• Aucun résultat trouvé

Fenêtrage fondé sur une distance de Mahalanobis et un seuil empirique

F.2 Fenêtre de validation pour un filtre particulaire

F.2.2 Fenêtrage fondé sur une distance de Mahalanobis et un seuil empirique

Sk−1 " rk− µr dswgk− µθ) # . (F.14)

En considérant que zk suit une loi gaussienne de moyenne µswg et de matrice de covariance ˜Sk, la distance au carré d2M aha,P F (F.14) est comparée au seuil calculé à partir de la fonction de répartition inverse de la loi du χ2 et d’une probabilité de gating pg.

Dans certains cas cependant, approcher la distribution de zk par une loi semi-wrapped Gaussian est une trop forte simplification à cause d’une non-linéarité trop importante introduite par le modèle de mesure. La distance de Mahalanobis peut continuer à être calculée sans approximation, mais elle ne suit plus une loi du χ2 de sorte que le seuil considéré n’est plus valide. Dans la sous-partie suivante, nous proposons de définir différemment le seuil de validation.

F.2.2 Fenêtrage fondé sur une distance de Mahalanobis et un seuil empirique Dans cette partie, nous proposons de calculer un seuil à partir des pseudo mesures ˜z(i)k|k−1. En effet, k|k−1(i) , ˜z(i)k|k−1}i=1,...,N représente la loi de prédiction p(zk|z1:k−1). Pour chaque pseudo-mesure, une distance de Mahalanobis au carré peut être calculée de la manière suivante :

 d(i)M aha2= ˜ rk|k−1(i) − µr dswgθ˜(i)k|k−1− µθ T ˜ Sk−1 ˜ r(i)k|k−1− µr dswgθ˜(i)k|k−1− µθ . (F.15)

Il est possible de déterminer l’effectif empirique cumulé des distances au carré. Le seuil empirique est alors donné par la distance au carré pour laquelle pg× 100 % des distances sont inférieures. Le principe de cette méthode est illustrée par la figure F.6. Comme pg est généralement plus grand que 0.9, il peut être utile d’utiliser une méthode d’estimation à noyau de la fonction de répartition [Ser09] pour compenser la rareté des particules en queue de distribution.

Figure F.6 – Fenêtre de validation empirique.

Dans certains cas, cette approche montre également ses limites. Par exemple, lorsque les trajectoires de deux cibles sont proches pendant plusieurs instants. À ce moment-là, deux mesures apparaissent relativement proches à plusieurs reprises et participent potentiellement toutes les deux à l’estimation des deux pistes. La distribution sur l’état devient bi-modale. Lorsque les deux cibles s’éloignent, les deux modes deviennent nettement séparés. La fenêtre de validation décrite ci-dessus a alors tendance à grossir sans pour autant décrire fidèlement l’incertitude dans l’espace des mesures. Des mesures pertinentes pour l’estimation peuvent alors être rejetées.

[Ara09] I. Arasaratnam et S. Haykin. Cubature Kalman Filters. Transactions on Automatic Control, vol. 54, pages 1254–1259, 2009.

[Ath68] M. Athans, R. Wishner, et A. Bertolini. Suboptimal state estimation for continuous-time

nonlinear systems from discrete noisy measurements. Transactions on Automatic Control,

vol. 13, pages 504–514, 1968.

[Bah06] C. Bahlmann. Directional features in online handwriting recognition. Pattern Recognition, vol. 39, no.1, pages 115–125, 2006.

[Bar01] Y. Bar-Shalom, X. R. Li, et T. Kirubarajan. Estimation with applications to tracking and

navigation: theory, algorithms and software. John Wiley & Sons, New York, 2001.

[Bar09] Y. Bar-Shalom, F. Daum, et J. Huang. The probabilistic data association filter. Control Systems, vol. 29, pages 82–100, 2009.

[Bar11] Y. Bar-Shalom, P. Willett, et X. Tian. Tracking and data fusion: a handbook of algorithms. YBS Publishing, 2011.

[Bar15] P. Barrios, G. Naqvi, M. Adams, K. Leung, et F. Inostroza. The cardinalized optimal linear

assignment (COLA) metric for multi-object error evaluation. Conference on Information

Fusion, pages 271–279, 2015.

[Bau15] M. Baum, B. Balasingam, P. Willett, et U. Hanebeck. OSPA barycenters for clustering

set-valued data. Conference on Information Fusion, pages 1375–1381, 2015.

[Bea12] M. Beard, B.-T. Vo, B.-N. Vo, et S. Arulampalam. Gaussian mixture PHD and CPHD

filtering with partially uniform target birth. Conference on Information Fusion, pages 535–

541, 2012.

[Bla99] S. Blackman et R. Popoli. Design and analysis of modern tracking systems. Artech House Publishers, 1999.

[Cha01] S. Challa et G. W. Pulford. Joint target tracking and classification using radar and ESM

sensors. Transactions on Aerospace and Electronics Systems, vol. 37, pages 1039–1055,

2001.

[Che00] R. Chen et S. J. Liu. Mixture Kalman filters. Journal of the Royal Statistical Society, vol. 62, no. 3, pages 493–508, 2000.

[Che17] D. Chen, C. Li, et H. Ji. Multi-target joint detection, tracking and classification with merged

measurements using generalized labeled multi-Bernoulli filter. Conference on Information

Fusion, pages 1–8, 2017.

[Chl14] C. Chlebek et U. D. Hanebeck. Pole-based distance measure for change detection in linear

dynamic systems. Conference on Information Fusion, 2014.

[Dal03] D. Daley et D. Vere-Jones. An introduction to the theory of point processes, volume 1 :

Elementary theory and methods. Springer, second edition, 2003.

[Dou01] A. Doucet, N. de Freitas, et N. Gordon. Sequential Monte Carlo methods in practice.

[Dou02] A. Doucet et C. Andrieu. Particle filtering for partially observed gaussian state space models. Journal of the Royal Statistical Society, vol. 64, no. 4, pages 827–836, 2002.

[Eat83] M. L. Eaton. Multivariate statistics: a vector space approach, pages 116–117. John Wiley and Sons, 1983.

[Erd05] O. Erdinc, P. Willett, et Y. Bar-Shalom. Probability hypothesis density filter for multitarget

multisensor tracking. Conference on Information Fusion, 2005.

[Gue10] M. Guerriero, L. Svensson, D. Svensson, et P. Willett. Shooting two birds with two bullets:

how to find minimum mean OSPA estimates. Conference on Information Fusion, pages 1–8,

2010.

[Gus10] F. Gustafsson. Particle filter theory and practice with positioning applications. Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pages 53–82, 2010.

[He13] X. He, R. Tharmarasa, T. Kirubarajan, et T. Thayaparan. A track quality based metric

for evaluating performance of multitarget filters. Transactions on Aerospace and Electronic

Systems, vol. 49, no. 49, pages 610–616, 2013.

[Ho64] Y.-C. Ho et R. Lee. A Bayesian approach to problems in stochastic estimation and control. Transactions on Automatic Control, vol. 9, no. 4, pages 333–339, 1964.

[Hof04] J. Hoffman et R. Mahler. Multitarget miss distance via optimal assignment. Transactions on Systems, Man, and Cybernetics, vol. 34, no. 3, pages 327–336, 2004.

[Kal60] R. Kalman. A new approach to linear filtering and prediction problems. ASME-Journal of Basic Engineering, vol. 82, pages 35–45, 1960.

[Kuh55] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, vol. 2, pages 83–97, 1955.

[Kur88] T. Kurien et M. Liggins. Report-to-target assignment in multisensor multitarget tracking. Conference on Decision and Control, pages 2484–2488, 1988.

[Kur91] T. Kurien. Framework for integrated tracking and identification of multiple targets. Confe-rence on Digital Avionics Systems, pages 362–366, 1991.

[Leg17] L. Legrand, A. Giremus, E. Grivel, L. Ratton, et B. Joseph. Bernoulli filter based

algo-rithm for joint target tracking and classification in a cluttered environment. International

Conference on Acoustics, Speech and Signal Processing, 2017.

[Leg18a] L. Legrand, A. Giremus, E. Grivel, L. Ratton, et B. Joseph. Generative model and associated

metric for coordinated-motion target groups. International Conference on Acoustics, Speech

and Signal Processing, 2018.

[Leg18b] L. Legrand, A. Giremus, E. Grivel, L. Ratton, B. Joseph, et C. Magnant. A hierarchical

LMB/PHD filter for multiple groups of targets with coordinated motions. Conference on

Information Fusion, 2018.

[Ler93] D. Lerro et Y. Bar-Shalom. Tracking with debiased consistent converted measurements versus

EKF. Transactions on Aerospace and Electronic Systems, vol. 29, no. 3, pages 1015–1022,

1993.

[Li16] M. Li, Z. Jing, P. Dong, et H. Pan. Multi-target joint detection, tracking and classification

using generalized labeled multi-Bernoulli filter with Bayes risk. Conference on Information

Fusion, pages 680–687, 2016.

[Mag15a] C. Magnant, A. Giremus, E. Grivel, L. Ratton, et B. Joseph. Joint tracking and classification

based on kinematic and target extent measurements. Conference on Information Fusion,

pages 1748–1755, 2015.

[Mag16a] C. Magnant, A. Giremus, E. Grivel, L. Ratton, et B. Joseph. Multi-target tracking using a

[Mag18] C. Magnant, S. Kemkemian, et L. Zimmer. Joint tracking and classification for extended

targets in maritime surveillance. Radar Conference, pages 1117–1122, 2018.

[Mah03] R. Mahler. Multitarget Bayes filtering via first-order multitarget moments. Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pages 1152–1178, 2003.

[Mah07] R. Mahler. PHD filters of higher order in target number. Transactions on Aerospace and Electronic Systems, vol. 43, no. 4, pages 1523–1543, 2007.

[Mar99] K. Mardia et P. E. Jupp. Directional Statistics. Wiley, 1999.

[Mei04] W. Mei, G.-L. Shan, et X. R. Li. An efficient Bayesian algorithm for joint target tracking

and classification. Conference on Signal Processing, pages 2090–2098, 2004.

[Mih14] L. Mihaylova, A. Y. Carmi, F. Septier, A. Gning, S. K. Pang, et S. Godsill. Overview of

Bayesian sequential Monte Carlo methods for group and extended object tracking. Digital

Signal Processing, vol. 25, pages 1–16, 2014.

[Nag11] S. Nagappa, D. E. Clark, et R. Mahler. Incorporating track uncertainty into the OSPA

metric. Conference on Information Fusion, pages 1–8, 2011.

[Naj06] M. Najim. Modélisation, estimation et filtrage optimal en traitement du signal. Hermes Science Publications, 2006.

[Qui00] B. M. Quine. A derivative-free implementation of the extended Kalman filter. Automatica, vol. 42, pages 1927–1934, 2000.

[Rah17] A. S. Rahmathullah, Á. F. García-Fernández, et L. Svensson. Generalized optimal

sub-pattern assignment metric. Conference on Information Fusion, pages 1–8, 2017.

[Rei79] D. Reid. An algorithm for tracking multiple targets. Transactions on Automatic Control, vol. 24, no. 6, pages 843–854, 1979.

[Reu14a] S. Reuter, B.-T. Vo, B.-N. Vo, et K. Dietmayer. The labeled multi-Bernoulli filter. Transac-tions on Signal Processing, vol. 62, no. 12, pages 3246–3260, 2014.

[Reu14b] S. Reuter. Multi-object tracking using random finite sets. Thèse de doctorat, Ulm university, 2014.

[Ris04] B. Ristic, N. Gordon, et A. Bessel. On target classification using kinematic data. Journal on Information Fusion, vol. 5, pages 15–21, 2004.

[Ris10] B. Ristic, D. Clark, et B.-N. Vo. Improved SMC implementation of the PHD filter. Confe-rence on Information Fusion, pages 1–8, 2010.

[Ris10b] B. Ristic, B.-N. Vo, et D. Clark. Performance evaluation of multi-target tracking using the

OSPA metric. Conference on Information Fusion, pages 1–7, 2010.

[Ris11] B. Ristic, B.-N. Vo, D. Clark, et B.-T. Vo. A metric for performance evaluation of

multi-target tracking algorithms. Transactions on Signal Processing, vol. 59, no. 7, pages 3452–

3457, 2011.

[Ris12a] B. Ristic, D. Clark, B.-N. Vo, et B.-T. Vo. Adaptive target birth intensity for PHD and

CPHD filters. Transactions on Aerospace and Electronic Systems, vol. 48, no. 2, pages

1656–1668, 2012.

[Ris12b] B. Ristic et A. Farina. Joint detection and tracking using multi-static doppler-shift

mea-surements. International Conference on Acoustics, Speech and Signal Processing, pages

3881–3884, 2012.

[Ris13] B. Ristic, B.-T. Vo, B.-N. Vo, et A. Farina. A tutorial on Bernoulli filters: theory,

imple-mentation and applications. Transactions on Signal Processing, pages 3406–3430, 2013.

[Rot11] M. Roth et F. Gustafsson. An efficient implementation of the second order extended Kalman

[Sal03] D. J. Salmond et M. C. Parr. Track maintenance using measurements of target extent. Radar, Sonar and Navigation, vol. 150, pages 389–395, 2003.

[Sch08] D. Schuhmacher, B.-T. Vo, et B.-N. Vo. A consistent metric for performance evaluation

of multi-object filters. Transactions on Signal Processing, vol. 56, no. 8, pages 3447–3457,

2008.

[Sch08b] D. Schuhmacher et A. Xia. A new metric between distributions of point processes. Advances in Applied Probability, vol. 40, no. 3, pages 651–672, 2008.

[Ser09] R. Servien. Estimation de la fonction de répartition : revue bibliographique. Journal de la Société Française de Statistique, vol. 150, no.2, pages 84–104, 2009.

[Shi17] X. Shi, F. Yang, F. Tong, et H. Lian. A comprehensive performance metric for evaluation of

multi-target tracking algorithms. Conference on Information Management, pages 373–377,

2017.

[Swa13] A. Swain. Group and extended target tracking with the probability hypothesis density filter. Thèse de doctorat, Heriot Watt University, 2013.

[Vo13a] B.-T. Vo et B.-N. Vo. Labeled random finite sets and multi-object conjugate priors. Tran-sactions on Signal Processing, vol. 61, no. 13, pages 3460–3475, 2013.

[Vo13b] B.-T. Vo, B.-N. Vo, et A. Cantoni. The cardinality balanced multi-target multi-Bernoulli

filter and its implementations. Transactions on Signal Processing, vol. 7, no. 3, pages 399–

409, 2013.

[Vo14] B.-N. Vo, B.-T. Vo, et D. Phung. Labeled random finite sets and the Bayes multi-target

tracking filter. Transactions on Signal Processing, vol. 62, no. 24, pages 6554–6567, 2014.

[Vo17] B.-N. Vo, B.-T. Vo, et H. G. Hoang. An efficient implementation of the generalized labeled

multi-Bernoulli filter. Transactions on Signal Processing, vol. 65, no. 8, pages 1975–1987,

2017.

[Wan01] E. A. Wan et R. V. de Merve. Kalman filtering and neural networks, chapitre 7. Wiley, 2001.