• Aucun résultat trouvé

Chapitre 4 : Perspectives

4.5 Déterminer l’implication de HIF-1 dans le SAO

Enfin, nos travaux ont montré que DOCK6 régule l’expression de HIF-1α via le contrôle de la voie MAPK et, en contrepartie, que HIF-1 module l’expression de DOCK6 en condition hypoxique. Puisque DOCK6 est impliquée dans le développement du syndrome Adams-Oliver, il serait intéressant de vérifier si HIF-1 détient également un rôle à jouer dans le SAO ou dans le développement de complications associées à cette pathologie. En effet, le SAO entraine plusieurs anomalies, dont des troubles cardiaques et vasculaires ainsi que de l’hypertension pulmonaire. Ces processus font intervenir une composante hypoxique ainsi que l’implication du facteur de transcription HIF-1, suggérant

dans cette maladie, nous pourrions développer un modèle animal du SAO en insérant une mutation tronquante dans le gène DOCK6 et effectuer des immunohistochimies sur les tissus présentant des défauts de développement. La maladie affecte en effet le développement de plusieurs tissus, dont le cerveau, les poumons et les reins (144). Il sera donc intéressant d’étudier l’expression de HIF-1 dans ces différents tissus.

Conclusion

Les résultats abordés dans le présent mémoire de maîtrise peuvent être résumés par la Figure 23. La représentation de nos résultats est déclinée selon deux situations, soit selon une condition d’oxygénation normale (21% O2) ou selon une condition hypoxique (1% O2).

Nos travaux récents ont permis de montrer que l’arginine méthyltransférase PRMT1 bloque l’expression de HIF-1α via la répression des facteurs de transcription Sp1/3 par l’inhibition de la voie MAPK. Nos travaux ont également permis d’identifier DOCK6 comme partenaire d’interaction de PRMT1 et comme intermédiaire dans la régulation de la voie MAPK et dans le contrôle d’expression de HIF-1α. Ces résultats sont représentés à la

Figure 23A. Pour résumer, en condition normale d’oxygénation, l’interaction entre

DOCK6 et PRMT1 provoque la méthylation de DOCK6 et l’inhibition de son activité GEF. L’inhibition de l’activité GEF de DOCK6 empêche la liaison de la GTPase RAC1 à un GTP, ce qui bloque la phosphorylation de la kinase PAK1 et l’activation de la voie MAPK en aval. En conséquence, l’inhibition de la voie MAPK bloque l’activité des facteurs de transcription Sp1/3 ce qui empêche la transcription et l’expression du facteur HIF-1α.

Ce mécanisme de régulation est renversé en hypoxie. En effet, les travaux présentés dans ce mémoire montrent que le facteur de transcription HIF-1 régule positivement l’expression de la protéine DOCK6. Nous avons également montré que la protéine DOCK6 non méthylée par PRMT1 agit plutôt comme un activateur de la voie MAPK. De plus, comme il a été mentionné précédemment, l’activité de PRMT1 est inhibée en hypoxie (136- 138). D’après ces informations, nous proposons donc le modèle présenté à la Figure 22B. Ce modèle montre que l’expression de DOCK6 régulée par le facteur de transcription HIF- 1 ainsi que l’inhibition de PRMT1 via l’hypoxie induisent l’activation de la voie MAPK en condition hypoxique.

Figure 23. Modèle représentant la dynamique entre la régulation d'expression de HIF-1α par PRMT1 via la voie MAPK et DOCK6

HIF1A HIF2A HIF-α Sp1/3 PRMT1 RAF MEK ERK ERK P P P P PAK1 Ras P GTP GDP P DOCK6 Rac1 CH3 HIF1A HIF2A HIF-α Sp1/3 PRMT1 RAF MEK ERK ERK P P P P PAK1 Ras P GTP GDP P DOCK6 Rac1 CH3 HIF-β DOCK6 PRMT1 GTP GDP B GTP GDP A

(A) Représentation schématique de la régulation d’expression de HIF-1α en normoxie via la méthylation de DOCK6 par PRMT1. (B) Représentation schématique de la régulation d’expression de DOCK6 et de l’activation de la voie MAPK en hypoxie via l’inhibition de PRMT1. Illustration adaptée avec permission de V.N. Lafleur (31)

Références

1. Stanley, S. M., and Luczaj, J. A. (2015) Earth system history, Fourth edition ed., W.H. Freeman and Company, New York, NY

2. Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E. (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033-1036

3. Vinyard, D. J., Ananyev, G. M., and Dismukes, G. C. (2013) Photosystem II: the reaction center of oxygenic photosynthesis. Annual review of biochemistry 82, 577-606

4. Briggs, D. E. G., and Crowther, P. R. (2001) Palaeobiology II, Blackwell Science, Osney Mead, Oxford

5. Frei, R., Gaucher, C., Poulton, S. W., and Canfield, D. E. (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461, 250-253

6. Gross, J., and Bhattacharya, D. (2010) Uniting sex and eukaryote origins in an emerging oxygenic world. Biology direct 5, 53

7. Esser, C., Ahmadinejad, N., Wiegand, C., Rotte, C., Sebastiani, F., Gelius-Dietrich, G., Henze, K., Kretschmann, E., Richly, E., Leister, D., Bryant, D., Steel, M. A., Lockhart, P. J., Penny, D., and Martin, W. (2004) A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Molecular biology and evolution 21, 1643-1660

8. Atteia, A., Adrait, A., Brugiere, S., Tardif, M., van Lis, R., Deusch, O., Dagan, T., Kuhn, L., Gontero, B., Martin, W., Garin, J., Joyard, J., and Rolland, N. (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Molecular biology and evolution 26, 1533-1548

9. van der Giezen, M. (2011) Mitochondria and the Rise of Eukaryotes. BioScience 61, 594-601 10. Andersson, S. G., and Kurland, C. G. (1999) Origins of mitochondria and hydrogenosomes. Current

opinion in microbiology 2, 535-541

11. Kurland, C. G., and Andersson, S. G. (2000) Origin and evolution of the mitochondrial proteome. Microbiology and molecular biology reviews : MMBR 64, 786-820

12. Harada, M., Tajika, E., and Sekine, Y. (2015) Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic snowball Earth. Earth and Planetary Science Letters 419, 178-186

13. Berner, R. A. (1999) Atmospheric oxygen over Phanerozoic time. Proc. Natl. Acad. Sci. U. S. A. 96, 10955-10957

14. Dudley, R. (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J. Exp. Biol. 201, 1043-1050

15. Hublin, J. J., Ben-Ncer, A., Bailey, S. E., Freidline, S. E., Neubauer, S., Skinner, M. M., Bergmann, I., Le Cabec, A., Benazzi, S., Harvati, K., and Gunz, P. (2017) New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289-292

16. Gibbons, A. (2015) Revolution in human evolution. Science 349, 362-366

17. Anton, S. C., Potts, R., and Aiello, L. C. (2014) Human evolution. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828

18. Bertalanffy, F. D., and Leblond, C. P. (1955) Structure of respiratory tissue. Lancet (London, England) 269, 1365-1368

19. Uhal, B. D. (1997) Cell cycle kinetics in the alveolar epithelium. The American journal of physiology 272, L1031-1045

20. Meban, C. (1980) Thickness of the air-blood barriers in vertebrate lungs. Journal of anatomy 131, 299-307

21. Fermi, G., Perutz, M. F., Shaanan, B., and Fourme, R. (1984) The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. Journal of molecular biology 175, 159-174

22. Menche, N. (2009) Anatomie, physiologie, biologie : abrégé d'enseignement pour les professionnels de la santé, 4e éd. française trad. de la 6e éd. allemande ed., Maloine, Paris

23. Mitchell, P., and Moyle, J. (1967) Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213, 137-139

24. Mitchell, P. (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966. Biochimica et biophysica acta 1807, 1507-1538

25. Sesti, F., Tsitsilonis, O. E., Kotsinas, A., and Trougakos, I. P. (2012) Oxidative stress-mediated biomolecular damage and inflammation in tumorigenesis. In vivo (Athens, Greece) 26, 395-402 26. Lenton, T. M., and Sciences, B. (2003) The Coupled Evolution of Life and Atmospheric Oxygen, 27. Canfield, D. E. (2005) THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to

Robert M. Garrels. Annual Review of Earth and Planetary Sciences 33, 1-36

28. Campbell, N. A., Reece, J. B., Lachaîne, R., and Bosset, M. (2007) Biologie, 3e éd ed., ERPI, Saint- Laurent, Québec

29. Dismukes, G. C., Klimov, V. V., Baranov, S. V., Kozlov, Y. N., DasGupta, J., and Tyryshkin, A. (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 98, 2170-2175

30. Jiang, Y. Y., Kong, D. X., Qin, T., and Zhang, H. Y. (2010) How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands. Biochem Biophys Res Commun 391, 1158-1160

32. Webster, W. S., and Abela, D. (2007) The effect of hypoxia in development. Birth defects research. Part C, Embryo today : reviews 81, 215-228

33. Jagannathan, L., Cuddapah, S., and Costa, M. (2016) Oxidative Stress Under Ambient and Physiological Oxygen Tension in Tissue Culture. Current Pharmacology Reports 2, 64-72

34. Czyzyk-Krzeska, M. F. (1997) Molecular aspects of oxygen sensing in physiological adaptation to hypoxia. Respiration physiology 110, 99-111

35. Lopez-Barneo, J., Ortega-Saenz, P., Pardal, R., Pascual, A., and Piruat, J. I. (2008) Carotid body oxygen sensing. The European respiratory journal 32, 1386-1398

36. Scholz, H., Schurek, H. J., Eckardt, K. U., and Bauer, C. (1990) Role of erythropoietin in adaptation to hypoxia. Experientia 46, 1197-1201

37. Krock, B. L., Skuli, N., and Simon, M. C. (2011) Hypoxia-induced angiogenesis: good and evil. Genes & cancer 2, 1117-1133

38. Weiss, G., Sundl, M., Glasner, A., Huppertz, B., and Moser, G. (2016) The trophoblast plug during early pregnancy: a deeper insight. Histochemistry and cell biology 146, 749-756

39. Watson, A. L., Skepper, J. N., Jauniaux, E., and Burton, G. J. (1998) Susceptibility of human placental syncytiotrophoblastic mitochondria to oxygen-mediated damage in relation to gestational age. The Journal of clinical endocrinology and metabolism 83, 1697-1705

40. Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y. P., Skepper, J. N., and Burton, G. J. (2000) Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. The American journal of pathology 157, 2111-2122

41. Rodesch, F., Simon, P., Donner, C., and Jauniaux, E. (1992) Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstetrics and gynecology 80, 283-285

42. Prado-Lopez, S., Conesa, A., Arminan, A., Martinez-Losa, M., Escobedo-Lucea, C., Gandia, C., Tarazona, S., Melguizo, D., Blesa, D., Montaner, D., Sanz-Gonzalez, S., Sepulveda, P., Gotz, S., O'Connor, J. E., Moreno, R., Dopazo, J., Burks, D. J., and Stojkovic, M. (2010) Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem cells (Dayton, Ohio) 28, 407-418

43. Patterson, A. J., and Zhang, L. (2010) Hypoxia and fetal heart development. Current molecular medicine 10, 653-666

44. Lee, Y. M., Jeong, C. H., Koo, S. Y., Son, M. J., Song, H. S., Bae, S. K., Raleigh, J. A., Chung, H. Y., Yoo, M. A., and Kim, K. W. (2001) Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Developmental dynamics : an official publication of the American Association of Anatomists 220, 175-186

45. Bloor, C. M. (2005) Angiogenesis during exercise and training. Angiogenesis 8, 263-271 46. Semenza, G. L. (1999) Perspectives on oxygen sensing. Cell 98, 281-284

47. Stamati, K., Mudera, V., and Cheema, U. (2011) Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. Journal of tissue engineering 2, 2041731411432365

48. Legrand, R., Ahmaidi, S., Moalla, W., Chocquet, D., Marles, A., Prieur, F., and Mucci, P. (2005) O2 arterial desaturation in endurance athletes increases muscle deoxygenation. Medicine and science in sports and exercise 37, 782-788

49. Amann, M. (2012) Pulmonary system limitations to endurance exercise performance in humans. Experimental physiology 97, 311-318

50. Richardson, R. S., Noyszewski, E. A., Kendrick, K. F., Leigh, J. S., and Wagner, P. D. (1995) Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. The Journal of clinical investigation 96, 1916-1926

51. Hudlicka, O., Brown, M., and Egginton, S. (1992) Angiogenesis in skeletal and cardiac muscle. Physiological reviews 72, 369-417

52. Hoppeler, H., and Fluck, M. (2002) Normal mammalian skeletal muscle and its phenotypic plasticity. J. Exp. Biol. 205, 2143-2152

53. Katz, A., and Sahlin, K. (1988) Regulation of lactic acid production during exercise. Journal of applied physiology (Bethesda, Md. : 1985) 65, 509-518

54. Storz, J. F., and Moriyama, H. (2008) Mechanisms of hemoglobin adaptation to high altitude hypoxia. High altitude medicine & biology 9, 148-157

55. Peacock, A. J. (1998) ABC of oxygen: oxygen at high altitude. BMJ (Clinical research ed.) 317, 1063-1066

56. Cosio, G. (1972) [Hematic and cardiopulmonary characteristics of the Andean miner]. Boletin de la Oficina Sanitaria Panamericana. Pan American Sanitary Bureau 72, 547-557

57. Beall, C. M., Brittenham, G. M., Strohl, K. P., Blangero, J., Williams-Blangero, S., Goldstein, M. C., Decker, M. J., Vargas, E., Villena, M., Soria, R., Alarcon, A. M., and Gonzales, C. (1998) Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. American journal of physical anthropology 106, 385-400

58. Beall, C. M., Decker, M. J., Brittenham, G. M., Kushner, I., Gebremedhin, A., and Strohl, K. P. (2002) An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc. Natl. Acad. Sci. U. S. A. 99, 17215-17218

59. Beall, C. M. (2006) Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integrative and Comparative Biology 46, 18-24

60. Beall, C. M., Almasy, L. A., Blangero, J., Williams-Blangero, S., Brittenham, G. M., Strohl, K. P., Decker, M. J., Vargas, E., Villena, M., Soria, R., Alarcon, A. M., and Gonzales, C. (1999) Percent of oxygen saturation of arterial hemoglobin among Bolivian Aymara at 3,900-4,000 m. American journal of physical anthropology 108, 41-51

61. Moore, L. G., Shriver, M., Bemis, L., Hickler, B., Wilson, M., Brutsaert, T., Parra, E., and Vargas, E. (2004) Maternal adaptation to high-altitude pregnancy: an experiment of nature--a review. Placenta 25 Suppl A, S60-71

62. Beall, C. M., Song, K., Elston, R. C., and Goldstein, M. C. (2004) Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4,000 m. Proc. Natl. Acad. Sci. U. S. A. 101, 14300-14304

63. M. Beall, C. (2001) Adaptations to Altitude: A Current Assessment,

64. Tuder, R. M., Yun, J. H., Bhunia, A., and Fijalkowska, I. (2007) Hypoxia and chronic lung disease. Journal of Molecular Medicine 85, 1317-1324

65. Kim, V., Benditt, J. O., Wise, R. A., and Sharafkhaneh, A. (2008) Oxygen therapy in chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society 5, 513-518

66. Michaud, S. E., Menard, C., Guy, L. G., Gennaro, G., and Rivard, A. (2003) Inhibition of hypoxia- induced angiogenesis by cigarette smoke exposure: impairment of the HIF-1alpha/VEGF pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17, 1150-1152

67. Toraldo, D. M., F, D. E. N., M, D. E. B., and Scoditti, E. (2015) Obstructive sleep apnoea syndrome: a new paradigm by chronic nocturnal intermittent hypoxia and sleep disruption. Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale 35, 69-74

68. Voelkel, N. F., and Tuder, R. M. (2000) Hypoxia-induced pulmonary vascular remodeling: a model for what human disease? The Journal of clinical investigation 106, 733-738

69. Pascaud, M. A., Griscelli, F., Raoul, W., Marcos, E., Opolon, P., Raffestin, B., Perricaudet, M., Adnot, S., and Eddahibi, S. (2003) Lung overexpression of angiostatin aggravates pulmonary hypertension in chronically hypoxic mice. Am J Respir Cell Mol Biol 29, 449-457

70. Canada, S. (2017) Les 10 principales causes de décès, 2013. Canada

71. Badimon, L., and Vilahur, G. (2014) Thrombosis formation on atherosclerotic lesions and plaque rupture. Journal of internal medicine 276, 618-632

72. Reed, G. W., Rossi, J. E., and Cannon, C. P. (2017) Acute myocardial infarction. The Lancet 389, 197-210

73. Neill, W. A. (1968) Myocardial hypoxia and anaerobic metabolism in coronary heart disease. The American Journal of Cardiology 22, 507-515

74. Cramer, T., Yamanishi, Y., Clausen, B. E., Forster, I., Pawlinski, R., Mackman, N., Haase, V. H., Jaenisch, R., Corr, M., Nizet, V., Firestein, G. S., Gerber, H. P., Ferrara, N., and Johnson, R. S. (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645-657

75. Stefanec, T. (2000) Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest 117, 841-854

77. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646- 674

78. Harris, A. L. (2002) Hypoxia--a key regulatory factor in tumour growth. Nature reviews. Cancer 2, 38-47

79. Kim, J. W., Tchernyshyov, I., Semenza, G. L., and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism 3, 177-185

80. Kato, Y., Ozawa, S., Miyamoto, C., Maehata, Y., Suzuki, A., Maeda, T., and Baba, Y. (2013) Acidic extracellular microenvironment and cancer. Cancer cell international 13, 89

81. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nature reviews. Cancer 3, 721-732 82. Pouyssegur, J., Dayan, F., and Mazure, N. M. (2006) Hypoxia signalling in cancer and approaches

to enforce tumour regression. Nature 441, 437-443

83. Laderoute, K. R., Alarcon, R. M., Brody, M. D., Calaoagan, J. M., Chen, E. Y., Knapp, A. M., Yun, Z., Denko, N. C., and Giaccia, A. J. (2000) Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clinical cancer research : an official journal of the American Association for Cancer Research 6, 2941-2950

84. Dewhirst, M. W., Cao, Y., and Moeller, B. (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature reviews. Cancer 8, 425-437

85. Nagy, J. A., Chang, S. H., Dvorak, A. M., and Dvorak, H. F. (2009) Why are tumour blood vessels abnormal and why is it important to know? British journal of cancer 100, 865-869

86. Chambers, A. F., Groom, A. C., and MacDonald, I. C. (2002) Dissemination and growth of cancer cells in metastatic sites. Nature reviews. Cancer 2, 563-572

87. Gatenby, R. A., Smallbone, K., Maini, P. K., Rose, F., Averill, J., Nagle, R. B., Worrall, L., and Gillies, R. J. (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. British journal of cancer 97, 646-653

88. Brown, J. M. (2007) Tumor hypoxia in cancer therapy. Methods in enzymology 435, 297-321 89. Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., Baek, J. H., and

Semenza, G. L. (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer research 66, 2725-2731

90. Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., Teng, S. C., and Wu, K. J. (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature cell biology 10, 295-305

91. Kai, R., Gang, S., and Gaoliang, O. (2009) Role of hypoxia in the hallmarks of human cancer. Journal of Cellular Biochemistry 107, 1053-1062

92. Bao, S., Ouyang, G., Bai, X., Huang, Z., Ma, C., Liu, M., Shao, R., Anderson, R. M., Rich, J. N., and Wang, X. F. (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer cell 5, 329-339

93. Nelson, D. A., Tan, T. T., Rabson, A. B., Anderson, D., Degenhardt, K., and White, E. (2004) Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes & development 18, 2095-2107

94. Semenza, G. L. (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends in molecular medicine 8, S62-67

95. Wang, G. L., Jiang, B. H., Rue, E. A., and Semenza, G. L. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS 92, 5510-5514 96. Bersten, D. C., Sullivan, A. E., Peet, D. J., and Whitelaw, M. L. (2013) bHLH–PAS proteins in

cancer. Nature Reviews Cancer 13, 827

97. Jiang, B. H., Semenza, G. L., Bauer, C., and Marti, H. H. (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. The American journal of physiology 271, C1172-1180

98. Kallio, P. J., Okamoto, K., O'Brien, S., Carrero, P., Makino, Y., Tanaka, H., and Poellinger, L. (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. The EMBO Journal 17, 6573-6586 99. Massari, M. E., and Murre, C. (2000) Helix-loop-helix proteins: regulators of transcription in

eucaryotic organisms. Mol Cell Biol 20, 429-440

100. Scheuermann, T. H., Yang, J., Zhang, L., Gardner, K. H., and Bruick, R. K. (2007) Hypoxia- inducible factors Per/ARNT/Sim domains: structure and function. Methods in enzymology 435, 3- 24

101. Jiang, B. H., Zheng, J. Z., Leung, S. W., Roe, R., and Semenza, G. L. (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272, 19253-19260

102. Vonk, J., and Shackelford, T. K. (eds). (2012) The Oxford handbook of comparative evolutionary psychology, Oxford University Press, New York

103. Huang, L. E., Gu, J., Schau, M., and Bunn, H. F. (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U. S. A. 95, 7987-7992

104. Srinivas, V., Zhang, L. P., Zhu, X. H., and Caro, J. (1999) Characterization of an oxygen/redox- dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem Biophys Res Commun 260, 557-561

105. Loboda, A., Jozkowicz, A., and Dulak, J. (2010) HIF-1 and HIF-2 transcription factors--similar but not identical. Molecules and cells 29, 435-442

106. Hu, C.-J., Wang, L.-Y., Chodosh, L. A., Keith, B., and Simon, M. C. (2003) Differential Roles of Hypoxia-Inducible Factor 1α (HIF-1α) and HIF-2α in Hypoxic Gene Regulation. Molecular and Cellular Biology 23, 9361-9374

107. Talks, K. L., Turley, H., Gatter, K. C., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., and Harris, A. L. (2000) The Expression and Distribution of the Hypoxia-Inducible Factors HIF-1α and HIF-2α in Normal Human Tissues, Cancers, and Tumor-Associated Macrophages. The American journal of pathology 157, 411-421

108. Koh, M. Y., and Powis, G. (2012) Passing the baton: the HIF switch. Trends in biochemical sciences 37, 364-372

109. Maynard, M. A., Evans, A. J., Hosomi, T., Hara, S., Jewett, M. A., and Ohh, M. (2005) Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19, 1396-1406

110. Heikkila, M., Pasanen, A., Kivirikko, K. I., and Myllyharju, J. (2011) Roles of the human hypoxia- inducible factor (HIF)-3alpha variants in the hypoxia response. Cellular and molecular life sciences : CMLS 68, 3885-3901

111. Zhang, P., Yao, Q., Lu, L., Li, Y., Chen, P. J., and Duan, C. (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell reports 6, 1110-1121

112. Schofield, C. J., and Ratcliffe, P. J. (2004) Oxygen sensing by HIF hydroxylases. Nature reviews. Molecular cell biology 5, 343-354

113. Kaelin, W. G., Jr., and Ratcliffe, P. J. (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Molecular cell 30, 393-402

114. Webb, J. D., Coleman, M. L., and Pugh, C. W. (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cellular and molecular life sciences : CMLS 66, 3539-3554 115. Yu, F., White, S. B., Zhao, Q., and Lee, F. S. (2001) HIF-1alpha binding to VHL is regulated by

stimulus-sensitive proline hydroxylation. Proc. Natl. Acad. Sci. U. S. A. 98, 9630-9635

116. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472

117. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., and Kaelin, W. G., Jr. (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468

118. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., and Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275

120. Koivunen, P., Hirsila, M., Gunzler, V., Kivirikko, K. I., and Myllyharju, J. (2004) Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 279, 9899-9904

121. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J., and Whitelaw, M. L. (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858-861

122. Lando, D., Peet, D. J., Gorman, J. J., Whelan, D. A., Whitelaw, M. L., and Bruick, R. K. (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia- inducible factor. Genes & development 16, 1466-1471

123. Mylonis, I., Chachami, G., Samiotaki, M., Panayotou, G., Paraskeva, E., Kalousi, A., Georgatsou, E., Bonanou, S., and Simos, G. (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 281, 33095-33106 124. Zhang, X., Huang, Y., and Shi, X. (2015) Emerging roles of lysine methylation on non-histone

proteins. Cellular and molecular life sciences : CMLS 72, 4257-4272

125. Bao, L., Chen, Y., Lai, H.-T., Wu, S.-Y., Wang, J. E., Hatanpaa, K. J., Raisanen, J. M., Fontenot, M., Lega, B., Chiang, C.-M., Semenza, G. L., Wang, Y., and Luo, W. (2018) Methylation of hypoxia-inducible factor (HIF)-1α by G9a/GLP inhibits HIF-1 transcriptional activity and cell migration. Nucleic acids research 46, 6576-6591

126. Liu, X., Chen, Z., Xu, C., Leng, X., Cao, H., Ouyang, G., and Xiao, W. (2015) Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic acids research 43, 5081-5098

127. Kim, Y., Nam, H. J., Lee, J., Park, D. Y., Kim, C., Yu, Y. S., Kim, D., Park, S. W., Bhin, J., Hwang, D., Lee, H., Koh, G. Y., and Baek, S. H. (2016) Methylation-dependent regulation of HIF- 1α stability restricts retinal and tumour angiogenesis. Nature Communications 7, 10347

128. Di Lorenzo, A., and Bedford, M. T. (2011) Histone arginine methylation. FEBS Lett 585, 2024- 2031

129. Wei, H., Mundade, R., Lange, K. C., and Lu, T. (2014) Protein arginine methylation of non-histone proteins and its role in diseases. Cell cycle (Georgetown, Tex.) 13, 32-41

130. Morales, Y., Caceres, T., May, K., and Hevel, J. M. (2016) Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Archives of biochemistry and biophysics 590, 138- 152

131. Tang, J., Frankel, A., Cook, R. J., Kim, S., Paik, W. K., Williams, K. R., Clarke, S., and Herschman, H. R. (2000) PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275, 7723-7730

132. Nicholson, T. B., Chen, T., and Richard, S. (2009) The physiological and pathophysiological role of

Documents relatifs