• Aucun résultat trouvé

Chapitre I. Applications et propriétés du TiO 2

VII. Conclusions

(Tanabe et al., 1974). Nakabayashi et al. ont par la suite montré que l’acidité des particules de TiO2

était exacerbée par effet quantique quand la taille des particules est suffisamment petite, et que la formation de liaisons Ti-O-Si impliquait la formation de nouveaux sites acides non prédits par le modèle de Tanabe et al. (Nakabayashi et al., 1991, Nakabayashi, 1992). Nous verrons au Chapitre IV comment, au cours des études antérieures menées aux laboratoires LMGP et SIMaP, ces effets d’acidité ont permis d’augmenter fortement le potentiel des surfaces composites TiO2-SiO2 en vue d’applications pour des surfaces à nettoyabilité accrue.

VII. Conclusions

Ce chapitre résume les nombreux intérêts et applications des revêtements de TiO2 et notamment leur

application pour des surfaces autonettoyantes, ou plus rigoureusement, à nettoyabilité accrue. Ces applications sont basées sur deux phénomènes photo-induits, la photo-catalyse et la superhydrophilie photo-induite. Toutefois, la nettoyabilité accrue des surfaces de TiO2 nécessite une illumination aux UV permanente car la reconversion "hydrophilie-hydrophobie" survient rapidement en l’absence de rayonnement UV. Ainsi ce type de revêtement est particulièrement bien adapté pour des applications extérieures grâce à l’action des UV solaires. Leur utilisation en intérieur est possible mais nécessite un dispositif d’éclairage spécifique. Ce chapitre montre aussi que l’ajout de silice au TiO2 permet non seulement d’améliorer les propriétés photo-induites mais aussi dans certains cas de conserver la propriété superhydrophile pendant quelques jours en l’absence d’illumination UV, ce qui fait des

Chapitre I. Applications et propriétés du TiO2

31

Références

ATIK, M., LIMA NETO, P., AEGERTER, M. A. & AVACA, L. A. 1995. Sol-gel TiO2-SiO2 films as protective coatings against corrosion of 316L stainless steel in H2SO4 solutions. Journal of Applied Electrochemistry, 25, 142-148.

ATIK, M. & ZARZYCKI, J. 1994. Protective TiO2-SiO2 coatings on stainless steel sheets prepared by dip-coating. Journal of Materials Science Letters, 13, 1301-1304.

BACH, U., LUPO, D., COMTE, P., MOSER, J. E., WEISSORTEL, F., SALBECK, J., SPREITZER, H. & GRATZEL, M. 1998. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395, 583-585.

BELLARDITA, M., ADDAMO, M., DI PAOLA, A., MARCÌ, G., PALMISANO, L., CASSAR, L. & BORSA, M. 2010. Photocatalytic activity of TiO2/SiO2 systems. Journal of Hazardous Materials, 174, 707-713.

BOROUJENY, B. S., AFSHAR, A. & DOLATI, A. 2012. Photoactive and self-cleaning TiO2–SiO2 thin films on 316L stainless steel. Thin Solid Films, 520, 6355-6360.

CAMURLU, H. E., KESMEZ, O., BURUNKAYA, E., KIRAZ, N., YESIL, Z., ASILTURK, M. & ARPAC, E. 2012. Sol-gel thin films with anti-reflective and self-cleaning properties. Chemical Papers,

66, 461-471.

CARP, O., HUISMAN, C. L. & RELLER, A. 2004. Photoinduced reactivity of titanium dioxide.

Progress in Solid State Chemistry, 32, 33-177.

CERMENATI, L., ALBINI, A. & RICHTER, C. 1998. Solar light induced carbon-carbon bond formation via TiO2 photocatalysis. Chemical Communications, 805-806.

CONTESCU, C. I. & SCHWARZ, J. A. 2000. Acid-Base Interactions on surfaces of wet and dry inorganic oxides. In: MITTAL, K. L. (ed.) Acid-Base Interactions : Relevance to adhesion Sience and Technology Zeist, The Netherlands: VSP BV.

DOOLIN, P. K., ALERASOOL, S., ZALEWSKI, D. J. & HOFFMAN, J. F. 1994. Acidity studies of titania-silica mixed oxides. Catalysis Letters, 25, 209-223.

FALLET, M., PERMPOON, S., DESCHANVRES, J. L. & LANGLET, M. 2006. Influence of physico-structural properties on the photocatalytic activity of sol-gel derived TiO2 thin films.

Journal of Materials Science, 41, 2915-2927.

FOX, M. A. & DULAY, M. T. 1993. Heterogeneous photocatalysis. Chemical Reviews, 93, 341-357. FRANK, S. N. & BARD, A. J. 1977. Heterogeneous photocatalytic oxidation of cyanide and sulfite in

aqueous solutions at semiconductor powders. The Journal of Physical Chemistry, 81, 1484-1488.

FU, X., CLARK, L. A., YANG, Q. & ANDERSON, M. A. 1996. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides:  TiO2/SiO2 and TiO2/ZrO2. Environmental Science & Technology, 30, 647-653.

FUJISHIMA, A., HASHIMOTO, K. & WATANABE, T. (eds.) 1999. TiO2 photocatalysis : fundamentals and applications, Tokyo.

FUJISHIMA, A. & HONDA, K. 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.

FUJISHIMA, A., OOTSUKI, J., YAMASHITA, T. & HAYAKAWA, S. 1986. Behavior of Tumor Cells on Photoexcited Semiconductor Surface. Photomed. Photobiol., 8, 45-46.

GAO, X. & WACHS, I. E. 1999. Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catalysis Today, 51, 233-254.

GUAN, K. 2005. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surface and Coatings Technology, 191, 155-160.

GUAN, K. S., LU, B. J. & YIN, Y. S. 2003. Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films. Surface & Coatings Technology, 173, 219-223.

HADJIIVANOV, K. I. & KLISSURSKI, D. G. 1996. Surface chemistry of titania (anatase) and titania-supported catalysts. Chemical Society Reviews, 25, 61-69.

Chapitre I. Applications et propriétés du TiO2

32

HERRMANN, J.-M. 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53, 115-129.

KATAOKA, T. & DUMESIC, J. A. 1988. Acidity of unsupported and silica-supported vanadia, molybdena, and titania as studied by pyridine adsorption. Journal of Catalysis, 112, 66-79.

KUMAZAWA, N., RAFIQUL ISLAM, M. & TAKEUCHI, M. 1999. Photoresponse of a titanium dioxide chemical sensor. Journal of Electroanalytical Chemistry, 472, 137-141.

LANGLET, M., PERMPOON, S., RIASSETTO, D., BERTHOMÉ, G., PERNOT, E. & JOUD, J. C. 2006. Photocatalytic activity and photo-induced superhydrophilicity of sol-gel derived TiO2

films. Journal of Photochemistry and Photobiology A: Chemistry, 181, 203-214.

LEE, H. J., HAHN, S. H., KIM, E. J. & YOU, Y. Z. 2004. Influence of calcination temperature on structural and optical properties of TiO2-SiO2 thin films prepared by sol-gel dip coating.

Journal of Materials Science, 39, 3683-3688.

LEE, H. Y., PARK, Y. H. & KO, K. H. 2000. Correlation between Surface Morphology and Hydrophilic/Hydrophobic Conversion of MOCVD−TiO2 Films. Langmuir, 16, 7289-7293. LENG, Y. X., HUANG, N., YANG, P., CHEN, J. Y., SUN, H., WANG, J., WAN, G. J., TIAN, X. B., FU, R. K. Y.,

WANG, L. P. & CHU, P. K. 2002. Structure and properties of biomedical TiO2 films synthesized by dual plasma deposition. Surface and Coatings Technology, 156, 295-300. LIU, Z. F., TABORA, J. & DAVIS, R. J. 1994. Relationships between Microstructure and Surface

Acidity of Ti-Si Mixed Oxide Catalysts. Journal of Catalysis, 149, 117-126.

MACHIDA, M., NORIMOTO, K., WATANABE, T., HASHIMOTO, K. & FUJISHIMA, A. 1999. The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst. Journal of Materials Science, 34, 2569-2574.

MACLEOD, H. A. (ed.) 1986. Thin Film Optical Filters, New-York: MacMillan.

MAEDA, M. & YAMASAKI, S. 2005. Effect of silica addition on crystallinity and photo-induced hydrophilicity of titania-silica mixed films prepared by sol-gel process. Thin Solid Films,

483, 102-106.

MARDARE, D., TASCA, M., DELIBAS, M. & RUSU, G. I. 2000. On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films. Applied Surface Science, 156, 200-206.

MATSUNAGA, T., TOMODA, R., NAKAJIMA, T. & WAKE, H. 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29, 211-214.

MIYAUCHI, M., NAKAJIMA, A., FUJISHIMA, A., HASHIMOTO, K. & WATANABE, T. 1999. Photoinduced Surface Reactions on TiO2 and SrTiO3 Films:  Photocatalytic Oxidation and Photoinduced Hydrophilicity. Chemistry of Materials, 12, 3-5.

MIYAUCHI, M., NAKAJIMA, A., WATANABE, T. & HASHIMOTO, K. 2002. Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films. Chemistry of Materials,

14, 2812-2816.

MO, S.-D. & CHING, W. Y. 1995. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51, 13023-13032.

MOHAMED, M. M., SALAMA, T. M. & YAMAGUCHI, T. 2002. Synthesis, characterization and catalytic properties of titania-silica catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 207, 25-32.

NAKABAYASHI, H. 1992. Properties of Acid Sites on TiO2-SiO2 and TiO2-Al2O3 Mixed Oxides Measured by Infrared-Spectroscopy. Bulletin of the Chemical Society of Japan, 65, 914-916.

NAKABAYASHI, H., KAKUTA, N. & UENO, A. 1991. Strong Acid Sites Created on Small-Sized Anatase. Bulletin of the Chemical Society of Japan, 64, 2428-2432.

NAVROTSKY, A., JAMIESON, J. C. & KLEPPA, O. J. 1967. Enthalpy of Transformation of a High-Pressure Polymorph of Titanium Dioxide to the Rutile Modification. Science, 158, 388-389.

Chapitre I. Applications et propriétés du TiO2

33 O'REGAN, B. & GRATZEL, M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized

colloidal TiO2 films. Nature, 353, 737-740.

OHKO, Y., SAITOH, S., TATSUMA, T. & FUJISHIMA, A. 2001. Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO2 Coating for Type 304 Stainless Steel. Journal of The Electrochemical Society, 148, B24-B28.

OHNO, T., NAKABEYA, K. & MATSUMURA, M. 1998. Epoxidation of Olefins on Photoirradiated Titanium Dioxide Powder Using Molecular Oxygen as an Oxidant. Journal of Catalysis,

176, 76-81.

PERMPOON, S., BERTHOMÉ, G., BAROUX, B., JOUD, J. C. & LANGLET, M. 2006. Natural superhydrophilicity of sol–gel derived SiO2–TiO2 composite films. Journal of Materials Science, 41, 7650-7662.

PICHAT, P. 1994. Partial or complete heterogeneous photocatalytic oxidation of organic compounds in liquid organic or aqueous phases. Catalysis Today, 19, 313-333.

REN, D., CUI, X., SHEN, J., ZHANG, Q., YANG, X., ZHANG, Z. & MING, L. 2004. Study on the Superhydrophilicity of the SiO2-TiO2 Thin Films Prepared by Sol-Gel Method at Room Temperature. Journal of Sol-Gel Science and Technology, 29, 131-136.

SAKAI, N., FUJISHIMA, A., WATANABE, T. & HASHIMOTO, K. 2001. Enhancement of the Photoinduced Hydrophilic Conversion Rate of TiO2 Film Electrode Surfaces by Anodic Polarization. The Journal of Physical Chemistry B, 105, 3023-3026.

SAKAI, N., WANG, R., FUJISHIMA, A., WATANABE, T. & HASHIMOTO, K. 1998. Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces. Langmuir, 14, 5918-5920.

SCHWARZ, V. A., KLEIN, S. D., HORNUNG, R., KNOCHENMUSS, R., WYSS, P., FINK, D., HALLER, U. & WALT, H. 2001. Skin protection for photosensitized patients. Lasers in Surgery and Medicine, 29, 252-259.

SHIN, D. Y. & KIM, K. N. 2009. Effective of SiO2 Addition on the Self-cleaning and Photocatalytic Properties of TiO2 Films by Sol-gel Process. In: KIM, H., YANG, J. F., SEKINO, T. & LEE, S. W. (eds.) Eco-Materials Processing and Design X. Stafa-Zurich: Trans Tech Publications Ltd.

SHULTZ, A. N., JANG, W., HETHERINGTON III, W. M., BAER, D. R., WANG, L.-Q. & ENGELHARD, M. H. 1995. Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+ defects on (110) rutile TiO2

surfaces. Surface Science, 339, 114-124.

SUN, R.-D., NAKAJIMA, A., FUJISHIMA, A., WATANABE, T. & HASHIMOTO, K. 2001. Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films. The Journal of Physical Chemistry B, 105, 1984-1990.

TANABE, K., ISHIYA, C., MATSUZAKI, I., ICHIKAWA, I. & HATTORI, H. 1972. Acidic Property and Catalytic Activity of TiO2-ZnO. Bulletin of the Chemical Society of Japan, 45, 47-51.

TANABE, K., SUMIYOSHI, T., SHIBATA, K., KIYOURA, T. & KITAGAWA, J. 1974. A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides. Bull. Chem. Soc Jap., 47, 1064-1066. TANG, H., LÉVY, F., BERGER, H. & SCHMID, P. E. 1995. Urbach tail of anatase TiO2. Physical Review

B, 52, 7771-7774.

TSAI, S.-J. & CHENG, S. 1997. Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catalysis Today, 33, 227-237.

WANG, L.-Q., BAER, D. R., ENGELHARD, M. H. & SHULTZ, A. N. 1995. The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surface Science, 344, 237-250. WANG, R., HASHIMOTO, K., FUJISHIMA, A., CHIKUNI, M., KOJIMA, E., KITAMURA, A.,

SHIMOHIGOSHI, M. & WATANABE, T. 1997. Light-induced amphiphilic surfaces. Nature,

388, 431-432.

WANG, R., HASHIMOTO, K., FUJISHIMA, A., CHIKUNI, M., KOJIMA, E., KITAMURA, A., SHIMOHIGOSHI, M. & WATANABE, T. 1998. Photogeneration of Highly Amphiphilic TiO2

Chapitre I. Applications et propriétés du TiO2

34

WANG, R., SAKAI, N., FUJISHIMA, A., WATANABE, T. & HASHIMOTO, K. 1999. Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces. The Journal of Physical Chemistry B, 103, 2188-2194.

WATANABE, T., NAKAJIMA, A., WANG, R., MINABE, M., KOIZUMI, S., FUJISHIMA, A. & HASHIMOTO, K. 1999. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 351, 260-263.

YANG, L. L., LAI, Y. S., CHEN, J. S., TSAI, P. H., CHEN, C. L. & CHANG, C. J. 2005. Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties. Journal of Materials Research, 20, 3141-3149.

YU, J., ZHAO, X., YU, J. C., ZHONG, G., HAN, J. & ZHAO, Q. 2001. The grain size and surface hydroxyl content of super-hydrophilic TiO2/SiO2 composite nanometer thin films. Journal of Materials Science Letters, 20, 1745-1748.

YU, J. C., YU, J., HO, W. & ZHAO, J. 2002a. Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 148, 331-339.

YU, J. C., YU, J., TANG, H. Y. & ZHANG, L. 2002b. Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films. Journal of Materials Chemistry, 12, 81-85.

ZHANG, M., SHI, L., YUAN, S., ZHAO, Y. & FANG, J. 2009. Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol. Journal of Colloid and Interface Science,

Chapitre II.

Élaboration de films composites

TiO

2

-SiO

2

par voie sol-gel

Sommaire

I. Élaboration de films minces par voie sol-gel ... 39

I.A. Principe du procédé sol-gel ... 40 I.A.1. Sol ... 40 I.A.2. Gélification et traitement thermique ... 42 I.B. Dépôt par spin coating... 43

II. Protocole d’élaboration des films composites TiO

2

-SiO

2

... 44

II.A. Élaboration des sols composites TiO2-SiO2 ... 44 II.B. Dépôt par spin-coating ... 46

Documents relatifs