• Aucun résultat trouvé

Une partie du travail réalisé (présenté en sections 3, 4 et 5) et des perspectives envisagées (présentées en section 6) sont purement scientifiques et visent à mieux comprendre l’environnement spatial de la Terre dans sa globalité, depuis la magnétosphère externe en passant par la plasmasphère, l’ionosphère et la thermosphère. Je cherche plus spécifiquement à étudier la manière dont le système répond aux stimuli du vent solaire, en m’efforçant de regarder avec finesse les différences de réponse en fonction des contraintes internes (asymétries interhémisphériques et en MLT, en fonction de la saison et du champ magnétique interne) et externes (variations de réponses du système en fonction de conditions spécifiques dans le vent solaire : différentes composantes de l’IMF, pression, vitesse, nombre de Mach d’Alfvén et  du plasma dans le vent solaire). Les modèles numériques développés et la formidable batterie d’instruments disponibles depuis ces 20 dernières années rendent ces perspectives atteignables et stimulantes. En parallèle, je continuerai également à promouvoir auprès du CDPP le développement d’outils permettant de mettre en relation les données d’instruments spatiaux et sols, dans la poursuite des développements des outils CST et 2DViewer de 3DView (bloc du bas du synopsis des activités du groupe ionosphère de l’IRAP présenté en Figure 7.1). Enfin, je m’attacherai également à promouvoir de futures missions magnétosphériques et ionosphériques, puisqu’à part la mission de classe S SMILE de l’ESA (lancement prévu en 2021), les perspectives sont malheureusement assez pauvres de ce côté, malgré un besoin évident de renouvellement des mesures et un foisonnement des concepts instrumentaux proposés (Thor, Alfvén, Escape).

Figure 7.1 : Synopsis des activités scientifiques et applicatives du groupe ionosphère de l’IRAP, en lien avec le CDPP.

Les travaux et développements scientifiques décrits ci-dessus sont également indispensables pour préparer les perspectives plus sociétales de mon projet qui ont pour vocation à terme à décrire en temps réel, puis à prévoir l’activité magnétique et l’état de l’environnement proche de la Terre (système thermosphère-ionosphère). En particulier, les outils numériques et les indices magnétiques toujours en

82

cours de développements aujourd’hui, le sont essentiellement pour des activités scientifiques mais également à des fins plus applicatives dans le cadre de la Météorologie de l’Espace. L’ensemble des développements entrepris en modélisation (modules électrodynamiques, modèle de thermosphère et version opérationnelle du modèle TRANSCAR/IPIM) en association avec des données d’observation continues (radars SuperDARN, GNSS, magnétomètres…) et les développements en cours pour créer de nouveaux indices avec une meilleure résolution spatio-temporelle, seront ainsi critiques pour ces activités et seront à la base d’un service de prévision du système ionosphère-thermosphère que nous avons vocation à proposer à moyen terme avec mes collègues du groupe ionosphère de l’IRAP et de l’EOST (bloc du haut du synopsis de la Figure 7.1). Ces développements s’inscrivent parfaitement dans les objectifs du groupe de travail OFRAME (Organisation Française de Recherche Applicative en Météorologie de l’Espace) dont je suis membre.

Par ailleurs, la transposition du code IPIM aux autres planètes du système solaire me donne également l’envie de travailler sur l’environnement des autres planètes en liens avec les missions spatiales comme MAVEN pour MARS, JUNO et JUICE pour Jupiter.

Enfin, j’espère vivement dans les prochaines années continuer à partager ma vision à la fois scientifique et sociétale de la recherche avec des étudiants et des jeunes chercheurs.

83

Bibliographie

André, M., and C. M. Cully (2012), Low-energy ions: A previously hidden solar system particle population, Geophys. Res. Lett., 39, L03101, doi:10.1029/2011GL050242.

André, N., et al., Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure, Planetary and Space Science, in press, doi.org/10.1016/j.pss.2017.04.020, 2017.Bartels, J., N. H. Heck, and H. F. Johnston (1939), The three-hour-range index measuring geomagnetic activity, J. Geophys. Res., 44, 411–454, doi:10.1029/TE044i004p00411.

Bartels, J. (1949), The Standardized Index, Ks, and the Planetary Index, Kp, IATME Bull., 12b, 97 pp., Int. Union of Geod. and Geophys. (IUGG), Paris.

Berchem, J., A. Marchaudon, M. W. Dunlop, C. P. Escoubet, J.-M. Bosqued, H. Reme, I. Dandouras, A. Balogh, E. Lucek, C. Carr, and Z. Pu, Reconnection at the dayside magnetopause: Comparisons of global MHD simulation results with Cluster and Double Star observations (2008), J. Geophys. Res., 113, A07S12, doi:10.1029/2007JA012743.

Berchem, J., R. Richard, P. Escoubet, S. Wing, and F. Pitout (2014), Dawn-dusk asymmetry in solar wind ion entry and dayside precipitation: Results from large-scale simulations, J. Geophys. Res. Space Physics, 119, 1549–1562, doi:10.1002/2013JA019427.

Bilitza, D., S. A Brown, M. Y. Wang, J. R. Souza, and P. A Roddy (2012), Measurements and IRI Model Predictions during the Recent Solar Minimum, J. Atmos. Solar-Terr. Phys., 86, 99-106, doi:10.1016/j.jastp.2012.06.010.

Blelly, P.-L. (2003), SpaceGRID Study Final Report. SGD-SYS-DAT-TN-100-1.2. Issue 1.2. SpaceGRID Consortium.

Blelly, P. -L., C. Lathuillère, B. Emery, J. Lilensten, J. Fontanari, and D. Alcaydé (2005), An extended TRANSCAR model including ionospheric convection: Simulation of EISCAT observations using inputs from AMIE, Ann. Geophys., 23, 419–431, doi:10.5194/angeo-23-419-2005.

Blelly, P. -L., A. Robineau, J. Lilensten, and D. Lummerzheim (1996), 8-moment fluid models of the terrestrial high-latitude ionosphere between 100 and 3000 km, in Solar Terrestrial Energy Program Ionospheric Model Handbook, edited by R. Schunk, pp. 53–72, Utah State Univ., Logan.

Blelly, P. -L., and R. W. Schunk (1993), A comparative study of the time-dependent standard 8-, 13- and 16-moment transport formulations of the polar wind, Ann. Geophys., 11, 443–469.

Bogdanova, Y. V., A. Marchaudon, C. J. Owen, M. W. Dunlop, H. U. Frey, J. A. Wild, A. N. Fazakerley, B. Klecker, J. A. Davies, and S. E. Milan (2005), On the formation of the high-altitude stagnant cusp: Cluster observations, Geophys. Res. Lett., 32, L12101, doi:10.1029/2005GL022813.

Bogdanova, Y. V., C. J. Owen, G. Siscoe, et al. (2007), Cluster Observations of the Magnetospheric Low-Latitude Boundary Layer and Cusp during Extreme Solar Wind and Interplanetary Magnetic Field Conditions: II. 7 November 2004 ICME and Statistical Survey, Sol. Phys., 244: 233. https://doi.org/10.1007/s11207-007-0418-0.

Bosqued, J.-M., C. P. Escoubet, H. U. Frey, M. Dunlop, J. Berchem, A. Marchaudon, J.-C. Cerisier, A. Fazerkerley, E. Budnik, B. Lavraud, H. Rème, H. Laakso, and A. Balogh (2005), Multipoint observations of transient reconnection signatures in the cusp precipitation: A CLUSTER-IMAGE detailed case study, J. Geophys. Res., 110, A03219, doi:10.1029/2004JA010621.

Bosqued, J. M., Phan, T. D., Dandouras, I., Escoubet, C. P., Rème, H., Balogh, A., Dunlop, M. W., Alcaydé, D., Amata, E., Bavassano-Cattaneo, M.-B., Bruno, R., Carlson, C., DiLellis, A. M., Eliasson,

84

L., Formisano, V., Kistler, L. M., Klecker, B., Korth, A., Kucharek, H., Lundin, R., McCarthy, M., McFadden, J. P., Möbius, E., Parks, G. K., and Sauvaud, J.-A. (2001), Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments, Ann. Geophys., 19, 1545-1566, https://doi.org/10.5194/angeo-19-1545-2001.

Bourdarie, S., Boscher, D. and Beutier, T. (1996) Dynamic Physical Modelling of Trapped Particles for Satellite Survey, in Radiation Belts: Models and Standards (eds J.F. Lemaire, D. Heynderickx and D.N. Baker), American Geophysical Union, Washington, D. C.. doi: 10.1029/GM097p0027.

Burch, J. L., Menetti, J. D., and Slavin, J. A. (1990), Dayside auroral particle acceleration mechanisms derived from Dynamics Explorer data, J. Geomag. Geoelectr., 42, 1365–1378, https://doi.org/10.5636/jgg.42.1365.

Burch, J. L., T. E. Moore, R. B. Torbert, and B. L. Giles (2015), Magnetospheric multiscale overview and science objectives, Space Sci. Rev., 1–17, doi:10.1007/s11214-015-0164-9.

Cerisier, J.-C., A. Marchaudon, J.-M. Bosqued, K. McWilliams, H. Frey, M. Bouhram, H. Laakso, M. Dunlop, M. Förster, and A. Fazakerley (2005), Plasma injections and flow bursts in the dayside cusp triggered by solar wind pressure pulses, J. Geophys. Res., 110, A08204, doi:10.1029/2004JA010962. Chambodut, A., A. Marchaudon, C. Lathuillère, M. Menvielle, and E. Foucault (2015), New hemispheric geomagnetic indices α with 15 min time resolution, J. Geophys. Res. Space Physics, 120, 9943–9958, doi:10.1002/2015JA021479.

Chambodut, A., A. Marchaudon, M. Menvielle, F. El-Lemdani Mazouz, and C. Lathuillère (2013), The K-derived MLT sector geomagnetic indices, Geophys. Res. Lett., 40, 4808-4812, doi:10.1002/grl.50947.

Chisham, G., et al. (2007), A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions, Surv. Geophys., 28, 33–109, https://doi.org/10.1007/s10712-007-9017-8.

Cliver, E.W., Y. Kamide, and A. G. Ling (2000), Mountains versus valleys: Semiannual variation of geomagnetic activity, J. Geophys. Res., 105(A2), 2413–2424, doi:10.1029/1999JA900439.

Crooker, N. U. (1979), Dayside merging and cusp geometry, J. Geophys. Res., 84(A3), 951–959, doi:10.1029/JA084iA03p00951.

Crooker, N. U., and G. L. Siscoe (1986), On the limits of energy transfer through dayside merging, J. Geophys. Res., 91, 13,393–13,397, doi: 10.1029/JA091iA12p13393.

Denton, M. H., and J. E. Borovsky (2012), Magnetosphere response to high-speed solar wind streams: A comparison of weak and strong driving and the importance of extended periods of fast solar wind, J. Geophys. Res., 117, A00L05, doi:10.1029/2011JA017124.

Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6(2), 7–48, doi:10.1103/PhysRevLett.6.47.

Dungey, J. W. (1963), The structure of the exosphere or adventures in velocity space, in Geophysics: The Earth’s Environment, edited by C. Dewitt, J. Hieblot, and A. Lebeau, pp. 505–550.

Dunlop, M. W., Balogh, A., and Glassmeier, K.-H. (2002a), Four-point Cluster application of magnetic field analysis tools: the discontinuity analyzer, J. Geophys. Res., 107, 1385, doi:10.1029/2001JA005089.

85

Dunlop, M. W., A. Balogh, K.-H. Glassmeier, and P. Robert (2002b), Four-point Cluster application of magnetic field analysis tools: The Curlometer, J. Geophys. Res., 107: 1384, doi:10.1029/2001JA005088.

Escoubet, C. P., Fehringer, M., and Goldstein, M. (2001), Introduction The Cluster mission, Ann. Geophys., 19, 1197-1200, https://doi.org/10.5194/angeo-19-1197-2001.

Escoubet, C. P., Taylor, M. G. G. T., Masson, A., Laakso, H., Volpp, J., Hapgood, M., and Goldstein, M. L. (2013), Dynamical processes in space: Cluster results, Ann. Geophys., 31, 1045-1059, https://doi.org/10.5194/angeo-31-1045-2013.

Fear, R. C., M. Palmroth, and S. E. Milan (2012), Seasonal and clock angle control of the location of flux transfer event signatures at the magnetopause, J. Geophys. Res., 117, A04202, doi:10.1029/2011JA017235.

Fuselier, S. A., K. J. Trattner, and S. M. Petrinec (2011), Antiparallel and component reconnection at the dayside magnetopause, J. Geophys. Res., 116, A10227, doi:10.1029/2011JA016888.

Gannon, J. L., and J. J. Love (2011), USGS 1-min Dst index, J. Atmos. Sol. Terr. Phys., 73, 323–334. Gonzalez, W.D. and Mozer, F.S. (1974). A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res., 79, doi: 10.1029/JA079i028p04186.

Grandin, M., A. T. Aikio, A. Kozlovsky, T. Ulich, and T. Raita (2015), Effects of solar wind high-speed streams on the high-latitude ionosphere: Superposed epoch study, J. Geophys. Res. Space Physics, 120, 10,669–10,687, doi:10.1002/2015JA021785.

Grandin M., P.-L. Blelly, O.G. Witasse, and A. Marchaudon (2016), Reply to Comment by Pätzold et al. on “Mars Express Radio-Occultation Data: a Novel Analysis Approach”, J. Geophys. Res., 121, doi:10.1002/2015JA022229.

Grandin, M., P.-L. Blelly, O. Witasse, and A. Marchaudon (2014), Mars Express radio-occultation data: A novel analysis approach, J. Geophys. Res. Space Physics, 119, pages 10621–10632. doi:10.1002/2014JA020698.

Green, D. L., C. L. Waters, B. J. Anderson, and H. Korth (2009), Seasonal and interplanetary magnetic field dependence of the field-aligned currents for both Northern and Southern Hemispheres, Ann. Geophys., 27, 1701–1715, doi:10.5194/angeo-27-1701-2009.

Greenwald, R. A., et al. (1995), DARN/SuperDARN: A global view of the dynamics of high- latitude convection, Space Sci. Rev., 71, 761.

Grocott, A., S. E. Milan, and T. K. Yeoman (2008), Interplanetary magnetic field control of fast azimuthal flows in the nightside high-latitude ionosphere, Geophys. Res. Lett., 35, L08102, doi:10.1029/2008GL033545.

Haerendel, G., G. Paschmann, N. Sckopke, H. Rosenbauer, and P. C. Hedgecock (1978), The frontside boundary layer of the magnetosphere and the problem of reconnection, J. Geophys. Res., 83, 3195, doi:10.1029/JA083iA07p03195.

Häkkinen, L. V. T., T. I. Pulkkinen, R. J. Pirjola, H. Nevanlinna, E. I. Tanskanen, and N. E. Turner (2003), Seasonal and diurnal variation of geomagnetic activity: Revised Dst versus external drivers, J. Geophys. Res., 108, 1060, doi:10.1029/2002JA009428, A2.

Hardy, D. A., M. S. Gussenhoven, and E. Holeman (1985), A statistical model of auroral electron precipitation, J. Geophys. Res., 90(A5), 4229–4248, doi:10.1029/JA090iA05p04229.

86

Hoilijoki, S., V. M. Souza, B. M. Walsh, P. Janhunen, and M. Palmroth (2014), Magnetopause reconnection and energy conversion as influenced by the dipole tilt and the IMF Bx , J. Geophys. Res. Space Physics, 119, 4484–4494, doi:10.1002/2013JA019693.

Hundhausen, A. J., S. J. Bame, and M. D. Montgomery (1971), Variations of solar-wind plasma properties: Vela observations of a possible heliographic latitude-dependence, J. Geophys. Res., 76, 5145–5154, doi: 10.1029/JA076i022p05145.

Hu, R., Y. V. Bogdanova, C. J. Owen, C. Foullon, A. N. Fazakerley, and H. Rème (2008), Cluster observations of the midaltitude cusp under strong northward IMF, J. Geophys. Res., doi:10.1029/2007JA012726.

Hurtaud, Y., C. Peymirat, and A. D. Richmond (2007), Modeling seasonal and diurnal effects on ionospheric conductances, region-2 currents, and plasma convection in the inner magnetosphere, J. Geophys. Res., 112, A09217, doi:10.1029/2007JA012257.

Iyemori, T. (1990), Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations, J. Geomag. Geoelectr., 42, 1249–1265, https://doi.org/10.5636/jgg.42.1249.

Kacem I., C. Jacquey, V. Génot, B. Lavraud, Y. Vernisse, A. Marchaudon, et al. (2017), Observation of a Flux Transfer Event type signature resulting from the complex three-dimensional interaction of distinct reconnected flux tubes, J. Geophys. Res. Space Physics, en révision, doi:10.1002/2017JA024537. Katus, R. M., and M. W. Liemohn (2013), Similarities and differences in low-to-middle latitude geomagnetic indices, J. Geophys. Res. Space Physics, 118, 5149–5156, doi:10.1002/jgra.50501. Kuznetsova, M. M., D. G. Sibeck, M. Hesse, Y. Wang, L. Rastaetter, G. Toth, and A. Ridley (2009), Cavities of weak magnetic field strength in the wake of FTEs: Results from global magnetospheric MHD simulations, Geophys. Res. Lett., 36, L10104, doi:10.1029/2009GL037489.

Lathuillère, C., and M. Menvielle (2004), WINDII thermosphere temperature perturbation for magnetically active situations, J. Geophys. Res., 109, A11304, doi:10.1029/2004JA010526.

Lathuillère, C., M. Menvielle, A. Marchaudon, and S. Bruinsma (2008), A statistical study of the observed and modeled global thermosphere response to magnetic activity at mid and low latitudes, J. Geophys. Res., 113, A07311, doi:10.1029/2007JA012991.

Laundal KM, Richmond AD (2017), "Magnetic Coordinate Systems", Space Science Reviews, Vol. 206, pp. 27-59. DOI: 10.1007/s11214-016-0275-y.

Lavraud, B., M. F. Thomsen, B. Lefebvre, S. J. Schwartz, K. Seki, T. D. Phan, Y. L. Wang, A. Fazakerley, H. Rème, and A. Balogh (2006), Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF, J. Geophys. Res., 111, A05211, doi:10.1029/2005JA011266.

Lavraud, B., T. D. Phan, M. W. Dunlop, M. G. G. G. T. Taylor, P. J. Cargill, J.-M. Bosqued, I. Dandouras, H. Rème, J.-A. Sauvaud, C. P. Escoubet, et al. (2004), The exterior cusp and its boundary with the magnetosheath under northward IMF: Cluster multi-event analysis, Ann. Geophys., 22, 3039-3054, https://doi.org/10.5194/angeo-22-3039-2004.

Lavraud, B., E. Larroque, E. Budnik, Vincent Génot, J. E. Borovsky, M. W. Dunlop, C. Foullon, H. Hasegawa, C. Jacquey, K. Nykyri, et al. (2013), Asymmetry of magnetosheath flows and magnetopause shape during low Alfvén Mach number solar wind, J. Geophys. Res. Space Physics, 118, 1089–1100, doi:10.1002/jgra.50145.

87

Lavraud, B., Y. C. Zhang, Y. Vernisse, D. J. Gershman, J. C. Dorelli, et al. (2016), Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause, Geophys. Res. Lett., 43, 3042–3050, doi:10.1002/2016GL068359.

Le, G., Y. Wang, J. A. Slavin, and R. J. Strangeway (2009), Space Technology 5 multipoint observations of temporal and spatial variability of field-aligned currents, J. Geophys. Res., 114, A08206, doi:10.1029/2009JA014081.

Liu, Z. X., Escoubet, C. P., Pu, Z., Laakso, H., Shi, J. K., Shen, C., and Hapgood, M. (2005), The Double Star mission, Ann. Geophys., 23, 2707-2712, https://doi.org/10.5194/angeo-23-2707-2005.

Lockwood, M. (1997), Solar wind magnetosphere coupling, Technical report 97/53, EISCAT Scientific Association.

Lockwood, M., and J. Moen (1999), Reconfiguration and closer of lobe flux by reconnection during northward IMF: Possible evidence for signatures in cusp/cleft auroral emissions, Ann. Geophys., 17, 996-1011, https://doi.org/10.1007/s00585-999-0996-2.

Lockwood, M., S. E. Milan, T. Onsager, C. H. Perry, J. A. Scudder, C. T. Russell, and M. Brittnacher (2001), Cusp ion steps, field-aligned currents and poleward auroral forms, J. Geophys. Res., 106, 29,555– 29,569, doi10.1029/2000JA900175.

Lyatsky, W., P. T. Newell, A. Hamza (2001), Solar illumination as cause of the equinoctial preference for geomagnetic activity, 28, 12, 2353-2356,doi:10.1029/2000GL012803

Marchaudon, A., New insights in far space measurements: large−scale structures and processes in the solar wind and terrestrial magnetosphere, Chapter for IAGA Book "New achievements, and perspectives in geomagnetism and aeronomy", accepté, 2018.

Marchaudon, A., and P.-L. Blelly (2015), A new interhemispheric 16-moment model of the plasmasphere-ionosphere system: IPIM, J. Geophys. Res. Space Physics, 120, 5728–5745, doi:10.1002/2015JA021193.

Marchaudon, A., J.-C. Cerisier, O. Amm, M. Lester, C. W. Carlson and G. K. Parks (2004a), Quantitative modelling of the closure of small-scale parallel currents in the nightside ionosphere, Ann. Geophys., 22, 125-140, https://doi.org/10.5194/angeo-22-125-2004.

Marchaudon, A., J.-C. Cerisier, J.-M. Bosqued, M. W. Dunlop, J. A. Wild, P. M. E. Décréau, M. Förster, D. Fontaine, and H. Laakso (2004b), Transient plasma injections in the dayside magnetosphere: one-to-one correlated observations by Cluster and SuperDARN, Ann. Geophys., 22, 141-158, https://doi.org/10.5194/angeo-22-141-2004.

Marchaudon, A., Cerisier, J.-C., Bosqued, J.-M., Owen, C. J., Fazakerley, A. N., and Lahiff, A. D. (2006), On the structure of field-aligned currents in the mid-altitude cusp, Ann. Geophys., 24, 3391-3401, https://doi.org/10.5194/angeo-24-3391-2006.

Marchaudon, A., Cerisier, J.-C., Dunlop, M. W., Pitout, F., Bosqued, J.-M., and Fazakerley, A. N. (2009), Shape, size, velocity and field-aligned currents of dayside plasma injections: a multi-altitude study, Ann. Geophys., 27, 1251-1266, https://doi.org/10.5194/angeo-27-1251-2009, 2009.

Marchaudon, A., J.-C. Cerisier, R. Greenwald, and G. Sofko (2004c), Electrodynamics of a FTE: Experimental test of the Southwood model, Geophys. Res. Lett., 31, doi:10.1029/2004GL019922. Marchaudon, A., Owen, C. J., Bosqued, J.-M., Fear, R. C., Fazakerley, A. N., Dunlop, M. W., Lahiff, A. D., Carr, C., Balogh, A., Lindqvist, P.-A., and Rème, H. (2005), Simultaneous Double Star and

88

Cluster FTEs observations on the dawnside flank of the magnetosphere, Ann. Geophys., 23, 2877-2887, https://doi.org/10.5194/angeo-23-2877-2005

Mayaud, P.-N. (1968), Indices Kn, Ks et Km, 1964–1967, 156 pp., C.N.R.S., Paris.

Mayaud, P.-N. (1973), A Hundred Year Series of Geomagnetic Data, 1868–1967: Indices AA, Storm Sudden Commencements, 33 pp., IAGA Bull., IUGG, Paris.

Menvielle, M., T. Iyemori, A. Marchaudon, and M. Nose (2011), Geomagnetic indices, IAGA volume on Geomagnetic Observations and Models, Springer (ed.) SBM NL.

Menvielle, M., C. Lathuillère, S. Bruinsma, and R. Viereck (2007), A new method for studying the thermosphere density variability derived from CHAMP/STAR accelerometer data for magnetically active conditions, Ann. Geophys., 25, 1949 – 1958, SRef-ID:1432-0576/angeo/2007-25- 1949.

Menvielle, M., and A. Marchaudon (2007), Geomagnetic indices in Solar-Terrestrial physics and Space Weather, in Space Weather Research towards Applications in Europe, Astrophysics and Space Science Library, Vol. 344, J. Lilensten (ed.), The Netherlands: Springer.

Menvielle, M., and J. Paris (2001), The a𝜆 longitude sector geomagnetic indices, Contrib. Geophys. Geod., 31, 315–322.

Newell, P. T., and J. W. Gjerloev (2011a), Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 116, A12211, doi:10.1029/2011JA016779. Newell, P. T., and J. W. Gjerloev (2011b), Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices, J. Geophys. Res., 116, A12232, doi:10.1029/2011JA016936.

Newell, P. T., and J. W. Gjerloev (2012), SuperMAG-based partial ring current indices, J. Geophys. Res., 117, A05215, doi:10.1029/2012JA017586.

Newell, P. T., T. Sotirelis, and S. Wing (2009), Diffuse, monoenergetic, and broadband aurora: The global precipitation budget, J. Geophys. Res., 114, A09207, doi:10.1029/2009JA014326.

Newell, P. T., T. Sotirelis, and S. Wing (2010), Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 115, A03216, doi:10.1029/2009JA014805.

Nosé, M., T. Iyemori, L. Wang, A. Hitchman, J. Matzka, M. Feller et al. (2012), Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude, Space Weather, 10, S08002, doi:10.1029/2012SW000785.

O’Brien, T. P., and R. L. McPherron (2002), Seasonal and diurnal variation of Dst dynamics, J. Geophys. Res., 107(A11), 1341, doi:10.1029/ 2002JA009435.

Owen, C. J., A. Marchaudon, M. W. Dunlop, A. N. Fazakerley, J.-M. Bosqued, J. P. Dewhurst, R. C. Fear, S. A. Fuselier, A. Balogh and H. Reme (2008), Cluster observations of ‘Crater’ Flux Transfer Events at the Dayside High-Latitude Magnetopause, J. Geophys. Res., 113, A07S04, doi:10.1029/2007JA012701.

Owen, C. J., Fazakerley, A. N., Carter, P. J., Coates, A. J., Krauklis, I. C., Szita, S., Taylor, M. G. G. T., Travnicek, P., Watson, G., Wilson, R. J., Balogh, A., and Dunlop, M. W. (2001), Cluster PEACE observations of electrons during magnetospheric flux transfer events, Ann. Geophys., 19, 1509-1522, https://doi.org/10.5194/angeo-19-1509-2001.

Paschmann, G., G. Haerendel, N. Sckopke, H. Rosenbauer, and P. C. Hedgecock (1976), Plasma and magnetic field characteristics of the distant polar cusp near local noon: The entry layer, J. Geophys. Res., 81, 2883, doi:10.1029/JA081i016p02883.

89

Peng, Z., C. Wang, and Y. Q. Hu (2010), Role of IMF Bx in the solar wind-magnetosphere-ionosphere coupling, J. Geophys. Res., 115, A08224, doi:10.1029/2010JA015454.

Peymirat, C., and D. Fontaine (1994), Numerical simulation of magnetospheric convection including the effect of field-aligned currents and electron precipitation, J. Geophys. Res., 99(A6), 11,155–11,176, doi: 10.1029/93JA02546.

Phan, T. D., W. Dunlop, G. Paschmann, B. Klecker, J. M. Bosqued, H. Rème, A. Balogh, C. Twitty, F. S. Mozer, C. W. Carlson, et al. (2004), Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions, Ann. Geophys., 22, 2355-2367, https://doi.org/10.5194/angeo-22-2355-2004.

Pi, G., J.-H. Shue, K. Grygorov, H.-M. Li, Z. Němeček, J. Šafránková, Y.-H. Yang, and K. Wang (2017), Evolution of the magnetic field structure outside the magnetopause under radial IMF conditions, J. Geophys. Res. Space Physics, 122, 4051–4063, doi:10.1002/2015JA021809.

Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430.

Pitout, F., A. Marchaudon, P.-L. Blelly, X. Bai, F. Forme, S. C. Buchert, and D. A. Lorentzen (2015), Swarm and ESR observations of the ionospheric response to a field-aligned current system in the high-latitude midnight sector, Geophys. Res. Lett., 42, doi:10.1002/2015GL064231.

Pulkkinen, T. I., A. P. Dimmock, A. Lakka, A. Osmane, E. Kilpua, M. Myllys, E. I. Tanskanen, and A. Viljanen (2016), Magnetosheath control of solar wind–magnetosphere coupling efficiency, J. Geophys. Res. Space Physics, 121, 8728–8739, doi:10.1002/2016JA023011.

Reistad, J. P., N. Østgaard, K. M. Laundal, and K. Oksavik (2013), On the non-conjugacy of nightside aurora and their generator mechanisms, J. Geophys. Res. Space Physics, 118, 3394–3406, doi:10.1002/jgra.50300.

Richmond, A. D. (1995), Ionospheric electrodynamics using magnetic apex coordinates, J. Geomagn. Geoelec., 47, 191–212, https://doi.org/10.5636/jgg.47.191.

Russell, C. T., and R. C. Elphic (1978), Initial ISEE magnetometer results: magnetopause observations, Space Sci. Rev., 22, 681–715, doi:10.1007/ BF00212619.

Russell, C. T., and R. L. McPherron (1973), Semi-annual variation of geomagnetic activity, J. Geophys. Res., 78, 92, doi: 10.1029/JA078i001p00092.

Sibeck, D. G. (1990), A Model for the Transient Magnetospheric Response to Sudden SolarWind Dynamic Pressure Variations, J. Geophys. Res., 95, 3755–3771, doi:10.1029/JA095iA04p03755. Sibeck, D. G. (1992), Transient events in the outer magnetosphere – boundary waves or flux-transfer events?, J. Geophys. Res., 97, 4009 – 4026, doi:10.1029/91JA03017.

Solomon, S. C., A. G. Burns, B. A. Emery, M. G. Mlynczak, L. Qian, W. Wang, D. R. Weimer, and M. Wiltberger (2012), Modeling studies of the impact of high-speed streams and co-rotating interaction regions on the thermosphere-ionosphere, J. Geophys. Res., 117, A00L11, doi:10.1029/2011JA017417. Song, P., and C. T. Russell (1992), Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field, J. Geophys. Res., 97, 1411, doi: 10.1029/JA078i001p00092.

Southwood, D. J. (1987), The ionospheric signature of flux transfer events, J. Geophys. Res., 92, 3207– 3213, doi: 10.1029/JA092iA04p03207.

90

Sucksdorff, C., R. Pirjola, and L. Häkkinen (1991), Computer production of K-values based on linear elimination, Geophys. Trans., 36, 333–345.

Sugiura, M. (1965), Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, 35, 9–45. Sugiura, M. and T. Kamei, Equatorial Dst index 1957 – 1986, IAGA Bulletin No.40, 1991.

Suvorova, A. V., and Dmitriev, A. V. (2015), Magnetopause inflation under radial IMF: Comparison of models, Earth and Space Science, 2, 107–114. doi: 10.1002/2014EA000084.

Suvorova, A. V., J.‐H. Shue, A. V. Dmitriev, D. G. Sibeck, J. P. McFadden, H. Hasegawa, K. Ackerson, K. Jelínek, J. Šafránková, and Z. Němeček (2010), Magnetopause expansions for quasi‐radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res., 115, A10216, doi:10.1029/2010JA015404.

Svalgaard, L. (2011), Geomagnetic semiannual variation is not overestimated and is not an artifact of systematic solar hemispheric asymmetry, Geophys. Res. Lett., 38, L16107, doi:10.1029/2011GL048616.

Trattner, K. J., J. S. Mulcock, S. M. Petrinec, and S. A. Fuselier (2007), Probing the boundary between anti-parallel and component reconnection during southwards interplanetary magnetic field conditions, J. Geophys. Res., 112, A08210, doi:10.1029/2007JA012270.

Trattner, K. J., T. G. Onsager, S. M. Petrinec, and S. A. Fuselier (2015), Distinguishing between pulsed and continuous reconnection at the dayside magnetopause. J. Geophys. Res. Space Physics, 120, 1684– 1696. doi: 10.1002/2014JA020713.

Troshichev, O. A., V. G. Andrezen, S. Vennerstrom, and E. Friis-Christensen (1988), Magnetic activity