• Aucun résultat trouvé

R´esum´e des variations du niveau de la mer : les observations, les causes et

observations, les causes et les projections

Dans les chapitres suivants nous pr´esentons nos travaux de th`ese et les ´el´ements de r´eponse qu’ils apportent aux questions scientifiques n˚6, 7, 8, 9, 10, 11, 13, 14, 20, 21, 22, 23, 28, 29 et 30 de la liste ci-dessus. Ce sont les questions scientifiques qui portent sur la variabilit´e r´egionale du niveau de la mer, ses causes, ses origines et les impacts associ´es. Auparavant nous proposons un article de synth`ese sur les variations pass´ees et actuelles du niveau de la mer et ses causes, que nous avons publi´e dans le journal ”Journal of Geodynamics” en Mars 2012. Cet article s’intitule ”Sea level : a review of present-day and recent-past changes and variability”. Il r´esume le chapitre 1.

JournalofGeodynamics58 (2012) 96–109

ContentslistsavailableatSciVerseScienceDirect

Journal ofGeodynamics

j ou rna l h o me pa g e :h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / j o g

Review

Sealevel: Areviewofpresent-day andrecent-past changesand variability

BenoitMeyssignac,AnnyCazenave

LEGOS-CNES,Toulouse,France

a r t i c l e i n f o

Articlehistory:

Received12December2011 Receivedinrevisedform9March2012 Accepted10March2012

Available online 19 March 2012

Keywords:

Sealevel Altimetry

Globalmeansealevel Regionalsealevel Sealevelreconstruction Climatechange

a b s t r a c t

Inthisreviewarticle,wesummarizeobservationsofsealevelvariations,globallyandregionally,during

the20thcenturyandthelast2decades.Overtheseperiods,theglobalmeansealevelroseatratesof

1.7mm/yrand3.2mm/yrrespectively,asaresultofbothincreaseofoceanthermalexpansionandland

iceloss.Theregionalsealevelvariations,however,havebeendominatedbythethermalexpansionfactor overthelastdecadeseventhoughotherfactorslikeoceansalinityorthesolidEarth’sresponsetothe

lastdeglaciationcanhaveplayedarole.Wealsopresentexamplesoftotallocalsealevelvariations

thatincludetheglobalmeanrise,theregionalvariabilityandverticalcrustalmotions,focusingonthe tropicalPacificislands.Finallyweaddressthefutureevolutionoftheglobalmeansealevelunder on-goingwarmingclimateandtheassociatedregionalvariability.Expectedimpactsoffuturesealevelrise arebrieflypresented.

© 2012 Elsevier Ltd. All rights reserved.

Contents

1. Introduction.......................................................................................................................................... 96

2. Paleosealevel(sincethelastglacialmaximumandlast2000years).............................................................................. 97

3. Thetidegauge-basedinstrumentalrecord(20thcentury).......................................................................................... 97

4. Thealtimetryera..................................................................................................................................... 98

5. Causesofpresent-dayGMSLchanges............................................................................................................... 99

5.1. Globalmeanrise.............................................................................................................................. 99

5.1.1. Oceanwarming..................................................................................................................... 99

5.1.2. Glaciersmelting.................................................................................................................... 99

5.1.3. Icesheets........................................................................................................................... 99

5.2. Interannualvariabilityoftheglobalmeansealevel......................................................................................... 99

6. Causesofpresent-dayandpast-decaderegionalvariability........................................................................................ 100

7. Nonstationarityofspatialtrendpatternsandinternalvariabilityoftheocean–atmospheresystem............................................. 104

8. Localsealevelchangesinafewselectedregions................................................................................................... 104

9. Globalwarmingandfuturelarge-scalesealevelchanges.......................................................................................... 104

10. Outlook............................................................................................................................................. 106

Acknowledgements.................................................................................................................................. 106

References........................................................................................................................................... 106

1. Introduction

Sea level variations spread over a very broad spectrum.

Thelargestglobal-scale sealevel changes(100-200min ampli-tude)occurred ongeologicaltime scales(ontheorder of100

million years) and depended primarily on tectonic processes

∗Correspondingauthor.

E-mailaddress:benoit.meyssignac@legos.obs-mip.fr(B.Meyssignac).

(e.g.large-scalechangeintheshape ofocean basinsassociated withseafloorspreadingandmid-oceanridgesexpansion)(e.g.Haq andSchutter,2008;Muelleretal.,2008;Milleretal.,2011).With theformationoftheAntarcticaicesheetabout34millionyears ago,globalmeansealeveldroppedbyabout50m.Morerecently, cooling of the Earthstarting about3 million years ago, led to glacial/interglacialcyclesdrivenbyincominginsolationchanges inresponsetovariationsoftheEarth’sorbitandobliquity(Berger,

1988).Correspondinggrowthanddecayofnorthernhemisphere

icecapsontimescalesoftensofthousandyearsproducedlarge 0264-3707/$–seefrontmatter© 2012 Elsevier Ltd. All rights reserved.

(e.g.Lambecketal.,2002;Rohlingetal.,2009;YokoyamaandEsat, 2011).On shorter (decadal tomulticentennial)time scalessea levelfluctuationsaremainlydrivenbyclimatechangeinresponse tonaturalforcingfactors(e.g.solarradiationvariations,volcanic eruptions)andtointernalvariabilityoftheclimatesystem(related forexampletoatmosphere–oceanperturbationssuchasElNi ˜no-Southern Oscillation ENSO, North Atlantic Oscillation NAO, PacificDecadalOscillation–PDO).Sincethebeginningofthe indus-trialera,abouttwocenturiesago,meansealevelisalsoresponding toanthropogenicglobalwarming.Ineffect,sealevelisavery sen-sitiveindexofclimatechangeandvariability.Forexample,asthe

oceanwarmsinresponsetoglobalwarming,seawatersexpand,

andthussealevelrises.Asmountainglaciersmeltinresponseto increasingairtemperature,sealevelrisesbecauseoffreshwater massinput totheoceans. Similarly,ice mass lossfromthe ice sheetscausessealevelrise.Correspondingincreaseoffreshwater intotheoceanschangeswatersalinity,henceseawaterdensityas wellasoceancirculationthatinturnaffectssealevelataregional scale.Modificationofthelandhydrologicalcycleduetoclimate variabilityanddirectanthropogenicforcingleadstochangesin pre-cipitation/evaporationregimesandriverrunoff,henceultimately tosealevelchanges.Thusglobal,regionalandlocalclimatechanges affectsealevel(e.g.Bindoffetal.,2007).

Inthisarticle,wereviewobservationsofsealevelvariations, globallyandregionally,focusingonthe20thcenturyandthelast 2decades(Sections2–4).Wealsoexaminethecausesofsealevel variations,anddiscusssuccessivelycomponentsoftheglobalmean sealevelriseoverthepasttwodecades,andthecontributionstothe interannualglobalmeansealevel(Section5).Regionalvariability insealevelisaddressedinSections6and7.InSection8,weshow examplesoftotalsealevelchangesmeasuredoverthepast5–6 decades.Inthelastsection(Section9)webrieflyaddressthefuture evolutionoftheglobalmeansealevelunderwarmingclimateand associatedregionalvariability.Concludingremarksareproposed inSection10.

2. Paleosealevel(sincethelastglacialmaximumandlast 2000years)

Quaternaryiceagescausedlarge-scalefluctuationsoftheglobal meansealevel,of>±100mamplitude,asaresultofthegrowingand decayofnorthernhemisphereicecaps(Rohlingetal.,2009).Since about800,000years,thecharacteristicperiodicityofthese fluc-tuationsis100,000years.Atthelastglacialmaximum,20,000 yearsago,globalmeansealevelwas130mbelowpresentlevel (Lambecketal.,2002).Subsequentmeltingofthenorthern hemi-sphereicecapscausedbyinsolationchangesledtosustainedsea levelriseduringmorethan10,000years,asillustratedinFig.1 (from Lambecket al.,2002). Duetothecomplex history of ice capmelting(e.g.Peltier,2004),therateofsealevelrisewasnot constant,asevidencedbyseveralpaleosealevelindicatorsof geo-logical andbiological origin(e.g.coral data,micro-atolls, beach rocks,notches,etc.).Forexample,episodesofrapidrise(>1mper century)havebeenreportedatabout14,000years(Bardetal., 2010).AtthebeginningoftheHolocene(11,000years ago),the rateofrisedecreasedsignificantlyandsealevelstabilizedbetween −6000yearsand2000yearsago(Lambecketal.,2010).

Thereisnoevidenceoflargefluctuationsoftheglobalmean sealevelduringthepasttwomillennia.Datingofmicrofossilsin salt-marshenvironments(Lambecketal.,2010;Kempetal.,2011) andarchaeologicalevidence(e.g.fromRomanfishtanks,Lambeck etal.,2004)indicatethatsealevelrisedidnotexceed0.05–0.07m percenturyoverthepast2000years(seealsoMilleretal.,2009). Fig.2(from Kempetal.,2011)illustratesthisfact.Itshowsthe

-150 -100 -50 5 10 15 20 25 esl_Barbados esl_Tahiti esl_Huon esl_Christchurch esl_Sunda esl_Bonaparte

time (x1000 cal. years)

Ice volume equivalent sea level (m)

18.5

39

57.5

Difference in ice volume (x10

6

km

2

)

Fig.1.Changesinglobalicevolumeandsealevelequivalentfromthelastglacial maximumtothepresent.Thefigureshowsice-volumeequivalentsealevelforthe past20kyrbasedonisostaticallyadjustedsea-leveldatafromdifferentlocalities (updatedfromLambecketal.,2002withareviseddatasetfortheSundashelffrom

Hanebuthetal.,2009).

sealevelevolutionofthelasttwomillenniabasedonsalt-marsh

microfossils analyses along the eastern coast of North

Amer-ica. According to this study, sea level was a few decimeters

higher/lowerduringtheMiddleAge(12th–14thcentury)/LittleIce Age(16th–18thcentury),butratesofriseremainedverylowuntil thebeginningoftheindustrialera(late18thtoearly19th

cen-tury)whenalargeupwardtrendofthemeansealevelbecomes

wellapparent(Kempetal.,2011;alsoGehrelsetal.,2005,2006; Woodworthetal.,2011a).Thisepochcorrespondstothebeginning oftheinstrumentalerathatalloweddirectsealevelmeasurements withtidegauges(Woodworthetal.,2008,2011b)andnow satel-lites(e.g.FuandCazenave,2001;Churchetal.,2010),unlikeduring thepreviouscenturies/millenniaforwhichsealevelvariationsare deducedindirectlyfromproxyrecords.

3. Thetidegauge-basedinstrumentalrecord(20thcentury)

Theveryfirsttidegaugeswereinstalledinportsofnorthwestern Europetoprovideinformationonoceantides(e.g.Mitchumetal.,

2010). Tidegauges recordsfrom Amsterdam(the Netherlands),

Stockholm(Sweden)andLiverpool(UK)extendbacktotheearlyto mid-18thcentury,whilethosefromBrest(France)andSwinoujscie (Poland)startedintheearly19thcentury.Inthesouthern hemi-sphere,tidegaugerecordsatSydneyandFreemantle(Australia)are amongthelongest(startinginthelate19thcentury).Progressively, thetidegaugenetworkextended(seeforexampleFig.5.2from Mitchumetal.,2010)butforlongtermsealevelstudies,thenumber ofrecordsremainsneverthelessverysmallandthegeographical spreadisquiteinhomogeneous.Besides,tidegaugerecordsoften sufferfrommulti-year-orevenmulti-decade-longgaps.Thesparse

andheterogeneouscoverageoftidegaugerecords,both

tempo-rallyandgeographically,isclearlyaproblemforestimatingreliable historicalmeansealevelvariations.

Tidegaugesmeasuresealevelrelativelytotheground,hence

monitor also ground motions. In active tectonic and volcanic

regions,orinareassubjecttostronggroundsubsidencedueto natu-ralcauses(e.g.sedimentloadinginriverdeltas)orhumanactivities (groundwater pumpingandoil/gasextraction),tide gaugedata aredirectlyaffectedbythecorrespondinggroundmotions.Post

98 B.Meyssignac,A.Cazenave/JournalofGeodynamics58 (2012) 96–109

Fig.2.Relativesealevelreconstructionforthelast2000yearsfromsalt-marshdataanalyses.(FromKempetal.,2011.)

glacialrebound, thevisco-elasticresponse oftheEarthcrustto lastdeglaciation(alsocalledGlacialIsostaticAdjustment–GIA)is anotherprocessthatgivesrisetoverticallandmovement.While

verticalgroundmotionsneedtobeconsideredwhenestimating

totallocal(relative)sealevelchange(seeSection8),tocompare observedsealevelvariationswithclimate-relatedcomponents,the groundmotionsneedtobesubtracted.

Toprovideareliablehistoricalsealeveltimeseriesbasedon tidegaugerecords,variousstrategieshavebeendeveloped.Some authorsonlyconsideredafewtensoflong(>60years)goodquality tidegaugesrecordsfromtectonicallystablecontinentalandisland coasts, andcorrected thedatafor GIAonly(e.g.Douglas,1991, 2001;Peltier,2001;Holgate,2007).Otherauthorsusedalarger setofrecordsfromavarietyofregions,covering differenttime periods,anddevelopeddifferentapproachestoderivethemean sealevelcurve.Forexample,Jevrejevaetal.(2006,2008)useda regionalcoherencycriteriumamongtidegaugerecordsinorder toexcludeoutliers(e.g.tidegaugeaffectedbylargelocal verti-calgroundmotions).Churchetal.(2004)andChurchandWhite (2006,2011)developeda‘reconstruction’method(seeSection6) todeterminea‘globalmean’sealevelcurvefromsparsetidegauge recordssince1870.Inthesestudies,theonlyverticalmotion cor-rectedforisGIA.Sinceafewyears,theavailabilityofGPS-based precisepositioningatsometidegaugesiteshasalloweddirect mea-surementsof verticalground motion.Thisistheapproachused by Woppelmannet al.(2007, 2009). GPS-basedvertical ground motionsarestillbasedonshortrecords(10–15year-longonly)but itisgenerallyassumedthatthesearerepresentativeoflong-term trends.Inspiteofavarietyofapproaches,theresultsbasedfrom thesestudiesareratherhomogeneousandgiveameanrate20th centuryriseintherangeof1.6–1.8mm/yr.TheChurchandWhite (2011)’stidegauge-basedmeansealevelcurvesince1870isshown inFig.3.Accordingtothisfigure,20thcenturysealevelrisewas notlinear.Infact,interannualtodecadalvariability(inadditionto shorter-termfluctuationsnotconsideredhere)aresuperimposed onthemeantrend.ThesewillbediscussedinSection5.2.

4. Thealtimetryera

Since the early1990s, sea level variations are measured by altimetersatellites(Cheltonetal.,2001;FuandCazenave,2001). The satellite altimetry measurement is derived as follows (see Fig.4):theonboardradaraltimetertransmitsmicrowaveradiation towardstheseasurfacewhichpartlyreflectsbacktothesatellite. Measurementoftheround-triptraveltimeprovidestheheightof thesatelliteabovetheinstantaneousseasurface.Theseasurface

heightmeasurementisdeducedfromthedifferencebetweenthe

satellitedistancetotheEarth’scentreofmass(deducedfrom pre-ciseorbitography)andthesatellitealtitudeabovetheseasurface

Fig.3. 20thcenturysealevelcurve(inblackandassociateduncertaintyinlight gray)basedonpastsealevelreconstructionusingtidegaugedataand addi-tionalinformation(fromChurchandWhite,2011).Inthebox:altimetry-basedsea levelcurvebetween1993and2011(datafromAVISO;http://www.aviso.oceanobs. com/en/data/products/sea-surface-height-products/global/msla/index.html)(blue points:dataat10-dayinterval;theredcurveisbasedona3-monthsmoothing ofthebluedata).

Fig.5.Earth’scoveragebytheTopex/Poseidon,Jason-1andJason-2altimeter satel-litesduringanorbitalcycleof10days.

(deducedfromtheradaraltimetermeasurement).Theseasurface heightmeasurementneedstobecorrectedforvariousfactorsdue toionosphericandtroposphericdelay,andforbiasesbetweenthe meanelectromagneticscatteringsurfaceandtheseasurfaceatthe air-seainterface.Othercorrectionsduegeophysicaleffects,such assolid Earth, poleand ocean tidesare alsoapplied.Altimeter satellitescoverthewholeEarthsurfacewithinafewdays–called orbitalcycle(seeFig.5).Geographicalaveragingofallindividual seasurfaceheightsmeasurementsduringanorbitalcycleallows determiningaglobalmeansealevelvalue,andfurther construct-ingaglobalmeansealeveltimeseries.Asthesatellitefliesover thesameareasfromoneorbitalcycletoanother,itisalsopossible toconstructa‘local’sealeveltimeseries,hencededuceregional variabilityinsealevel.

High-precisionsatellitealtimetrybeganwiththelaunchofthe Topex/Poseidonsatellitein1992anditssuccessors,Jason-1(2001) andJason-2(2008).Theprecisionofanindividualseasurfaceheight measurementbasedonthesemissionshasnowreachedthe1–2cm level(e.g.Neremetal.,2010;Beckleyetal.,2010;Mitchumetal., 2010). Precisionontheglobal meanrateof rise iscurrently of ∼0.4–0.5mm/yr.Thisvalueisbasedonerrorbudgetanalysesof allsourcesoferroraffectingthealtimetrysystemoron compar-isonswithtidegauge-basedsealevelmeasurements(e.g.Ablain etal.,2009).InFig.3,thealtimetry-basedglobalmeansealevel curvesinceearly1993issuperimposedonthetide-gauge-based 20thcenturysealevelcurve.Wenoteanalmostlinearincrease (exceptfortemporaryanomaliesassociatedwiththe1997/1998El Ni ˜noandthe2007/2008and2010/2011LaNi ˜naevents).Overthis 18year-longperiod,therateofglobalmeansealevelriseamounts to3.2±0.5mm/yr(e.g.CazenaveandLlovel,2010;Neremetal., 2010;Mitchumetal.,2010).Thisrateissignificantlyhigherthanthe meanraterecordedbytidegaugesoverthepastdecades,eventually suggestingsealevelriseacceleration(Merrifieldetal.,2009).

5. Causesofpresent-dayGMSLchanges

5.1. Globalmeanrise

Themainfactorscausingcurrentglobalmeansealevelriseare thermalexpansionofseawaters,landicelossandfreshwatermass

exchangebetweenoceansandlandwaterreservoirs.Therecent

trendsofthesecontributionsmostlikelyresultfromglobalclimate changeinducedbyanthropogenicgreenhousegasesemissions.

5.1.1. Oceanwarming

Analysesofinsituoceantemperaturedatacollectedoverthe past50yearsbyshipsandrecentlybyArgoprofilingfloats(Argo

thatoceanheatcontent,andhenceoceanthermalexpansion,has significantlyincreasedsince1950(e.g.Levitusetal.,2009;Ishiiand Kimoto,2009;Dominguesetal.,2008;Churchetal.,2011a).Ocean warmingexplainsabout30%–40%oftheobservedsealevelriseof thelastfewdecades(e.g.Churchetal.,2011b).Asteepincreasewas

observedinthermalexpansionoverthedecade1993–2003(e.g.

Lymanetal.,2010;Levitusetal.,2009;IshiiandKimoto,2009), butsinceabout2003,thermalexpansionhasincreasedlessrapidly (Lymanetal.,2010;Lloveletal.,2010;vonSchuckmannandLe Traon,2011). Therecentslowerrateofstericriselikelyreflects short-termvariabilityratherthananewlong-termtrend.On aver-age,overthesatellitealtimetryera(1993–2010),thecontribution ofocean warmingtoseariseaccountsfor30%(Cazenaveand Llovel,2010;CazenaveandRemy,2011;Churchetal.,2011b).

5.1.2. Glaciersmelting

Beingverysensitivetoglobalwarming,mountainglaciersand smallicecapshaveretreatedworldwideduringtherecentdecades, withsignificantaccelerationsincetheearly1990s.Frommass bal-ancestudiesofa largenumberof glaciers,estimateshave been madeofthecontributionofglaciericemelttosealevelrise(Meier etal.,2007;Kaseretal.,2006).Fortheperiod1993–2010,glaciers andicecapshaveaccountedfor∼30%ofsealevelrise(e.g.Cogley, 2009;Steffenetal.,2010;Churchetal.,2011b).

5.1.3. Icesheets

Whilelittlewasknownbeforethe1990sonthemassbalanceof theicesheetsbecauseofinadequateandincompleteobservations, differentremotesensingtechniquesavailablesincethen(e.g. air-borneandsatelliteradarandlaseraltimetry,SyntheticAperture RadarInterferometry–InSAR,andsince2002,spacegravimetry fromtheGRACEmission)haveprovidedimportantresultsonthe changingmassofGreenlandand(west)Antarctica(e.g.Allisonetal., 2009).Thesedataindicatethatbothicesheetsarecurrentlylosing massatanacceleratedrate(e.g.Steffenetal.,2010).Mostrecent massbalanceestimatesfromspace-basedobservations unambigu-ouslyshowicemasslossaccelerationintherecentyears(e.g.Chen etal.,2009;Velicogna,2009;Rignotetal.,2008a,b,2011).Forthe period1993–2003,<15%oftherateofglobalsealevelrisewasdue totheicesheets(IPCCAR4).Buttheircontributionhasincreased upto40%since2003–2004.Althoughnotconstantthroughtime, onaverageover2003–2010icesheetsmasslossexplains25%of therateofsealevelrise(CazenaveandRemy,2011;Churchetal., 2011a).

Thereismoreandmoreevidencethatrecentnegativeicesheet massbalancemainlyresultsfromrapidoutletglacierflowalong somemarginsofGreenlandandWestAntarctica,andfurther ice-bergdischargeintothesurroundingocean(Alleyetal.,2007,2008; Steffenetal.,2010).Thisdynamicalthinningprocessisgenerally observedincoastalregionswhereglaciersaregroundedbelowsea level(e.g.innortheastandsouthwestGreenland,andAmundsen Seasector,WestAntarctica).Thinningandsubsequentbreak-upof floatingicetonguesoriceshelvesthatbuttressedtheglaciersresult inrapidgroundinglineretreatandacceleratedglacierflow.Several recentobservationshaveshownthatwarmingofsubsurfaceocean waterscouldtriggertheseshort-termdynamicalinstabilities(e.g. Hollandetal.,2008).

Fig.6(updatedfromCazenaveandLlovel,2010)comparesthe observedglobalmeansealevelrisetothedifferentcomponents andtheirsumoverthealtimetryera.

5.2. Interannualvariabilityoftheglobalmeansealevel

Ifthe(linear)globalmeantrendisremovedfromthe altimetry-based sea level curve shown in Fig. 3, significant interannual

100 B.Meyssignac,A.Cazenave/JournalofGeodynamics58 (2012) 96–109

Fig.6.Observedsealevelfromsatellitealtimetryover1993–2010(bluesolidcurve).