• Aucun résultat trouvé

Contrairement à la pensée générale, la canneberge est une plante très sensible aux variations de θa et donc, de teneur en eau du sol. Les résultats confirment qu’il existe effectivement un φm seuil pour lequel, l’aération (~0,18 m3.m-3 en moyenne dans la zone racinaire ce qui correspond à une hauteur de nappe dont le potentiel matriciel varie entre -2 et -2,5 kPa), et les teneurs en oxygène (qui diminuent pour des θa ˂0,13 m3.m-3 ce qui correspond à des hauteurs de nappes dont le potentiel matriciel est inférieur à -1,5 kPa) deviennent insuffisantes pour la respiration racinaire de la canneberge nuisant au développement physiologique de la plante. Pour des θa inférieures à ~0,18 m3.m-3, la plante réduit son activité et des baisses de rendement sont à prévoir. En outre, lorsque θa est inférieure à  0,13 m3.m-3 (0,06 m3.m-3 à 15 cm de profondeur), le milieu devient anoxique et des dommages irréversibles sont apparus, en particulier sur les tiges fructifères (rougeoiement des feuilles et tiges, activité photosynthétique nulle).

La réponse de la canneberge diffère alors selon les traitements les plus humides dont la nappe est plus proche de la surface, située entre -0,25 et -1,5 kPa et les traitements les plus secs dont la nappe se situait entre -5 et -6 kPa. Cette variation dans la réponse physiologique de la canneberge peut s’expliquer par le fait que plus les nappes sont proches de la surface, plus la θa (et donc l’espace porale rempli d’air et alimentant les racines en oxygène) est réduite et plus les flux de diffusion de l’oxygène deviennent insuffisants pour alimenter la totalité de la zone racinaire. L’information apportée par l’étude de l’aération corrélée à l’activité physiologique de la plante permet d’affirmer que les hauteurs de nappes doivent être rabaissées en moins d’une semaine, dès lors où elles deviennent supérieures à -3 kPa pour maintenir un bon développement physiologique de la plante sans affecter le rendement. Cependant, puisque les mesures ont été réalisées une fois par semaine, et que l’activité de la plante chute significativement dès la première semaine, il devrait être possible d’affiner cet intervalle de temps attribué à une baisse de l’activité de la plante. L’étude de Peuke et Jeschke (1993) démontrant l’approvisionnement amoindrie des racines en hydrates de carbone dès le premier jour d’anoxie racinaire pour le Ricin conforte l’idée d’un intervalle de temps plus court dans la réponse de la plante au phénomène d’asphyxie racinaire.

Enfin, il importe de souligner que les résultats obtenus sont fonction du sol sur lequel porte l’étude. La capacité de rétention de l’eau et ses propriétés hydrodynamiques diffèrent selon les propriétés texturales et structurales du sol. Par ailleurs, l’apport d’eau s’est fait uniquement par sub-irrigation tout au long de cette expérience sans tenir compte du changement de conductivité électrique ni de la gestion de la fertilisation. Sachant que les méthodes d’irrigation influencent φm et par conséquent la teneur en eau et en air près de la surface du sol, l’utilisation d’une sub-irrigation aura forcément un impact sur les cinétiques de dégradation et de transfert des substances chimiques dans le sol dont les normes fixées jusqu’à présent sont basées sur une

62

régie d’irrigation par aspersion. L’étude des cinétiques de dégradation et l’impact des concentrations de substances chimiques sur le développement de la plante devraient être investigués avant d’entreprendre une nouvelle gestion de l’irrigation. Des études devraient être orientées pour étudier l’effet des teneurs en oxygène du sol sur la transformation des nutriments, les processus d’adsorption-désorption, les réactions de précipitation ainsi que les mécanismes de diffusion.

63

Bibliographie :

Abbott, J.D., Gough R.E., 1987a. Reproductive response of the highbush blueberry to root-zone flooding. Hortscience. 22: 40-42.

.

Abbott, J.D., Gough R.E., 1987b. Prolonged flooding effects on anatomy of highbush blueberry. Hortscience. 2: 622-625.

Allaire S. E., Caron J. Parent L. E., 1999. Changes in physical properties of peat substrates during plant growth. Canadian Journal of Soil Science. 79(1): 137-139, 10.4141/S98-060.

Andersen P.C., Lombard P.B., Westwood M.N., 1984a. Effect of root anaerobiosis on the water relations of several Pyrus species. Physiol. Plant. 62(2): 245-252.

Andersen P.C., Lombard P.B., Westwood M.N., 1984b. Leaf conductance, growth, and survival of willow and deciduous fruit tree species under flooded soil conditions. J. Am. Soc. Hort. Sci. 109: 132-138.

.

Arnal B., Bureau B., Le Jeune R., 2008. La canneberge d’Amérique, propriétés et indications. Phytothérapie. 6: 129-132.

Arpagaus S., Braendle R., 2000. The significance of alpha-amylase under anoxia stress in tolerant rhizomes (Acorus calamus L.) and non-tolerant tubers (Solanum tuberosum L., var. Desiree). J. Exp. Bot. 51: 1475- 1477.

Ashraf Y.A., Palta J.P. 1989. Changes in biophysical and biochemical properties of cranberry (Vaccinium macrocarpon Ait.) fruit during growth and development. Act. Horti. 241 : 360-364.

Asselin R., Laperrière L., Painchaud J., 1997. Bulletin d'information sur la production écologique de la canneberge. Groupe HBA Experts Conseils de Saint-Hyacinthe en collaboration avec la société d’agriculture de Nicolet, Québec.

Averill A. L., Sylvia M. M., Kusek C. C., DeMoranville, C. J., 1997. Flooding in cranberry to minimize insecticide and fungicide inputs. Am. J. Alt. Agric. 12:50-54.

Bailey-Serres J., Voesenek L.A.C.J., 2008. Flooding stress: acclimations and genetic diversity. An. Rev. Plant Bio. 59: 313–339.

Bakker, J. W., Hidding A. P., 1970. The influence of soil structure and air content on gas diffusion in soils, Neth. J. Agr. Sci. 18: 37-48.

Baumann T.E., Eaton G.W., 1986. Competition among berries on the cranberry upright. J. Am. Soc. Hort. Sci. 111(6): 869-872.

Beckwith C.S., 1944. Suggestions on the remaking of old hogs. Proceeding the 74th Annual Meeting of the American Cranberry Growers Association. 6-8.

64 .

Bergman H.F., Stevens N.E., 1943. Weather in cranberry culture. Mass Agr. Expt. Sta. Bul. 402.

Bergman, H.F., 1943. The relation of ice and snow cover on winter-flooded cranberry bogs to vine injury from oxygen deficiency. In: Franklin, H.J., Bergman, H.F., Stevens, N.E. (Eds.), Weather in cranberry culture. Bull. No. 402, Mass. Agr. Expt. Sta., East Wareham, MA, pp. 3–24.

Berta P., 2008. Notes de cours, biologie moléculaire. Professeur à l’Université d’Unîmes, Nîmes, France. Birrenkott B.A., Henson C.A., Stang E.J. 1991. Carbohydrate-levels and the development of fruit in cranberry. J. Am. Soc. Hort. Sci. 116:174-178.

Blok C., Wever G., 2008. Experience with selected physical methods to characterize the suitability of growing media for plant growth. Acta Hort. (ISHS), 779: 239-250.

Boivin C., Landry C., Caron J., Mainguy J., Pagé D., Bergeron D., 2008. Étude d’acquisition de connaissances sur la détermination de l’existence de patrons éventuels d’assèchement ou d’humidité dans un sol agricole en relation avec le rendement en pommes de terre et la perte des nitrates. Projet PAECQ #5218; IRDA.

Bonin S., 2009. Régie agroenvironnementale de l’irrigation dans la production de canneberges (Vaccinium macrocarpon Ait.). Mémoire de maîtrise en sols et environnement. Université Laval.

Botelho M.R., Vanden Heuvel J.E., 2005. High dissolved oxygen concentration of floodwater reduces carbohydrate concentration of cranberry uprights during flooding. HortScience. 40(3): 569-573.

Braendle R., Crawford R.M.M., 1999. Plants as amphibians. Persp. Plant. Evol. Syst., 2(1): 56-78.

Brown A.O., McNeil J.N., 2006. Fruit production in cranberry (Ericaceae: Vaccinium macrocarpon): a bet- hedging strategy to optimize reproductive effort. Am. J. Bot., 93(6): 910-916.

Brown N.J., Fountaine E.R., Holden M.R., 1965. The oxygen requirement of crop roots and soils under near field conditions. J. Agric. Sci. 27,279.

Buckingham E., 1904. Contributions to our knowledge of the aeration of soils. U.S. Dep. Agr. Bur. of Soils Bul. No. 25.

Caron J. and Nkongolo, V.K.N., 1999. Aeration in growing media: recent. Acta Hort. (ISHS) 481:545-552. Chandler F.B., Demoranville I.E., 1964. Frost period for cranberry in process. Am. Soc. Hort. Sci, 85 : 307- 311.

Childers N.F., White D.G., 1942. Influence of submersion of the roots on transpiration, apparent photosynthesis and respiration of young apple trees. Plant Physiol. 17: 603-618.

Cornillon P., 1974. Comportement de la tomate en fonction de la température du substrat. Ann. Agron. 25 (5), 753-777.

65 Coutts M.D., 1981. Effects of waterlogging on water relations of actively-growing and dormant Sitka spruce seedlings. Ann. Bot. 47: 747-753.

Crane J.H., Davies F.S., 1988a. Periodic and seasonal flooding effects on survival growth, and stomatal conductance of young rabbiteyes blueberry plants. J. Am. Soc. Hort. Sci. 113(4): 448-493.

Crane J.H., Davies F.S., 1988b. Flooding duration and seasonal effects on growth and development of young rabbiteye blueberry plants. J. Am. Soc. Hort. Sci. 113: 180-184.

Crane, J.H. Davies F.S., 1987. Flooding, hydraulic conductivity, and root electrolyte leakage of rabbiteye blueberry plants. HortScience. 22(6): 1249-1252.

Crane, J.H., Davies F.S., 1989. Flooding responses of Vaccinium species. HortScience. 24(2):203-210. Currie J.A., 1961. Gaseous diffusion in the aeration of aggregated soils. Soil Sc. 92(1): 40-45.

Davies F. S. et Flore J.A., 1986a. Flooding gas exchange and hydraulic root conductivity of highbush blueberry. Physiol. Plant. 67(4): 545-551.

Davies F.S., Flore A., 1986b. Gas exchange and flooding stress of highbush and rabbiteye blueberry. J. Am. Soc. Hort. Sci. 111:565-571.

Davies F.S., Flore J.A., 1986c. Short-term flooding effects on gas exchange and quantum yield of rabbiteyes blueberry (Vaccinium ashei Reade). Plant Physiol. 81(1):289-292.

Davies F.S., Flore J.A., 1986d. Root conductivity, CO2 response and quantum yield of flooded effects and unflooded highbush blueberry plant. HortScience. 20: 89 (Abstr.).

Davies F.S. et Flore J.A., 1985. Flooding and gas exchange of rabbiteye and highbush blueberries. J Am Soc Hort Sci III. In Davies F.S. et FLORE J.A., 1986. Flooding, gas exchange and hydraulic root conductivity of highbush blueberry. Physiol. Plant. 67: 545-551.

Davies F.S., Wilcox D., 1984. Waterlogging of containerized rabbiteye blueberries in Florida, J Am Soc Hort Sci. 109: 520-524.

Degaetano A.T., Shulman M.D., 1987. A statistical evaluation of the relationship between cranberry yield in New Jersey and meteorological factors. Agri.For. Met. 40(4): 323-342.

DeMoranville C., Sandler, H., Bicki T., 1996. Best management practices guide for Massachusetts cranberry production. University of Massachusetts, Cranberry Experiment Station.

DeMoranville C.J., Davenport J.R., Patten K., Roper T.R., Strik B.C., Vorsa N. et Poole A.P., 1996. Fruit mass development in three cranberry cultivars and five production regions. J. Am. Soc. Hort. Sci. 121(4): 680- 685.

DeMoranville C.J., Sandler H.A., Caruso F.L., 2001. Planting New Cranberry Beds. U.Mass. Amherst Cranberry Sta. Ext. Publ., East Wareham, MA.

66

DeMoranville C.J., Sandler H.A., Shumaker D.E., Averill A.L., Caruso F.L., Sylvia M.M., Pober D.M., 2005. Fall flooding for management of cranberry fruitworm (Acrobasis vaccinii) and dewberry (Rubus hispidus) in Massachusetts cranberry production. Crop production. 24(11): 999–1006.

DeMoranville, C.J., 1998. Flood Management, p,35-39 In : Sandler H.A. (ed.) Cranberry production – A guide for Massachusetts. Univ. Mass. Ext. Publ. SP-127.

Drew M.C., 1990. Sensing soil oxygen. Plant Cell Environ 13: 681–693.

Eady F.C., Eaton G.W., 1972. Effects of chilling during dormancy on development of the terminal bud of the cranberry. Can. J. Pht. Sci. 52: 273-279.

Eaton G. W., Kyte T. R., 1978. Yield component analysis in the cranberry. J. Am. Soc. Hort. Sci. 03: 578-583. Eck P., 1976. Cranberry growth and production in relation to water table depth. J. Am. Soc. Hort. Sci. 101(5): 544-546.

Eck, P., 1990. The american cranberry. Rütgers University Press, New Brunswick, NJ. p. 420.

Faraq, K.M. and Palta J.P., 1989. Ultrastructure and surface morphology of cranberry plant with reference to ethrel penetration. Acta Hort. 4th Intl. Symp. Vaccinium Cult., Lansing, Mich., 13–17 Aug. 1988. p. 378–384 Flocker W.J., Vomocil J.A., Howard F.D., 1959. Some growth responses of tomatoes to soil compaction. Soil Sci. Soc. Am. Proc. 23: 188-191.

Franklin H.J., 1951. Cranberry insects in Massachusetts, Parts II–VII, Bull. No. 445. Mass. Agr. Expt. Sta., East Wareham, MA. 188p.

Franklin, H.J., Bergman, H.F., Stevens, N.E. (Eds.), Weather in cranberry culture. Bull. No. 402, Mass. Agr. Expt. Sta., East Wareham, MA, pp. 3–24.Brown A.O. et McNeil J.N., 2006. Fruit production in cranberry (Ericaceae: Vaccinium macrocarpon) : a bet-hedging strategy to optimize reproductive effort. Am. J. Bot. 93 (6): 910-916.

Freijer J.I., Leffelaar P.A., 1996. Adapted Fick’s law applied to soil respiration. Water Resources Research. 32(4): 791-800.

Gifford, R.M., J.H. Thorne, Hitz W.D.. Giaquinta R.T., 1984. Crop productivity and photoassimilate partitioning. Science, 225(4664):801-808.

Gliński J., Stępniewski W., 1985. Soil aeration and its role for plants, CRC press, Boca Raton, FL. (É.-U.). Goetz P., Ghedira K., 2012. Phytothérapie anti-infectieuse. Springer-Verlag, France, Paris.

Grable A.R., 1966. Soil aeration and plant growth. Adv. Agron. 18:57-106.

Greenwood D.J., 1961. The effect of oxygen concentration on the decomposition of organic materials in soil. Plant Soil. 14(4): 360-376.

67 Hagidimitriou M., Roper T.R., 1995. Seasonal changes in CO2 assimilation of cranberry leaves. Sci. Hort. 64 (4): 283-292.

Hattendorf M.J., Davenport J.R., 1996. Cranberry evapotranspiration. HortScience, 31(3) : 334-337.

Hawker G.M., Stang E.J., 1985. Characterizing vegetative growth and fruit development in cranberry (Vaccinium macrocarpon, Ait.) by thermal summation. Acta Hort., 165: 311-324.

Howell A.B., Vorsa N., Marderosian A.D., Foo L.Y., 1998. Inhibition of the adherence of P.fimbriated Escherichia coli to urothelial surfaces by proanthocyanidin extracts from cranberries. N. Engl. J. Med., 339(15): 1085-6.

Jackson M.B., Gales K., Campbell D.J.,1978. Effect of waterlogged soil conditions on the production of ethylene and on the water relationships in tomato plants. J. Exp. Bot. 29: 183-193.

Jaynes, D.B., Rogowski A.S., 1983. Applicability of Fick's law to gas diffusion, Soil Sci. Soc. Am. J., 47, 425- 430.

Jones H.J. 1983. Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, New York, É.-U.

Jordan M-O., 1987. Mise en place du système racinaire du maïs. II. - Importance de quelques paramètres relatifs aux conditions de milieu. Agronomie, EDP Sciences. 7(7) : 457-465.

Jury, W.A., R. Horton., 2004. Soil Physics. 6th. John Wiley & Sons, inc., New York. 370. Keen B. A., 1931. The physical properties of soil. Longmans Green and Co., London. Kirkham, D., Powers, W.L., 1972. Advanced Soil Physics. Wiley: New York.

Kirkham, M.B., 1994. Streamlines for diffusive flow in vertical and surface tillage: a model study. Soil. Sci. Soc. Am. J. 58(1): 85-93.

Kohnke W., 1968. Soil physics. McGraw-Hill Book Co. N.Y. 347p.

Kozlowski T.T., Pallardy S.G., 1984. Effect of flooding on water, carbohydrate, and mineral relations. In T.T. Kozlowski, ed, Flooding and Plant Growth. Academic Press, New York, pp 165-193.

Kumudini, S., 2004. Effect of radiation and temperature on cranberry photosynthesis and characterization of the diurnal change in photosynthesis. J. Am. Soc. Hort. Sci. 129(1):106-11.

Lafond J.A., Allaire S.E., Dutilleul P., Pelletier B., Lange S.F., Cambouris A.N., 2011. Spatiotemporal analysis of the relative soil gaz diffusion coefficient in two sandy soils: Variability decomposition and correlations between sampling dates at two spatial scales. Soil. Sci. Soc. Am. J. 75(5) : 1613-1625.

Lefebvre, R., 1994. Caractérisation et modélisation numérique du drainage minier acide dans les haldes de stériles. Thèse Ph.D., Université de Laval.

68

Lefebvre, R., Hockley, D., Smolensky J., Gélinas, P., 2001. Multiphase transfer process in waste rock piles producing acid mine drainage. 1. Conceptual model and system characterization. J. Contaminant Hydrol. 52: 137-164.

Leffelaar, P. A., 1987. Dynamic simulation of multinary diffusion problems related to soil, Soil Sc. 143, 79-91. LI-COR, 2004. Using the LI-6400: Portable photosynthesis system version. LI-COR . Biosciences Inc., Lincoln, Nebraska, É.-U.

Lowe F.C., Fagelman E., 2001. Cranberry juice and urinary tract infections: what is the evidence. Urology 57(3): 407-13.

Luxmoore R.J., Stolzy L.H., 1972. Oxygen consumption rates predicted from respiration, permeability and porosity measurements on excised root segments. Crop Sci. 12: 442-445.

Marucci, P.E., 1966. Cranberry pollination. Cranberries 30:11-13.

Medappa K.C., Dana M.N., 1970. The influence of pH, CA, P and Fe on the growth and composition of the cranberry plant. Soil Science. 109(4): 250-253.

Mermoud A. ,2006. Professeur à l’école polytechnique de Lausanne. Cours de physique du sol, aération du sol. Consultable.

http://echo.epfl.ch/files/content/sites/echo/files/shared/PDF/07%C3%A9ration%20du%20sol,%20R%C3%A9gi me%20de%20l%27eau%20au%20champ.pdf

Millington, R. J., J. M. Quirk, 1961. Permeability of porous solids. Trans. Faraday Soc. 57:1200-1207. Moldrup P., Olesen T., Yoshikawa S., Komatsu T., Rolston D.E., 2004 Three-porosity model for predicting the gas diffusion coefficient in undisturbed soil. Soil Sci. Soc. Am. J. 68:750-759.

Monk L.S., Fagerstedt K.V., Crawford R.M.M., 1987. Superoxide dismutase as an anaerobic polypeptide. A key factor in recovery from oxygen deprivation in Iris pseudacorus. Plant Physiol. 85: 1016–1020.

Moon J.W. Jr., Flore J.A., 1985. A Basic computer program for calculation of photosynthesis, stomatal conductance, and related parameters in an open gas exchange system. Photosynth Res. 7(3): 269-279. Naasz R., 2005. Flux couplés d’eau et d’oxygène dans les supports de cultures organiques : Analyse et modélisation. Thèse de Doctorat, Institut National d’Horticulture d’Angers, France.

Naasz, R., Michel, J.C., Charpentier, S., 2005. Measuring hysteretic hydraulic properties of peat and pine bark using a transient method. Soil Sci. Soc. Am. J., 69, 13-22.

Oudemans P.V., 1999. Phytophthora Species Associated with Cranberry Root Rot and Surface Irrigation Water in New Jersey. Am. Phyto. Soc. 83(3): 251-258.

Ouyang Y., Boersma L., 1992. Dynamic oxygen and carbon dioxide exchange between soil and atmosphere: I. Model development. Am. Soc Agr. 56(6): 1695-1702.

69 Papas P.N., Brusch C.A., Ceresia G.C., 1966. Cranberry juice in the treatment of urinary tract infections. S.W. Med., 47(1): 17-20.

Parker J., 1950. The effects of flooding on the transpiration and survival of some southeastern forest tree species. Plant Physiol. 25: 453-460.

Parr J.F., Reuszer H.W., 1959. Organic matter decomposition as influenced by oxygen level and method of application to soil. Soil Sci. Soc. Am. Proc. 23,214.

Pascal E., 2006. La canneberge : une nouvelle arme naturelle contre les caries et les parodontites. Le Monde Dentaire, n° 8: 17-9.

Pelletier V., Gallichand J., Caron J., 2013. Effect of soil water potential threshold for irrigation on cranberry yield and water productivity. Trans. Am. Soc. Agric. Bio. Eng., 56(6): 1325-1332.

Pelletier V., Gallichand J., Caron J., Jutras J, Marchand S., 2015. Critical irrigation threshold and cranberry yield components. Agric. Water Manage. 148: 106–112.

Penman, H.L., 1940. Gas and vapor movement in soil. I. J Ago Sci., 30(3): 437-462.

Periera J.S., Kozlowski T.T., 1977. Variations among woody angiosperms in response to flooding. Physiol. Plant. 41(3): 184-192.

Peuke A.D., Jeschke W.D., 1993. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. I. Grown with ammonium or nitrate as nitrogen source. J. Exp. Bot. 44: 1167–1176.

Peuke A.D., Gessler A., Trumbore S., Windt C.W., Homan N., Gerkema E., Van As H., 2014. Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots. Plant, Cell and Env. John Wiley & Sons Ltd. doi 10.1111pce.12399

Phene, C.J., 1986. Oxygen electrode measurement in the soil. In Methods of Soil Analysis. Part 1. Physical and mineralogical Methods (Klute A.,Ed) 2nd ed., pp. 1137-1159. Am. Soc. Agr., Soil Sci. Soc. Am.: Madison, Wisconsin.

Phung H.T., Knipling E.B., 1976 Photosynthesis and transpiration of Citrus seedlings under flooded conditions. HortScience. 11: 131-133.

Reddy K. R., Patrick W.H., 1983. Effects of aeration on reactivity and mobility of soil constituents in chemical mobility and reactivity in soil systems. Ed. Nelson, Darrell W. p. 11–33.

Regehr D.L. Bazzaz F.A., Boggess W.R., 1975. Photosynthesis, transpiration and leaf conductance of Populus deltoides in relation to floodingand drought.Photosynthetica. 9: 52-61.

Renault, P., Sierra, J., 1994. Modelling oxygen diffusion in aggregated soils. II. Anaerobiosis in topsoil layers. Soil Sci. Soc. Am. L. 58: 1023-1030.

70

Renault P., Parry S., Sierra J., Bidel L., 1997. Les transferts de gaz dans les sols, implications environnementales et agronomiques. Courrier de l’environnement de l’INRA No. 32.

Renault P., Mohrath D., Gaudu J-C., Fumanal J-C., 1998. Air pressure fluctuations in a prairie soil. Soil Sc. Soc. Am. J. 62 : 553-563.

Rioux, J.A., 1995. Comment nos plantes rustiques réussissent-elles à survivre aux conditions hivernales rigoureuses du Québec. L'hivernage des plantes ligneuses et des vivaces ornementales, IQDHO, Trois- Rivières, Québec, Canada, p.287.

Roberts R.H., Struckmeyer B.E., 1942. Growth and fruiting of the cranberry. Proc. Am. Soc. Hort. Sci. 40 :373-379.

Rommell L. G., 1922. Luftväxlinger I marken som ekologisk factor. Meddel. Statens Skogsförsöksanst. 19: 125-359.

Roper T.R., Patten K.D., DeMoranville C.J., Davenport J.R., Strik B.C., Poole A.P., 1993. Fruiting of cranberry uprights reduces fruiting the following year. HortScience. 28(3): 228.

Roper, T.R., Vorsa N., 1997. Cranberry: Botany and Horticulture. Hort. Rev. 21:215–249.

Sawyer, W.H., 1932. Stomatal apparatus of the cultivated cranberry, Vaccinium macrocarpon. Am. J. Bot. 19:508–513

Schlüter U., Crawford M.M., 2003. Metabolic adaptation to prolonged anoxia in leaves of American cranberry (Vaccinium macrocarpon). Physiol. Plant. 117: 492-499.

Scorza, R., Welker W.V., 1988. Cranberries (Vaccinium macrocarpon Ait.). Biotechnology in agriculture and forestry, 6, pp. 199-207.

Shabala S., 2011. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phyto. 190, 289–298.

Shawa, A.Y., Shanks C.H., Bristow P.R., Shearer M.N., Poole A.P., 1984. Cranberry production in the pacific northwest. Bulletin n°PNW247, Cooperative of Washington State University, Septembre.

Stephenson, A.G., 1981. Flower and fruit abortion: proximate causes and ultimate functions. Annu. Rev. Ecol. Syst. 12:253-279.

Stolzy, L.H., Catlin P.B., 1964. III. Correlation of plant response to soil oxygen diffusion rates. Hilgardia, 35: 567-576.

Stothers L., 2002. A randomized trial to evaluate effectiveness and cost effectiveness of naturopathic cranberry products as prophylaxis against urinary tract infection in women. Can J Urol. 9(3): 1558-62.

Strik, B.C., Roper T.R., DeMoranville C.J., Davenport J.R., Poole A.P., 1991. Cultivar and growing region influence return bloom in cranberry uprights. HortScience. 26(11): 1366-1367.

71 Tackett J.L. Pearson R.W., 1964. Effect of carbone dioxide on cotton seedling root penetration of compacted soil cores. Soil Sci. Soc. Am. Proc. 28,741.

Taylor, S.A. 1965. Managing irrigation water on the farm. ASAE., 8: 433–435.

Thomson C.J., Atwell B.J., Greenway H., 1989. Response of wheat seedlings to low O2 concentrations in nutrients solution. I. Growth, O2 uptake and synthesis of fermentive end products by root segments. J. Exp. Bot. 40: 985-991.

Thorstenson, D.C., Pollock D. P., 1989. Gas transport in unsaturated zones: Multicomponent systems and the adequacy of Fick's law, Water Resour. Res., 25, 477-507.

Valles V., 2010. Notes de cours. Professeur Université d’Avignon et des Pays du Vaucluse, Vaucluse, France. Van Brakel, J., Heertjes P.M., 1974. Analysis of diffusion in macro-porous media in terms of a porosity, a tortuosity and a constrictivity factor, Int. J. Heat Mass Transfer. 17, 1093-1103.

Vinson J.A., Bose P., Su M., 2001. Cranberry: a fruit unusually rich in antioxidants. Faseb J. 15(4): A287– A287.

Visser E.J.W., Nabben R.H.M., Bloom C.W.P.M., Voesenek L.A.C.J., 1997. Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant. Cell and Environment. 20: 647-653.

Weast, R.C., 1964. Handbook of Chemistry and Physics. Chemical Rubber Co. Cleveland, Ohio.

Wesseling, J., Van Wijk W.R., 1957. Soil physical conditions in relation to drain depth. In Drainage of agrocultural lands (Luthin J.N., Ed.). Am. Soc. Agr. 461-504.

Wong S.C., Cowan I.R., Farquhar G.D., 1979. Stomatal conductance correlates with photosynthetic capacity. Nature. 282: 424-426.

Wright C.J., 1989. Interactions between vegetative and reproductive growth. Manipulation of fruiting. Butterworths, London. p.15-27.

73

ANNEXE 1 : Conversion des concentrations en

Documents relatifs