• Aucun résultat trouvé

Sémaphorine 7A est une molécule de guidage axonale pour les neurones dopaminergiques en développement. Agissant à la fois sur le récepteur PlexinC1 et ß1-intégrine, tous deux présents dans l’ATV au cours du développement, son effet chémorépulsif se fait via le récepteur PlexinC1. Il a été montré dans la littérature que Séma7A permet de ségréguer les neurones de la voie nigrostriée et mésolimbique au niveau du striatum. Nous démontrons dans cette étude que Séma7A participe également à l’organisation de la voie mésocorticale. Sans cette molécule, on constate en effet des défauts de guidage vers les couches spécifiques du cortex. De telles anomalies peuvent conduire à des conséquences sur le comportement, dont une diminution de l’anxiété. Il serait intéressant de confirmer l’implication de la voie mésocorticale dans ces effets, en bloquant l’expression de Séma7A dans le cortex spécifiquement.

L’effet de la molécule Séma7A se manifeste in vitro par une réduction de l’arborisation dendritique et un effet chémorépulsif. Elle a aussi pour effet d’augmenter le diamètre des cônes de croissance, et leur nombre de filopodes in vitro. Les kinases de la famille des Src sont les médiatrices de ces effets. Activées en aval de PlexinC1 par sa liaison avec Séma7A, leur inactivation forcée empêche le développement de tous les effets morphologiques associés à la présence de la molécule chémorépulsive in vitro.

Afin de confirmer ce modèle in vivo, nous proposons de forcer l’inactivation des SFKs dans les neurones en développement de l’ATV, afin de vérifier si l’organisation de la voie mésocorticale qui en résulte se rapproche de celle obtenue sur le mutant Séma7A KO étudié. Des résultats préliminaires ont déjà été obtenus pour cette expérience, toutefois une optimisation du protocole, incluant la concentration virale et le volume injecté, est nécessaire afin d’obtenir un marquage similaire entre les conditions contrôle et expérimentale.

Enfin nous avons identifié que la protéine de liaison à l’actine cofiline est activée en aval de PlexinC1. Dans le cadre de notre étude et au vu du temps restreint dont nous avons disposé, nous n’avons pas eu le temps d’investiguer le comportement des cônes de croissance privés de l’inactivation de cette protéine. Par ailleurs, la place de cette dernière dans la voie de signalisation en aval de PlexinC1 n’est pas tout à fait élucidée. Puisqu’il semble que sa phosphorylation ne passe pas par les kinases de la famille des LIM, il serait nécessaire d’identifier les protéines responsables de cet effet.

Finalement notre étude aura permis d’acquérir de nouvelles connaissances sur le système dopaminergique. Les niveaux d’intégration de notre étude sont multiples, puisque nous avons étudié à son niveau global le réseau mésocortical, puis au niveau cellulaire la morphologie du cône de croissance et enfin au niveau moléculaire les acteurs de la voie de signalisation en aval du récepteur PlexinC1. Par une meilleure compréhension de ces mécanismes guidant le développement du réseau dopaminergique, nous en apprenons plus sur la façon dont le cerveau se complexifie pour former des connexions régissant les comportements les plus fondamentaux de l’existence humaine.

Bibliographie

Acampora, D. et al. (1995) ‘Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation’, Development, 121(10), p. 3279 LP-3290. Available at: http://dev.biologists.org/content/121/10/3279.abstract.

Agnew, B. J., Minamide, L. S. and Bamburg, J. R. (1995) ‘Reactivation of Phosphorylated Actin Depolymerizing Factor and Identification of the Regulatory Site’, Journal of Biological Chemistry , 270(29), pp. 17582–17587. doi: 10.1074/jbc.270.29.17582.

Aizawa, H. et al. (2001) ‘Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse’, Nature Neuroscience. Nature Publishing Group, 4, p. 367. Available at: http://dx.doi.org/10.1038/86011.

Alto, L. T. and Terman, J. R. (2017) ‘Semaphorins and their Signaling Mechanisms’, Methods in molecular biology (Clifton, N.J.), 1493, pp. 1–25. doi: 10.1007/978-1-4939-6448-2_1.

Alves, G. et al. (2008) ‘Epidemiology of Parkinson’s disease’, Journal of Neurology, 255(5), pp. 18–32. doi: 10.1007/s00415-008-5004-3.

Andersen, P. H. et al. (1990) ‘Dopamine receptor subtypes: beyond the D1/D2 classification’, Trends in Pharmacological Sciences, 11(6), pp. 231–236. doi: https://doi.org/10.1016/0165-6147(90)90249-8.

Andersson, E. et al. (2006) ‘Identification of Intrinsic Determinants of Midbrain Dopamine Neurons’, Cell, 124(2), pp. 393–405. doi: https://doi.org/10.1016/j.cell.2005.10.037.

Andersson, E. R. et al. (2008a) ‘Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo’, PLoS ONE. doi: 10.1371/journal.pone.0003517.

Andersson, E. R. et al. (2008b) ‘Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo’, PLoS ONE. Edited by P. Callaerts, 3(10), p. e3517. doi:

10.1371/journal.pone.0003517.

Ang, S.-L. (2006) ‘Transcriptional control of midbrain dopaminergic neuron development’, Development, 133(18), p. 3499 LP-3506. doi: 10.1242/dev.02501. Ang, S. L. et al. (1996) ‘A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain’, Development, 122(1), p. 243 LP-252. Available at: http://dev.biologists.org/content/122/1/243.abstract.

Ang, Y.-S. et al. (2018) ‘Dopamine Modulates Option Generation for Behavior’, Current Biology. Cell Press, 28(10), p. 1561–1569.e3. doi: 10.1016/j.cub.2018.03.069.

Arias-Salgado, E. G. et al. (2003) ‘Src kinase activation by direct interaction with the integrin beta cytoplasmic domain’, Proceedings of the National Academy of Sciences of the United States of America. 2003/10/30. National Academy of Sciences, 100(23), pp. 13298–13302. doi: 10.1073/pnas.2336149100.

Armstrong, R. J. E. et al. (2003) ‘Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson’s disease’, Experimental Brain Research, 151(2), pp. 204–217. doi: 10.1007/s00221-003-1491-8.

Atwal, J. K. et al. (2003) ‘Semaphorin 3F Antagonizes Neurotrophin-Induced Phosphatidylinositol 3-Kinase and Mitogen-Activated Protein Kinase Kinase Signaling: A Mechanism for Growth Cone Collapse’, The Journal of Neuroscience, 23(20), p. 7602 LP-7609. Available at: http://www.jneurosci.org/content/23/20/7602.abstract.

Bäckman, C. et al. (1999) ‘A selective group of dopaminergic neurons express Nurr1 in the adult mouse brain’, Brain Research, 851(1), pp. 125–132. doi: https://doi.org/10.1016/S0006-8993(99)02149-6.

Bamburg, J. R., McGough, A. and Ono, S. (1999) ‘Putting a new twist on actin: ADF/cofilins modulate actin dynamics’, Trends in Cell Biology, 9(9), pp. 364–370. doi: https://doi.org/10.1016/S0962-8924(99)01619-0.

Barchas, J. D. et al. (1975) ‘Genetic aspects of the synthesis of catecholamines in the adrenal medulla’, Psychoneuroendocrinology. Elsevier, 1(2), pp. 103–113.

doi: 10.1016/0306-4530(75)90002-5.

Beaulieu, J.-M. et al. (2008) ‘Role of GSK3β in behavioral abnormalities induced by serotonin deficiency’, Proceedings of the National Academy of Sciences, 105(4), p. 1333 LP-1338. doi: 10.1073/pnas.0711496105.

Beaulieu, J.-M. and Gainetdinov, R. R. (2011) ‘The Physiology, Signaling, and Pharmacology of Dopamine Receptors’, Pharmacological Reviews. Edited by D. R. Sibley, 63(1), p. 182 LP-217. Available at: http://pharmrev.aspetjournals.org/content/63/1/182.abstract.

Beby, F. and Lamonerie, T. (2013) ‘The homeobox gene Otx2 in development and disease’, Experimental Eye Research, 111, pp. 9–16. doi: https://doi.org/10.1016/j.exer.2013.03.007.

Bechara, A. et al. (2008) ‘FAK–MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse’, The EMBO Journal. Wiley-Blackwell, 27(11), pp. 1549–1562. doi: 10.1038/emboj.2008.86. Belgacem, Y. H. et al. (2016) ‘The Many Hats of Sonic Hedgehog Signaling in Nervous System Development and Disease’, Journal of Developmental Biology. Edited by H. Roelink and S. J. Conway. MDPI, 4(4), p. 35. doi: 10.3390/jdb4040035.

Bentley, D. and Toroian-Raymond, A. (1986) ‘Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment’, Nature. Nature Publishing Group, 323, p. 712. Available at: http://dx.doi.org/10.1038/323712a0.

Bernard, O. (2007) ‘Lim kinases, regulators of actin dynamics’, The International Journal of Biochemistry & Cell Biology, 39(6), pp. 1071–1076. doi: https://doi.org/10.1016/j.biocel.2006.11.011.

Bhat, S. K. and Ganesh, C. B. (2017) ‘Distribution of tyrosine hydroxylase- immunoreactive neurons in the brain of the viviparous fish Gambusia affinis’, Journal of Chemical Neuroanatomy, 85, pp. 1–12. doi: https://doi.org/10.1016/j.jchemneu.2017.05.004.

Bibb, J. A. (2005) ‘Decoding Dopamine Signaling’, Cell, 122(2), pp. 153–155. doi: https://doi.org/10.1016/j.cell.2005.07.011.

Bickel, W. K. et al. (2018) ‘21st century neurobehavioral theories of decision making in addiction: Review and evaluation’, Pharmacology Biochemistry and Behavior, 164, pp. 4–21. doi: https://doi.org/10.1016/j.pbb.2017.09.009.

Bissonette, G. B. and Roesch, M. R. (2016) ‘Development and function of the midbrain dopamine system: what we know and what we need to’, Genes, brain, and behavior, 15(1), pp. 62–73. doi: 10.1111/gbb.12257.

Björklund, A. and Dunnett, S. B. (2007) ‘Dopamine neuron systems in the brain: an update’, Trends in Neurosciences. Elsevier, 30(5), pp. 194–202. doi: 10.1016/j.tins.2007.03.006.

Blackstone, C. (2009) ‘Infantile parkinsonism-dystonia: a dopamine “transportopathy”’, The Journal of Clinical Investigation. The American Society for Clinical Investigation, 119(6), pp. 1455–1458. doi: 10.1172/JCI39632.

Blakely, B. D. et al. (2011) ‘Wnt5a regulates midbrain dopaminergic axon growth and guidance’, PLoS ONE. doi: 10.1371/journal.pone.0018373.

Blakely BD, Bye CR, Fernando CV, Horne MK, Macheda ML, Stacker SA, et al. (2011) ‘Wnt5a Regulates Midbrain Dopaminergic Axon Growth and Guidance’, PLoS ONE, 63(3).

Boot, N. et al. (2017) ‘Creative cognition and dopaminergic modulation of fronto- striatal networks: Integrative review and research agenda’, Neuroscience &

Biobehavioral Reviews, 78, pp. 13–23. doi:

https://doi.org/10.1016/j.neubiorev.2017.04.007.

Bray, N. (2014) ‘Midbrain neurons recycle GABA’, Nature Reviews Neuroscience. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved., 15, p. 350. Available at: http://dx.doi.org/10.1038/nrn3764.

Brunet, I. et al. (2005) ‘The transcription factor Engrailed-2 guides retinal axons’, Nature. Nature Publishing Group, 438, p. 94.

Campbell, D. S. et al. (2001) ‘Semaphorin 3A Elicits Stage-Dependent Collapse, Turning, and Branching in <em>Xenopus</em> Retinal Growth Cones’, The Journal of Neuroscience, 21(21), p. 8538 LP-8547. Available at: http://www.jneurosci.org/content/21/21/8538.abstract.

Growth Cones Mediated by Rapid Local Protein Synthesis and Degradation’, Neuron, 32(6), pp. 1013–1026. doi: https://doi.org/10.1016/S0896- 6273(01)00551-7.

Carragher, N. O. and Frame, M. C. (2004) ‘Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion’, Trends in Cell Biology, 14(5), pp. 241–249. doi: https://doi.org/10.1016/j.tcb.2004.03.011.

Castellani, V., Falk, J. and Rougon, G. (2004) ‘Semaphorin3A-induced receptor endocytosis during axon guidance responses is mediated by L1 CAM’, Molecular and Cellular Neuroscience, 26(1), pp. 89–100. doi: https://doi.org/10.1016/j.mcn.2004.01.010.

Castillo, S. O. et al. (1998) ‘Dopamine Biosynthesis Is Selectively Abolished in Substantia Nigra/Ventral Tegmental Area but Not in Hypothalamic Neurons in Mice with Targeted Disruption of the Nurr1 Gene’, Molecular and Cellular Neuroscience, 11(1), pp. 36–46. doi: https://doi.org/10.1006/mcne.1998.0673. Chabrat, A. et al. (2017) ‘Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic circuit formation’, Nature Communications, 8(1), p. 933. doi: 10.1038/s41467-017-01042-0.

Chedotal, A. et al. (1998) ‘Semaphorins III and IV repel hippocampal axons via two distinct receptors’, Development, 125(21), p. 4313 LP-4323. Available at: http://dev.biologists.org/content/125/21/4313.abstract.

Chen, H. et al. (1998) ‘Semaphorin–Neuropilin Interactions Underlying Sympathetic Axon Responses to Class III Semaphorins’, Neuron, 21(6), pp. 1283–1290. doi: https://doi.org/10.1016/S0896-6273(00)80648-0.

Chen, H. et al. (2000) ‘Neuropilin-2 Regulates the Development of Select Cranial and Sensory Nerves and Hippocampal Mossy Fiber Projections’, Neuron, 25(1), pp. 43–56. doi: https://doi.org/10.1016/S0896-6273(00)80870-3.

Chien, C.-B. et al. (1993) ‘Navigational errors made by growth cones without filopodia in the embryonic xenopus brain’, Neuron, 11(2), pp. 237–251. doi: https://doi.org/10.1016/0896-6273(93)90181-P.

Chilton, J. K. (2006) ‘Molecular mechanisms of axon guidance’, Developmental Biology, 292(1), pp. 13–24. doi: https://doi.org/10.1016/j.ydbio.2005.12.048.

Colamarino, S. A. and Tessier-Lavigne, M. (1995) ‘The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons’, Cell, 81(4), pp. 621– 629. doi: https://doi.org/10.1016/0092-8674(95)90083-7.

Dallé, E. and Mabandla, M. V (2018) ‘Early Life Stress, Depression And Parkinson’s Disease: A New Approach’, Molecular Brain, 11(1), p. 18. doi: 10.1186/s13041-018-0356-9.

Daubner, S. C., Le, T. and Wang, S. (2011) ‘Tyrosine hydroxylase and regulation of dopamine synthesis’, Archives of Biochemistry and Biophysics, 508(1), pp. 1– 12. doi: https://doi.org/10.1016/j.abb.2010.12.017.

Davy, A. and Robbins, S. M. (2000) ‘Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner’, The EMBO Journal. Oxford, UK: Oxford University Press, 19(20), pp. 5396–5405. doi: 10.1093/emboj/19.20.5396. Dent, E. W. and Kalil, K. (2001) ‘Axon Branching Requires Interactions between Dynamic Microtubules and Actin Filaments’, The Journal of Neuroscience, 21(24),

p. 9757 LP-9769. Available at:

http://www.jneurosci.org/content/21/24/9757.abstract.

Deschamps, C. et al. (2009) ‘Expression of ephrinA5 during development and potential involvement in the guidance of the mesostriatal pathway’, Experimental

Neurology, 219(2), pp. 466–480. doi:

https://doi.org/10.1016/j.expneurol.2009.06.020.

Deschamps, C. et al. (2010) ‘EphrinA5 protein distribution in the developing mouse brain’, BMC Neuroscience, 11(1), p. 105. doi: 10.1186/1471-2202-11-105. Doucet-Beaupré, H., Ang, S.-L. and Lévesque, M. (2015) ‘Cell fate determination, neuronal maintenance and disease state: The emerging role of transcription factors Lmx1a and Lmx1b’, FEBS Letters. Wiley-Blackwell, 589(24PartA), pp. 3727–3738. doi: 10.1016/j.febslet.2015.10.020.

Dugan, J. P. et al. (2011) ‘Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals’, Molecular and Cellular

Neuroscience, 46(1), pp. 347–356. doi:

https://doi.org/10.1016/j.mcn.2010.11.003.

Vitezslav Bryja, Lenka Bryjova, Terry P. Yamaguchi, Anita C. Hall, W. W. E. A. (2013) ‘Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo’, PLoS ONE, 3(10).

Evans, A. R. et al. (2007) ‘Laminin and fibronectin modulate inner ear spiral ganglion neurite outgrowth in an in vitro alternate choice assay’, Developmental Neurobiology. Wiley-Blackwell, 67(13), pp. 1721–1730. doi: 10.1002/dneu.20540. Falk, J. et al. (2005) ‘Dual Functional Activity of Semaphorin 3B Is Required for Positioning the Anterior Commissure’, Neuron, 48(4), p. 699. doi: https://doi.org/10.1016/j.neuron.2005.10.024.

FEARNLEY, J. M. and LEES, A. J. (1991) ‘AGEING AND PARKINSON’S DISEASE: SUBSTANTIA NIGRA REGIONAL SELECTIVITY’, Brain, 114(5), pp. 2283–2301. Available at: http://dx.doi.org/10.1093/brain/114.5.2283.

Fenstermaker, A. G. et al. (2010) ‘Wnt/Planar Cell Polarity Signaling Controls the Anterior–Posterior Organization of Monoaminergic Axons in the Brainstem’, The Journal of Neuroscience, 30(47), p. 16053 LP-16064. Available at: http://www.jneurosci.org/content/30/47/16053.abstract.

Ferri, A. L. M. et al. (2007) ‘<em>Foxa1</em> and <em>Foxa2</em> regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner’, Development, 134(15), p.

2761 LP-2769. Available at:

http://dev.biologists.org/content/134/15/2761.abstract.

Fitzgerald, P. and Dinan, T. G. (2008) ‘Prolactin and dopamine: What is the connection? A Review Article’, Journal of Psychopharmacology. SAGE Publications, 22(2_suppl), pp. 12–19. doi: 10.1177/0269216307087148.

Flores, C. (2011) ‘Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system’, Journal of Psychiatry & Neuroscience : JPN. Canadian Medical Association, 36(5), pp. 296–310. doi: 10.1503/jpn.100171.

Ford, C. P. (2014) ‘The Role of D2-Autoreceptors in Regulating Dopamine Neuron Activity and Transmission’, Neuroscience, 282, pp. 13–22. doi: 10.1016/j.neuroscience.2014.01.025.

Fothergill, T. et al. (2014) ‘Netrin-DCC Signaling Regulates Corpus Callosum Formation Through Attraction of Pioneering Axons and by Modulating Slit2- Mediated Repulsion’, Cerebral Cortex, 24(5), pp. 1138–1151. Available at: http://dx.doi.org/10.1093/cercor/bhs395.

Friedman, J. R. and Kaestner, K. H. (2006) ‘The Foxa family of transcription factors in development and metabolism’, Cellular and Molecular Life Sciences CMLS, 63(19), pp. 2317–2328. doi: 10.1007/s00018-006-6095-6.

Friston, K. et al. (2014) ‘The anatomy of choice: dopamine and decision-making’, Philosophical Transactions of the Royal Society B: Biological Sciences. The Royal Society, 369(1655), p. 20130481. doi: 10.1098/rstb.2013.0481.

Furuyashiki, T. (2012) ‘Roles of Dopamine and Inflammation-Related Molecules in Behavioral Alterations Caused by Repeated Stress’, Journal of Pharmacological Sciences, 120(2), pp. 63–69. doi: 10.1254/jphs.12R09CP. Van Gaalen, M. M. et al. (2002) ‘Effects of transgenic overproduction of CRH on anxiety-like behaviour’, European Journal of Neuroscience. John Wiley & Sons, Ltd (10.1111), 15(12), pp. 2007–2015. doi: 10.1046/j.1460-9568.2002.02040.x. Gates, M. A. et al. (2004) ‘Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit’, European Journal of Neuroscience. Wiley/Blackwell (10.1111), 19(4), pp. 831–844. doi: 10.1111/j.1460-9568.2004.03213.x.

Gherardi, E. et al. (2004) ‘The sema domain’, Current Opinion in Structural Biology, 14(6), pp. 669–678. doi: https://doi.org/10.1016/j.sbi.2004.10.010.

Giros, B. and Caron, M. G. (1993) ‘Molecular characterization of the dopamine transporter’, Trends in Pharmacological Sciences, 14(2), pp. 43–49. doi: https://doi.org/10.1016/0165-6147(93)90029-J.

Guirland, C. et al. (2003) ‘Direct cAMP Signaling through G-Protein-Coupled Receptors Mediates Growth Cone Attraction Induced by Pituitary Adenylate Cyclase-Activating Polypeptide’, The Journal of Neuroscience, 23(6), p. 2274 LP- 2283.

Hamaguchi, I. et al. (1996) ‘Analysis of CSK Homologous Kinase (CHK/HYL) in Hematopoiesis by Utilizing Gene Knockout Mice’, Biochemical and Biophysical

Research Communications, 224(1), pp. 172–179. doi: https://doi.org/10.1006/bbrc.1996.1003.

Hamasaki, T. et al. (2001) ‘A Role of Netrin-1 in the Formation of the Subcortical Structure Striatum: Repulsive Action on the Migration of Late-Born Striatal Neurons’, The Journal of Neuroscience, 21(12), p. 4272 LP-4280. Available at: http://www.jneurosci.org/content/21/12/4272.abstract.

Harburger, D. S. and Calderwood, D. A. (2009) ‘Integrin signalling at a glance’, Journal of Cell Science, 122(2), p. 159 LP-163. doi: 10.1242/jcs.018093.

He, Z. and Tessier-Lavigne, M. (1997) ‘Neuropilin Is a Receptor for the Axonal Chemorepellent Semaphorin III’, Cell, 90(4), pp. 739–751. doi: https://doi.org/10.1016/S0092-8674(00)80534-6.

Hegarty, S. V., Sullivan, A. M. and O’Keeffe, G. W. (2013) ‘Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development’, Developmental Biology. Academic Press, 379(2), pp. 123–138. doi: 10.1016/J.YDBIO.2013.04.014.

Hegarty, S. V, Sullivan, A. M. and O’Keeffe, G. W. (2013) ‘Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development’, Developmental Biology, 379(2), pp. 123–138. doi: https://doi.org/10.1016/j.ydbio.2013.04.014.

Van den Heuvel, D. M. A. and Pasterkamp, R. J. (2008) ‘Getting connected in the dopamine system’, Progress in Neurobiology, 85(1), pp. 75–93. doi: https://doi.org/10.1016/j.pneurobio.2008.01.003.

HOLMES, S. et al. (2002) ‘Sema7A is a Potent Monocyte Stimulator’, Scandinavian Journal of Immunology. John Wiley & Sons, Ltd (10.1111), 56(3), pp. 270–275. doi: 10.1046/j.1365-3083.2002.01129.x.

HONDA, K. et al. (1975) ‘The Role of the Peripheral Sympathetic Nerves and the Adrenal Medulla in Maintaining Blood Pressure of Essential Hypertension’, Japanese Circulation Journal, 39(5), pp. 591–595. doi: 10.1253/jcj.39.591.

Hoops, D. and Flores, C. (2017) ‘Making Dopamine Connections in Adolescence’, Trends in Neurosciences, 40(12), pp. 709–719. doi: https://doi.org/10.1016/j.tins.2017.09.004.

Hummel, T., Schimmelpfeng, K. and Klämbt, C. (1999) ‘Commissure Formation in the Embryonic CNS ofDrosophila: I. Identification of the Required Gene Functions’, Developmental Biology, 209(2), pp. 381–398. doi: https://doi.org/10.1006/dbio.1999.9235.

Hynes, M. et al. (1995) ‘Induction of midbrain dopaminergic neurons by Sonic hedgehog’, Neuron, 15(1), pp. 35–44. doi: https://doi.org/10.1016/0896- 6273(95)90062-4.

Iversen, S. D. and Iversen, L. L. (2007) ‘Dopamine: 50 years in perspective’, Trends in Neurosciences. Elsevier, 30(5), pp. 188–193. doi: 10.1016/j.tins.2007.03.002.

Janis, L. S., Cassidy, R. M. and Kromer, L. F. (1999) ‘Ephrin-A Binding and EphA Receptor Expression Delineate the Matrix Compartment of the Striatum’, The Journal of Neuroscience, 19(12), p. 4962 LP-4971. Available at: http://www.jneurosci.org/content/19/12/4962.abstract.

Jeroen Pasterkamp, R. et al. (2003) ‘Semaphorin 7A promotes axon outgrowth through integrins and MAPKs’, Nature. Macmillan Magazines Ltd., 424, p. 398. Available at: http://dx.doi.org/10.1038/nature01790.

Jiang, M. et al. (2001) ‘Most central nervous system D2 dopamine receptors are coupled to their effectors by Go’, Proceedings of the National Academy of Sciences of the United States of America. The National Academy of Sciences, 98(6), pp. 3577–3582. doi: 10.1073/pnas.051632598.

Joksimovic, M. et al. (2009) ‘Spatiotemporally separable <em>Shh</em> domains in the midbrain define distinct dopaminergic progenitor pools’, Proceedings of the National Academy of Sciences, 106(45), p.

19185 LP-19190. Available at:

http://www.pnas.org/content/106/45/19185.abstract.

Jongbloets, B. C. et al. (2017) ‘Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors’, Nature Communications. The Author(s), 8, p. 14666. Available at: http://dx.doi.org/10.1038/ncomms14666.

‘Semaphorin7A and its receptors: Pleiotropic regulators of immune cell function, bone homeostasis, and neural development’, Seminars in Cell & Developmental Biology, 24(3), pp. 129–138. doi: https://doi.org/10.1016/j.semcdb.2013.01.002. Joyner, A. L. (1996) ‘Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development’, Trends in Genetics, 12(1), pp. 15–20. doi: https://doi.org/10.1016/0168-9525(96)81383-7.

Joyner, A. L., Liu, A. and Millet, S. (2000) ‘Otx2, Gbx2 and Fgf8 interact to position and maintain a mid–hindbrain organizer’, Current Opinion in Cell Biology, 12(6), pp. 736–741. doi: https://doi.org/10.1016/S0955-0674(00)00161-7.

Juarez, B. and Han, M.-H. (2016) ‘Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure’, Neuropsychopharmacology. The Author(s), 41, p. 2424. Available at: https://doi.org/10.1038/npp.2016.32.

Kalsbeek, A. et al. (2018) ‘Development of the dopaminergic innervation in the prefrontal cortex of the rat’, Journal of Comparative Neurology. John Wiley & Sons, Ltd, 269(1), pp. 58–72. doi: 10.1002/cne.902690105.

Katz, B.-Z. et al. (2003) ‘Targeting Membrane-localized Focal Adhesion Kinase to Focal Adhesions: ROLES OF TYROSINE PHOSPHORYLATION AND SRC FAMILY KINASES ’, Journal of Biological Chemistry , 278(31), pp. 29115–29120. doi: 10.1074/jbc.M212396200.

Kebabian, J. W. and Calne, D. B. (1979) ‘Multiple receptors for dopamine’, Nature. Nature Publishing Group, 277, p. 93. Available at: http://dx.doi.org/10.1038/277093a0.

Kele, J. et al. (2006) ‘Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons’, Development, 133(3), p. 495 LP-505. Available at: http://dev.biologists.org/content/133/3/495.abstract.

Kennedy, T. E. et al. (1994) ‘Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord’, Cell, 78(3), pp. 425–435. doi: https://doi.org/10.1016/0092-8674(94)90421-9.

Kidd, T., Bland, K. S. and Goodman, C. S. (1999) ‘Slit Is the Midline Repellent for the Robo Receptor in <em>Drosophila</em>’, Cell. Elsevier, 96(6), pp. 785–794. doi: 10.1016/S0092-8674(00)80589-9.

Kikutani, H. and Kumanogoh, A. (2003) ‘Semaphorins in interactions between T cells and antigen-presenting cells’, Nature Reviews Immunology. Nature Publishing Group, 3, p. 159. Available at: https://doi.org/10.1038/nri1003.

Kim, M. et al. (2015) ‘Motor neuron cell bodies are actively positioned by Slit/Robo repulsion and Netrin/DCC attraction’, Developmental Biology, 399(1), pp. 68–79. doi: https://doi.org/10.1016/j.ydbio.2014.12.014.

Kitsukawa, T. et al. (1997) ‘Neuropilin–Semaphorin III/D-Mediated Chemorepulsive Signals Play a Crucial Role in Peripheral Nerve Projection in Mice’, Neuron, 19(5), pp. 995–1005. doi: https://doi.org/10.1016/S0896- 6273(00)80392-X.

Klein, R. (2012) ‘Eph/ephrin signalling during development’, Development,

139(22), p. 4105 LP-4109. Available at:

http://dev.biologists.org/content/139/22/4105.abstract.

Klinghoffer, R. A. et al. (1999) ‘Src family kinases are required for integrin but not

Documents relatifs