• Aucun résultat trouvé

L’infection au VIH-1 augmente l’accumulation des vésicules extracellulaires libérées par les cellules RAJI CD4 DCIR mises en contact avec le VIH-1. Ceci est conforté avec l’observation chez les patients infectés au VIH-1 montrant une abondance des exosomes issus des plasmas des patients infectés en comparaison avec les sujets non infectés.

Nous avons mis au point l’immunobuvardage avec l’anti-Dap-3 qui permet d’augmenter le signal de marquage tout en réduisant le cout de la technique. De plus, nous avons montré que la protéine pro-apoptotique Dap-3 est présente dans les vésicules extracellulaires issues des cellules RAJI CD4 DCIR infectées au VIH-1 en comparaison avec les cellules non infectées. Également, Dap-3 est plus présent dans les exosomes issus des cellules RAJI CD4 DCIR infectées au VIH-1 en comparaison avec celles des cellules non infectées. Cependant, la protéine Dap-3 est plus présente dans les dernières fractions du gradient de vélocité issues des cellules infectées au VIH-1 et que ces fractions contiennent peut-être des vésicules apoptotiques. Une caractérisation de ces fractions du gradient est requise afin de déterminer la présence de vésicules apoptotiques ou d’autres types de vésicules pas encore identifiées.

L’ultracentrifugation des vésicules extracellulaires sur les gradients de vélocité permet la séparation de plusieurs populations de vésicules avec des tailles différentes analysées avec le nanosizer. Les fractions du gradient de vélocité sont à caractériser par microscopie électronique et immunobuvardage des marqueurs d’exosomes afin de visualiser les différents types de vésicules.

Afin de montrer le rôle de Dap-3 dans l’apoptose des LT CD4 par les exosomes, il serait pertinent de récupérer les vésicules extracellulaires Dap-3- à partir des cellules dendritiques

transfectées avec l’ARN anti-sens Dap-3 et infectées au VIH-1. Et ce, dans le but d’analyser le rôle de ces vésicules Dap-3- dans l’apoptose des LT CD4 en comparaison

avec les vésicules Dap-3+. Ceci nous permettra de savoir si la protéine Dap-3 représente un

mécanisme par lequel les exosomes issus des cellules infectées activent l’apoptose des LT CD4.

62

À plus long terme, une analyse quantitative de Dap-3 par ELISA sur les LT CD4 issus des PBMCs des patients VIH-1+ ainsi que sur les vésicules extracellulaires issues des plasmas

des patients VIH-1+ pourrait peut-être servir au pronostique de mortalité des LT CD4. En

effet, l’étude de la corrélation entre la quantité de Dap-3 et l’apoptose des LT CD4 permettra de montrer le rôle de Dap-3 dans la pathogenèse de l’infection au VIH-1 ou comme outil de pronostique. Enfin, il est possible que les vésicules extracellulaires issues des cellules infectées au VIH-1 contiennent d’autres molécules pro-apoptotiques comme les récepteurs de mort cellulaire PD-L1, Fas-L et Fas dont il serait pertinent de valider la présence dans les vésicules extracellulaires.

63

Références bibliographiques

1. Barre-Sinoussi, F., et al., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 1983. 220(4599): p. 868-71. 2. Centre, O.m.d.l.s.W.M., VIH/sida. 2015.

3. Canada, L.A.d.l.s.p.d., Résumé : Estimations de l'incidence de la prévalence, et de la proportion non diagnostiquée au VIH au Canada, 2014. 2015.

4. Kornbluth, R.S., et al., The role of interferons in the control of HIV replication in macrophages. Clin Immunol Immunopathol, 1990. 54(2): p. 200-19.

5. Scarlata, S. and C. Carter, Role of HIV-1 Gag domains in viral assembly. Biochim Biophys Acta, 2003. 1614(1): p. 62-72.

6. Dufour, E., et al., p66/p51 and p51/p51 recombinant forms of reverse transcriptase from human immunodeficiency virus type 1--interactions with primer tRNA(Lys3), initiation of cDNA synthesis, and effect of inhibitors. Eur J Biochem, 1998. 251(1-2): p. 487-95.

7. Watts, J.M., et al., Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 2009. 460(7256): p. 711-6.

8. Ceccherini-Silberstein, F., et al., Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev, 2009. 11(1): p. 17-29.

9. Lee, S.K., K. Nagashima, and W.S. Hu, Cooperative effect of gag proteins p12 and capsid during early events of murine leukemia virus replication. J Virol, 2005. 79(7): p. 4159-69. 10. Cantin, R., S. Methot, and M.J. Tremblay, Plunder and stowaways: incorporation of

cellular proteins by enveloped viruses. J Virol, 2005. 79(11): p. 6577-87.

11. Cicala, C. and J. Arthos, Virion attachment and entry: HIV gp120 Env biotinylation, gp120 Env, or integrin ligand-binding assay. Methods Mol Biol, 2014. 1087: p. 3-12.

12. Lambert, A.A., et al., DCIR-mediated enhancement of HIV-1 infection requires the ITIM- associated signal transduction pathway. Blood, 2011. 117(24): p. 6589-99.

13. Weiss, C.D., HIV-1 gp41: mediator of fusion and target for inhibition. AIDS Rev, 2003.

5(4): p. 214-21.

14. Sarafianos, S.G., et al., Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol, 2009. 385(3): p. 693-713.

15. Bukrinsky, M. and A. Adzhubei, Viral protein R of HIV-1. Rev Med Virol, 1999. 9(1): p. 39-49.

16. Chiu, T.K. and D.R. Davies, Structure and function of HIV-1 integrase. Curr Top Med Chem, 2004. 4(9): p. 965-77.

17. Brenchley, J.M., et al., CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med, 2004. 200(6): p. 749-59.

18. Alexaki, A., Y. Liu, and B. Wigdahl, Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res, 2008. 6(5): p. 388-400.

19. Moretto, M.M., et al., Interleukin-12-Producing CD103+ CD11b- CD8+ Dendritic Cells Are Responsible for Eliciting Gut Intraepithelial Lymphocyte Response against Encephalitozoon cuniculi. Infect Immun, 2015. 83(12): p. 4719-30.

20. Kaka, A.S., et al., Using dendritic cell maturation and IL-12 producing capacity as markers of function: a cautionary tale. J Immunother, 2008. 31(4): p. 359-69.

21. Cohen, M.S., et al., The detection of acute HIV infection. J Infect Dis, 2010. 202 Suppl 2: p. S270-7.

22. Ganesh, L., et al., Infection of specific dendritic cells by CCR5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J Virol, 2004. 78(21): p. 11980-7.

23. Turville, S., et al., The role of dendritic cell C-type lectin receptors in HIV pathogenesis. J Leukoc Biol, 2003. 74(5): p. 710-8.

64

24. Sullivan, P.S., et al., Prevalence of seroconversion symptoms and relationship to set-point viral load: findings from a subtype C epidemic, 1995-2009. AIDS, 2012. 26(2): p. 175-84. 25. Preza, G.C., et al., Antigen-presenting cell candidates for HIV-1 transmission in human

distal colonic mucosa defined by CD207 dendritic cells and CD209 macrophages. AIDS Res Hum Retroviruses, 2014. 30(3): p. 241-9.

26. Donaghy, H., J. Stebbing, and S. Patterson, Antigen presentation and the role of dendritic cells in HIV. Curr Opin Infect Dis, 2004. 17(1): p. 1-6.

27. Geijtenbeek, T.B., et al., DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell, 2000. 100(5): p. 587-97.

28. Gilmore, N.J., et al., AIDS: acquired immunodeficiency syndrome. 1983. CMAJ, 1992.

146(3): p. 371-5.

29. Maldarelli, F., et al., HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science, 2014. 345(6193): p. 179-83.

30. Coiras, M., et al., Understanding HIV-1 latency provides clues for the eradication of long- term reservoirs. Nat Rev Microbiol, 2009. 7(11): p. 798-812.

31. Kumar, A., W. Abbas, and G. Herbein, TNF and TNF receptor superfamily members in HIV infection: new cellular targets for therapy? Mediators Inflamm, 2013. 2013: p. 484378.

32. Dianzani, U., et al., Role of FAS in HIV infection. Curr HIV Res, 2003. 1(4): p. 405-17. 33. Vassallo, M., et al., Relevance of lipopolysaccharide levels in HIV-associated

neurocognitive impairment: the Neuradapt study. J Neurovirol, 2013. 19(4): p. 376-82. 34. Steele, A.K., et al., Microbial exposure alters HIV-1-induced mucosal CD4+ T cell death

pathways Ex vivo. Retrovirology, 2014. 11: p. 14.

35. Mehandru, S., et al., Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med, 2004.

200(6): p. 761-70.

36. Lopez Bernaldo de Quiros, J.C., et al., A randomized trial of the discontinuation of primary and secondary prophylaxis against Pneumocystis carinii pneumonia after highly active antiretroviral therapy in patients with HIV infection. Grupo de Estudio del SIDA 04/98. N Engl J Med, 2001. 344(3): p. 159-67.

37. Mofenson, L.M., et al., Guidelines for the Prevention and Treatment of Opportunistic Infections among HIV-exposed and HIV-infected children: recommendations from CDC, the National Institutes of Health, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. MMWR Recomm Rep, 2009. 58(RR-11): p. 1-166.

38. Dunleavy, K. and W.H. Wilson, How I treat HIV-associated lymphoma. Blood, 2012.

119(14): p. 3245-55.

39. Nishimura, Y., et al., Loss of naive cells accompanies memory CD4+ T-cell depletion during long-term progression to AIDS in Simian immunodeficiency virus-infected macaques. J Virol, 2007. 81(2): p. 893-902.

40. Wu, L. and V.N. KewalRamani, Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol, 2006. 6(11): p. 859-68.

41. Althaus, C.L. and R.J. De Boer, Implications of CTL-mediated killing of HIV-infected cells during the non-productive stage of infection. PLoS One, 2011. 6(2): p. e16468.

42. Fuchsberger, M., H. Hochrein, and M. O'Keeffe, Activation of plasmacytoid dendritic cells. Immunol Cell Biol, 2005. 83(5): p. 571-7.

43. Steinman, R.M. and K. Inaba, Myeloid dendritic cells. J Leukoc Biol, 1999. 66(2): p. 205-8. 44. Swiecki, M. and M. Colonna, The multifaceted biology of plasmacytoid dendritic cells. Nat

Rev Immunol, 2015. 15(8): p. 471-85.

45. Kawamura, K., et al., Differentiation, maturation, and survival of dendritic cells by osteopontin regulation. Clin Diagn Lab Immunol, 2005. 12(1): p. 206-12.

65

46. Denzer, K., et al., Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol, 2000. 165(3): p. 1259-65.

47. Villadangos, J.A. and P. Schnorrer, Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol, 2007. 7(7): p. 543-55.

48. Ayehunie, S., et al., Human immunodeficiency virus-1 entry into purified blood dendritic cells through CC and CXC chemokine coreceptors. Blood, 1997. 90(4): p. 1379-86.

49. Lambert, A.A., et al., The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood, 2008. 112(4): p. 1299-307.

50. Sol-Foulon, N., et al., HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity, 2002. 16(1): p. 145-55. 51. Messmer, D., et al., Endogenously expressed nef uncouples cytokine and chemokine

production from membrane phenotypic maturation in dendritic cells. J Immunol, 2002.

169(8): p. 4172-82.

52. Shan, M., et al., HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog, 2007. 3(11): p. e169.

53. Ekkens, M.J., et al., Th1 and Th2 cells help CD8 T-cell responses. Infect Immun, 2007.

75(5): p. 2291-6.

54. Vingert, B., et al., HIV controllers maintain a population of highly efficient Th1 effector cells in contrast to patients treated in the long term. J Virol, 2012. 86(19): p. 10661-74. 55. Hersperger, A.R., et al., Perforin expression directly ex vivo by HIV-specific CD8 T-cells is

a correlate of HIV elite control. PLoS Pathog, 2010. 6(5): p. e1000917.

56. Arrildt, K.T., S.B. Joseph, and R. Swanstrom, The HIV-1 env protein: a coat of many colors. Curr HIV/AIDS Rep, 2012. 9(1): p. 52-63.

57. Siliciano, J.M. and R.F. Siliciano, The Remarkable Stability of the Latent Reservoir for HIV-1 in Resting Memory CD4+ T Cells. J Infect Dis, 2015. 212(9): p. 1345-7.

58. Perreau, M., et al., Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med, 2013. 210(1): p. 143-56.

59. Alvarez, Y., et al., Preferential HIV infection of CCR6+ Th17 cells is associated with higher levels of virus receptor expression and lack of CCR5 ligands. J Virol, 2013. 87(19): p. 10843-54.

60. Hu, H., et al., Distinct gene-expression profiles associated with the susceptibility of pathogen-specific CD4 T cells to HIV-1 infection. Blood, 2013. 121(7): p. 1136-44.

61. Sansom, D.M., CD28, CTLA-4 and their ligands: who does what and to whom? Immunology, 2000. 101(2): p. 169-77.

62. Kassu, A., et al., Regulation of virus-specific CD4+ T cell function by multiple costimulatory receptors during chronic HIV infection. J Immunol, 2010. 185(5): p. 3007- 18.

63. Harty, J.T., A.R. Tvinnereim, and D.W. White, CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol, 2000. 18: p. 275-308.

64. Calarota, S.A., et al., Augmentation of SIV DNA vaccine-induced cellular immunity by targeting the 4-1BB costimulatory molecule. Vaccine, 2008. 26(25): p. 3121-34.

65. Trautmann, L., et al., Profound metabolic, functional, and cytolytic differences characterize HIV-specific CD8 T cells in primary and chronic HIV infection. Blood, 2012. 120(17): p. 3466-77.

66. Landay, A.L., J. Bethel, and S. Schnittman, Phenotypic variability of lymphocyte populations in peripheral blood and lymph nodes from HIV-infected individuals and the impact of antiretroviral therapy. DATRI 003 Study Group. Division of AIDS Treatment Research Initiative. AIDS Res Hum Retroviruses, 1998. 14(5): p. 445-51.

67. Strioga, M., V. Pasukoniene, and D. Characiejus, CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology, 2011. 134(1): p. 17-32.

66

68. Homann, S., et al., Determinants in HIV-1 Nef for enhancement of virus replication and depletion of CD4+ T lymphocytes in human lymphoid tissue ex vivo. Retrovirology, 2009.

6: p. 6.

69. Ahr, B., et al., Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology, 2004. 1: p. 12.

70. Garg, H., J. Mohl, and A. Joshi, HIV-1 induced bystander apoptosis. Viruses, 2012. 4(11): p. 3020-43.

71. Zeng, M., et al., Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest, 2011. 121(3): p. 998-1008.

72. Gasper-Smith, N., et al., Induction of plasma (TRAIL), TNFR-2, Fas ligand, and plasma microparticles after human immunodeficiency virus type 1 (HIV-1) transmission: implications for HIV-1 vaccine design. J Virol, 2008. 82(15): p. 7700-10.

73. Cummins, N.W. and A.D. Badley, Mechanisms of HIV-associated lymphocyte apoptosis: 2010. Cell Death Dis, 2010. 1: p. e99.

74. Pantaleo, G. and A.S. Fauci, Apoptosis in HIV infection. Nat Med, 1995. 1(2): p. 118-20. 75. Taatjes, D.J., B.E. Sobel, and R.C. Budd, Morphological and cytochemical determination

of cell death by apoptosis. Histochem Cell Biol, 2008. 129(1): p. 33-43.

76. Rieux-Laucat, F., F. Le Deist, and A. Fischer, Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ, 2003. 10(1): p. 124-33.

77. Alam, M., et al., Association of gender with morbidity and mortality after isolated coronary artery bypass grafting. A propensity score matched analysis. Int J Cardiol, 2013. 167(1): p. 180-4.

78. Vaseva, A.V. and U.M. Moll, The mitochondrial p53 pathway. Biochim Biophys Acta, 2009. 1787(5): p. 414-20.

79. Verhagen, A.M., et al., Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 2000. 102(1): p. 43-53. 80. Lee, H.J., et al., Roles of Bcl-2 and caspase-9 and -3 in CD30-induced human eosinophil

apoptosis. J Microbiol Immunol Infect, 2015.

81. Fevrier, M., K. Dorgham, and A. Rebollo, CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses, 2011. 3(5): p. 586-612. 82. Gougeon, M.L., Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol,

2003. 3(5): p. 392-404.

83. Roggero, R., et al., Binding of human immunodeficiency virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c-mediated apoptosis independently of Fas signaling. J Virol, 2001. 75(16): p. 7637-50.

84. Gordon, S.N., et al., Disruption of intestinal CD4+ T cell homeostasis is a key marker of systemic CD4+ T cell activation in HIV-infected individuals. J Immunol, 2010. 185(9): p. 5169-79.

85. McCoubrie, J.E., T.S. Kendrick, and R.F. Minchin, HIV LTR-dependent expression of Bax selectively induces apoptosis in Tat-positive cells. Biochem Biophys Res Commun, 2004.

325(4): p. 1459-64.

86. Herbeuval, J.P., et al., TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected patients and its in vitro production by antigen-presenting cells. Blood, 2005. 105(6): p. 2458-64.

87. Stary, G., et al., Plasmacytoid dendritic cells express TRAIL and induce CD4+ T-cell apoptosis in HIV-1 viremic patients. Blood, 2009. 114(18): p. 3854-63.

88. Lenassi, M., et al., HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic, 2010. 11(1): p. 110-22.

89. Caroline Subra1, S.S., Simon Mercier1, Aliona Bancila1, Alexandra A.Lambert1, David R Graham2,3 and Caroline Gilbert1, Dendritic Cells Pulsed with HIV-1 Release Exosomes

67

that Promote Apoptosis in CD4+ T Lymphocytes. Clinical & Cellular Immunology, 2011.

S7:001.: p. 10.

90. Trams, E.G., et al., Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta, 1981. 645(1): p. 63-70.

91. Pan, B.T., et al., Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol, 1985. 101(3): p. 942-8. 92. Raposo, G., et al., B lymphocytes secrete antigen-presenting vesicles. J Exp Med, 1996.

183(3): p. 1161-72.

93. Zitvogel, L., et al., Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med, 1998. 4(5): p. 594-600.

94. Xie, Y., et al., Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol, 2010. 185(9): p. 5268-78.

95. Thery, C., L. Zitvogel, and S. Amigorena, Exosomes: composition, biogenesis and function. Nat Rev Immunol, 2002. 2(8): p. 569-79.

96. Adamczyk, K.A., et al., Characterization of soluble and exosomal forms of the EGFR released from pancreatic cancer cells. Life Sci, 2011. 89(9-10): p. 304-12.

97. Lobb, R.J., et al., Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles, 2015. 4: p. 27031.

98. Borges, F.T., L.A. Reis, and N. Schor, Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res, 2013. 46(10): p. 824-30. 99. Ismail, N., et al., Macrophage microvesicles induce macrophage differentiation and miR-

223 transfer. Blood, 2013. 121(6): p. 984-95.

100. Booth, A.M., et al., Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol, 2006. 172(6): p. 923-35.

101. Choudhuri, K., et al., Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature, 2014. 507(7490): p. 118-23.

102. Joseph F. Renzulli II*, M.D.T., Gerri Dooner, Jason Aliotta, Lisa Goldstein, Mark Dooner, Gerald Colvin, Devasis Chatterjee, and Peter Quesenberry†, Microvesicle Induction of Prostate Specific Gene Expression in Normal Human Bone Marrow Cells. J Urol: p. 15. 103. Liao, C.F., et al., CSE1L, a novel microvesicle membrane protein, mediates Ras-triggered

microvesicle generation and metastasis of tumor cells. Mol Med, 2012. 18: p. 1269-80. 104. Sarkar, A., et al., Monocyte derived microvesicles deliver a cell death message via

encapsulated caspase-1. PLoS One, 2009. 4(9): p. e7140.

105. Thery, C., M. Ostrowski, and E. Segura, Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 2009. 9(8): p. 581-93.

106. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.

107. Berda-Haddad, Y., et al., Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1alpha. Proc Natl Acad Sci U S A, 2011. 108(51): p. 20684-9. 108. Hristov, M., et al., Apoptotic bodies from endothelial cells enhance the number and initiate

the differentiation of human endothelial progenitor cells in vitro. Blood, 2004. 104(9): p. 2761-6.

109. McLellan, A.D., Exosome release by primary B cells. Crit Rev Immunol, 2009. 29(3): p. 203-17.

110. Jaworski, E., et al., Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem, 2014. 289(32): p. 22284-305.

111. Azmi, A.S., B. Bao, and F.H. Sarkar, Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev, 2013. 32(3-4): p. 623-42. 112. Denzer, K., et al., Exosome: from internal vesicle of the multivesicular body to intercellular

68

113. Chen, X., et al., Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging, 2013. 34(10): p. 2370-8.

114. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013. 200(4): p. 373-83.

115. Schmidt, O. and D. Teis, The ESCRT machinery. Curr Biol, 2012. 22(4): p. R116-20. 116. Garrus, J.E., et al., Tsg101 and the vacuolar protein sorting pathway are essential for HIV-

1 budding. Cell, 2001. 107(1): p. 55-65.

117. Bobrie, A., et al., Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles, 2012. 1.

118. Ku, P.I., et al., ALIX is recruited temporarily into HIV-1 budding sites at the end of gag assembly. PLoS One, 2014. 9(5): p. e96950.

119. Buschow, S.I., et al., MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol, 2010. 88(8): p. 851-6. 120. Schneede, A., et al., Role for LAMP-2 in endosomal cholesterol transport. J Cell Mol Med,

2011. 15(2): p. 280-95.

121. Ragazzo, J.L., et al., Costimulation via lymphocyte function-associated antigen 1 in the absence of CD28 ligation promotes anergy of naive CD4+ T cells. Proc Natl Acad Sci U S A, 2001. 98(1): p. 241-6.

122. Xiang, Y.Y., et al., Interaction of acetylcholinesterase with neurexin-1beta regulates glutamatergic synaptic stability in hippocampal neurons. Mol Brain, 2014. 7: p. 15.

123. Savina, A., et al., Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem, 2003. 278(22): p. 20083-90.

124. Cantin, R., et al., Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods, 2008. 338(1-2): p. 21-30.

125. Kowal, J., M. Tkach, and C. Thery, Biogenesis and secretion of exosomes. Curr Opin Cell Biol, 2014. 29: p. 116-25.

126. Baietti, M.F., et al., Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol, 2012. 14(7): p. 677-85.

127. Fruhbeis, C., et al., Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol, 2013. 11(7): p. e1001604.

128. Kramer-Albers, E.M., et al., Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin Appl, 2007.

1(11): p. 1446-61.

129. Masyuk, A.I., et al., Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol, 2010. 299(4): p. G990-9.

130. An, K., et al., Exosomes neutralize synaptic-plasticity-disrupting activity of Abeta assemblies in vivo. Mol Brain, 2013. 6: p. 47.

131. Wolfers, J., et al., Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med, 2001. 7(3): p. 297-303.

132. Chen, Y.W., Y.C. Chen, and J.S. Wang, Absolute hypoxic exercise training enhances in vitro thrombin generation by increasing procoagulant platelet-derived microparticles under high shear stress in sedentary men. Clin Sci (Lond), 2013. 124(10): p. 639-49. 133. Rhee, J.S., et al., The functional role of blood platelet components in angiogenesis. Thromb

Haemost, 2004. 92(2): p. 394-402.

134. Aatonen, M.T., et al., Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles, 2014. 3.

135. Muntasell, A., A.C. Berger, and P.A. Roche, T cell-induced secretion of MHC class II- peptide complexes on B cell exosomes. EMBO J, 2007. 26(19): p. 4263-72.

69

136. Thery, C., et al., Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol, 1999. 147(3): p. 599-610.

137. Wahlgren, J., et al., Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One, 2012. 7(11): p. e49723.

138. Taverna, S., et al., Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer, 2012. 130(9): p. 2033-43.

139. Gehrmann, U., et al., Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema. PLoS One, 2011. 6(7): p. e21480.

140. Ariza, M.E., et al., Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells. PLoS One, 2013. 8(7): p. e69827.

141. Jang, J.Y., et al., Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2

Documents relatifs