holdinthis

ase, and onehasto do areful boundsto see thateverything still works.

********************************

We have reahed the end of these leture notes overing the foundations of the dimer model

and thepaper Dimersand amoeba ofKenyon,Okounkovand Sheeld [KOS06 ℄, givinga full

desription of the phase diagram of the dimer model on periodi, bipartite graphs. Although

these arespetaularresults, thereare others,suh asthespei behaviorof thedimermodel

dened on isoradial graphs [Ken02 , KO06 ℄,theunderstanding of limit shapes[CKP01,KO07 ℄,

the appliation of dimertehniques to study theIsing model[BdT10b,BdT10a ℄. We do hope

that these notes will enourage the reader to learn more on this very rih model of statistial

mehanis.

[Bax89℄ Rodney J. Baxter. Exatly solved models in statistial mehanis. Aademi Press

In. [Harourt Brae Jovanovih Publishers℄, London, 1989. Reprint of the 1982

original.

[BdT10a℄ Cédri Boutillier and Béatrie de Tilière. The ritial

Z

-invariant Ising model via

dimers: loality property. Comm.Math. Phys.,pages 144,2010.

[BdT10b℄ Cédri Boutillier and Béatrie de Tilière. The ritial

Z

-invariant Ising model via

dimers: the periodi ase. Probab. Theory Related Fields,147:379413, 2010.

[Bo55℄ S.Bohner. Harmoni analysisandthetheoryof probability. UniversityofCalifornia

press, 1955.

[BR06℄ B. Bollobás andO. Riordan. Perolation. Cambridge Univ Pr,2006.

[CKP01℄ Henry Cohn,RihardKenyon,and JamesPropp. Avariational priniplefordomino

tilings. J.Amer.Math.So.,14(2):297346 (eletroni), 2001.

[CR07℄ David Cimasoni and NiolaiReshetikhin. Dimers onsurfae graphs and spin

stru-tures. I. Comm. Math.Phys., 275(1):187208,2007.

[CR08℄ David Cimasoni and NiolaiReshetikhin. Dimers onsurfae graphs and spin

stru-tures. II. Comm.Math.Phys., 281(2):445468, 2008.

[CS12℄ D. Chelkak and S. Smirnov. Universality in the 2D Ising model and onformal

invariane of fermioni observable. Invent. Math.,189:515580, 2012.

[DS11℄ B. Duplantier andS.Sheeld. Liouville quantum gravity and KPZ. Invent. Math.,

185(2):333393, 2011.

[DT89℄ G.DavidandC.Tomei.TheproblemofCalissons.Amer.Math.Monthly,96(5):429

431, 1989.

[dT07℄ B. de Tilière. Saling limit of isoradial dimer models and the ase of triangular

quadri-tilings. Ann. Inst. HenriPoinaré (B)Probab. Stat.,43(6):729750,2007.

[DZM

+

96℄ N. P. Dolbilin, Yu. M. Zinov

ev, A. S. Mishhenko, M. A. Shtan

ko, and M. I.

Shtogrin. Homologial properties of two-dimensional overings of latties on

sur-faes. Funktsional. Anal. iPrilozhen., 30(3):1933, 95,1996.

[FPT00℄ M. Forsberg, M. Passare, and A.Tsikh. Laurent determinants and arrangements of

hyperplane amoebas. Adv. Math.,151(1):4570, 2000.

[FR37℄ RH Fowler and GS Rushbrooke. An attempt to extend the statistial theory of

perfet solutions. Transations of the Faraday Soiety,33:12721294, 1937.

Springer-Verlag, 1981.

[GKZ94℄ I.M. Gelfand,M.M. Kapranov, and A.V. Zelevinsky. Disriminants, resultants,and

multidimensional determinants. Springer, 1994.

[GL99℄ A.Galluioand M.Loebl. OnthetheoryofPfaanorientations. I. Perfet

math-ings and permanents. Eletron. J.Combin., 6(1):R6,1999.

[Gri99℄ G. Grimmett. Perolation. Springer Verlag,1999.

[HJ90℄ R.A. Hornand C.R.Johnson. Matrixanalysis. Cambridge UniversityPress,1990.

[Kas61℄ P. W. Kasteleyn. The statistis of dimers on a lattie : I. The number of dimer

arrangementson a quadratilattie. Physia,27:12091225, De1961.

[Kas67℄ P.W.Kasteleyn.Graphtheoryandrystalphysis.InGraphTheoryandTheoretial

Physis, pages 43110.AademiPress, London,1967.

[Ken℄ R. Kenyon. Letures on dimers, statistial mehanis. IAS/Park City Math. Ser,

16:191230.

[Ken97℄ RihardKenyon.Loalstatistisoflattiedimers.Ann.Inst.HenriPoinaréProbab.

Stat., 33(5):591618,1997.

[Ken00℄ R. Kenyon. Conformal invariane of domino tiling. Ann. Probab., 28(2):759795,

2000.

[Ken01℄ R. Kenyon. Dominos and the Gaussian free eld. Ann. Probab., 29(3):11281137,

2001.

[Ken02℄ Rihard Kenyon. The Laplaianand Dira operators on ritial planar graphs.

In-vent. Math.,150(2):409439, 2002.

[Ken04℄ RihardKenyon. An introdution tothedimermodel. InShool and Conferene on

ProbabilityTheory,pages267304.ICTPLet.Notes,XVII,AbdusSalamInt.Cent.

Theoret. Phys., Trieste, 2004.

[Ken08℄ R.Kenyon.Heightutuationsinthehoneyombdimermodel. Comm.Math.Phys.,

281(3):675709, 2008.

[Kes82℄ H.Kesten. Perolation theory for mathematiians. Birkhäuser,1982.

[KO06℄ Rihard Kenyon and Andrei Okounkov. Planar dimers and Harnak urves. Duke

Math. J.,131(3):499524, 2006.

[KO07℄ R.KenyonandA.Okounkov. LimitshapesandtheomplexBurgersequation. Ata

Math., 199(2):263302,2007.

[KOS06℄ RihardKenyon,AndreiOkounkov,andSottSheeld. Dimersandamoebae. Ann.

of Math. (2),163(3):10191056, 2006.

[KPW00℄ R.W. Kenyon, J.G. Propp, and D.B. Wilson. Trees and mathings. Eletron. J.

Combin, 7(1):R25, 2000.

[Kup98℄ Greg Kuperberg. An exploration of the permanent-determinant method. Eletron.

J. Combin.,5:Researh Paper46,34 pp.(eletroni),1998.

erasedrandomwalksanduniformspanningtrees.Ann.Probab.,32(1):939995,2004.

[Ma01℄ P.A. MaMahon. Combinatoryanalysis. Chelsea PubCo, 2001.

[Mik00℄ G. Mikhalkin. Realalgebraiurves,the moment mapand amoebas. Ann. ofMath.

(2), 151(1):309326, 2000.

[MR01℄ G. Mikhalkin and H. Rullgård. Amoebas of maximal area. Int. Math. Res. Not.,

2001(9):441, 2001.

[MW73℄ B.MCoyandF.Wu. The two-dimensionalIsingmodel. HarvardUniv.Press,1973.

[Ons44℄ Lars Onsager. Crystalstatistis. I.A two-dimensional modelwithanorder-disorder

transition. Phys. Rev., 65(3-4):117149, Feb 1944.

[Per69℄ J.K. Perus. One more tehnique for the dimer problem. J. Math. Phys., 10:1881,

1969.

[Sh00℄ O.Shramm. Salinglimitsofloop-erasedrandomwalksanduniformspanningtrees.

Israel J. Math., 118(1):221288,2000.

[She05℄ Sott Sheeld. Random surfaes. Astérisque, (304):vi+175,2005.

[She07℄ S.Sheeld. Gaussianfreeeldsfor mathematiians. Probab.TheoryRelated Fields,

139(3):521541, 2007.

[Smi10℄ S.Smirnov. Conformalinvarianeinrandomlustermodels.I.Holomorphifermions

inthe Ising model. Ann. of Math. (2),172(2):14351467, 2010.

[Sos07℄ A. Soshnikov. Determinantal random point elds. Russian Mathematial Surveys,

55(5):923, 2007.

[Tes00℄ G. Tesler. Mathings ingraphs onnon-orientable surfaes. J.Combin. Theory Ser.

B, 78(2):198231,2000.

[TF61℄ HNV Temperley and M.E.Fisher. Dimer problem instatistialmehanis-anexat

result. Philosophial Magazine, 6(68):10611063, 1961.

[Thu90℄ W.P.Thurston. Conway'stilinggroups. Amer.Math.Monthly,97(8):757773,1990.

[Vel℄ Y.Velenik. Le modèle d'Ising. http://www.unige.h/math/folks/velenik/ours.html.

[W

+

07℄ W.Werneretal. Leturesontwo-dimensional ritialperolation. Arxiv,0710.0856,

2007.

[Wer09℄ W. Werner. Perolation etmodèle d'Ising. Cours spéialisés, SMF,16,2009.

Dans le document The die de (Page 41-49)

Documents relatifs