• Aucun résultat trouvé

E. Méthodes basées sur la transformée en ondelette

1.5 Conclusion

Ce chapitre a été consacré à la description de l’algorithme proposé. Il est basé essentiellement sur les méthodes dérivatives et un indicateur lié aux surfaces des ondes P et T. En effet, les méthodes dérivatives sont utilisées pour la détection du complexe QRS tandis que l’indicateur a été exploité dans la détection des deux autres ondes. L’algorithme proposé a montré une bonne sensibilité et une bonne prédictibilité. En plus, l’utilisation des méthodes dérivatives le rend adéquat dans les applications temps réel. Cet algorithme sera utilisé pour détecter et extraire les différents paramètres d’intérêt clinique tel que le signal de la variabilité du rythme cardiaque.

Analyse non linéaire des différents intervalles du signal ECG en vue d’une reconnaissance de signatures de pathologies cardiaques

34

Figure 1.10 Séparation de l’onde P et T

Référence

1. M. Vitek , J. Hrubes , J. Kozumplik A wavelet-based ECG delineation in multi-lead ECG Signals : evaluation on the CSE database, in: IFMBE Proc 25, 2009, pp. 177-180

2. . A. Ghaffari , M. Homaeinezhad , M. Khazraee , M. Daevaeiha Segmentation of Holter ECG waves via analysis of a discrete wavelet-derived multiple skewness-kurtosis based Metric, Ann Biomed Eng, 38(2010) 1497-1510. 3. P. Saurabh , M. Madhuchhanda Detection of ECG characteristic points using

multiresolution wavelet analysis based selective coefficient method, Measurement, 43 (2009) 255-261.

4. J. M. Gorriz,J. Rmirez, A. Olivares,P. Padilla,C. G. Ountonet,M. Canton,Laguna P, Real time QRS detection based on M-ry likehood ratio test on DFT coefficient, PloS one 9 (2014)e110629.

5. R. Almeida, H. Gonçalves,J. Bernardes, A. P. Rocha, Fetal QRS detection and heart rate estimation : a wavelet based approach,35(2014)1723-1735.

6. M.F. Chimeno, R. Pallàs-Areny, A comprehensive model for power line interference in biopotential measurements, IEEE transactions on biomedical engineering, 49 (2000)535-540.

7. V. Alste, T.S. Schilder, Removal of baseline wander and power-line interference from ECG signal by an efficient FIR filter with reduced number of taps, IEEE transactions on biomedical Engineering, , 32 (1985) 1052-1060. 8. N.V. Thakor, Y.S. Zhu, Application of adaptive filtering to ECG analysis:

noise cancellation and arrhythmia detection, IEEE transactions on biomedical Engineering, 38 (1991) 785-194.

9. H.C. Ching, M.C. Kang, J.K. Hsien, Cancellation of high frequency noise in ECG signal using adaptive filter without external reference, in: Third IEEE international conference on biomedical engineering and informatics, 2010. 10. M. Kotas, application of projection pursuit based robust principal component

analysis to ECG enhancement, Biomedical signal processing and control, 1 (2006) 289-298.

11. S. Wang, J. Shengtao, Removal of power-line interference of ECG signal based on independent component analysis to separate noise from electrocardiogram signal, in: IEEE international conference on Engineering and Intelligent Systems, 2006, pp. 1-5.

12. S. Paul Addison, Wavelet transforms and the ECG: a review, Physiological Measurement, 26 (2005) 155-199.

13. S. Poornachandra, N. Kumaravel, Hyper-trim shrinkage for denoising of ECG signal, Journal of digital signal processing, 15 (2005) 315-327.

14. L.N. Sharma, S. Dandapat, A. Mahanta, Multi-scale wavelet energies and relative energy based on denoising of ECG signal, in: IEEE international

Analyse non linéaire des différents intervalles du signal ECG en vue d’une reconnaissance de signatures de pathologies cardiaques

36

conference of communication control and computer technologies, 2010. 15. S.A. Taouli , F. Bereksi-Reguig, Noise and baseline wandering suppression of

ECG signals by morphological filter, Journal of Medical Engineering & Technology, 34 (2010) 87–96.

16. K.-M. Chang, Ensemble empirical mode decomposition based ECG noise filtering method, in: IEEE International Conference on Machine Learning and Cybernetics (ICMLC), 2010, pp. 210 – 213.

17. N. Dib, analyse des intervalles du signal ECG en vue d’une reconnaissance des signatures des pathologies cardiaques, in, Tlemcen university, 2009.

18. D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation via wavelet shrinkage, in: Technical report, department of statistics, Stanford University, 1992. 19. S. Poornachandra, Wavelet based denoising using subband dependent

threshold for ECG signals, Digital signal processing, 18 (2008) 49-55. 20. G. Garg, V. Singh, J.R.P. Gupta, A.P. Mittal, Optimal algorithm for ECG

denoising using discrete wavelet transforms, (2010).

21. B.N. Singh, A.K. Tiwari, Optimal selection of wavelet basis function applied to ECG signal denoising, digital signal processing, 16 (2006) 275-287. 22. E. Derya Ubeyli Detecting variabilities of ECG signals by Lyapunov

exponents, Neural Comput & Applic, (2009) 653–662.

23. N. Dib, F. Bereksi-Reguig, Algorithm for automatic detection of ECG waves, Journal of Mechanics in Medecine and biology, 11 (2011) 15-29.

24. L. Senhadji, F. Wang, A.I. Hernandez, G. Carrault, Wavelets extrema representation for QRS-T cancellation and P wave detection, Computers in Cardiology, (2002) 37-40.

25. J. P. Madeiro,P. C. Cortez,C. R. Seisdedos, C. R. Sobrinho, An innovation approach of QRS segmentation based on the first derivative, Hilbert and wavelet transform,Med. Eng. Phys.,34(2012) 1236-1246

26. I. Serra Image analysis and mathematical morphology, New York academic, 1982.

27. Y. Sun, K. Chan, S. M. Krishnan, ECG signal conditioning by morphological filter, Comput. Bio. Med., 32(2002) 465-479.

28. P.E. Trahanias, An approach to QRS complex detection using mathematical morphology, IEEE Transaction of biomedical engineering, 40 (1993).

29. F. Zhang, Y. lian, electrocardiogram QRS detection using multiscale filtering based on mathematical morphology, in: proceeding of the 29th annual international conference of IEEE EMBS, 2007.

30. F. Zhang , Y. Lian, QRS Detection Based on Morphological Filter and Energy Envelope for Applications in Body Sensor Networks, Journal of Signal Processing System, 64 (2011) 187–194.

31. Z. Yang, Z. Pu , Z. Qi Novel edge preserving multiscale filtering method based on mathematical morphology, in: Proceeding of the second international conference on machine learning and cybernetics, 2003, pp. 2970-2975. 32. Y. Sun, K.L. Chan, S.M. Krishnan, Characteristic wave detection in ECG

signal using morphological transform, Computer in biology and medicine, (2005) 5-38.

filtering method, in: IEEE International Conference on Machine Learning and Cybernetics (ICMLC), 2010, pp. 210 – 213,.

34. A. Chacko, S. Ari, Denoising of ECG signals using Empirical Mode Decomposition based technique, in: IEEE International Conference on Advances in Engineering, Science and Management (ICAESM), 2012, pp. 6-9. 35. A. Dliou, R. Latif, M. Laaboubi, F. Maoulainine, S. Elouaham, Noised abnormal ECG signal analysis by combining EMD and Choi-Williams techniques, in: International Conference on Complex Systems (ICCS), 2012, pp. 1- 5.

36. J. Jenitta, A. Rajeswari, Denoising of ECG signal based on improved adaptive filter with EMD and EEMD, in: IEEE Conference on Information & Communication Technologies (ICT), 2013, pp. 957 – 962.

37. Z.E. Hadj Slimane, A. Naït Ali, QRS complex detection using Empirical Mode Decomposition, Digital signal processing, 20 (2010) 1221-1228.

38. P. Saurabh , M. Madhuchhanda, QRS complex detection using empirical mode decomposition based windowing technique, in: International Conference on Signal Processing and Communications (SPCOM), 2010, pp. 1-5.

39. C. Liu, P. Li, Y. Zhang, Y. Zhang, C. Liu, Shoushui Wei A Construction Method of Personalized ECG Template and Its Application in Premature Ventricular Contraction Recognition for ECG Mobile Phones, in: IFMBE (Ed.) World Congress on Medical Physics and Biomedical Engineering, 2013, pp. 585-588.

40. Y. Min,Y. R. Kang,G. S. Kim,J. Park,S. W. Kim, Design of wavelet based ECG detector for implanted cardiac pacemakers, IEEE Trans. Biomed. Circuits syst., 7(2013) 426-436.

41. K. Chan, H. So, Development of QRS method for real-time ambulatory cardiac monitor, in: 19 Annual of International Conference IEEE EMBS, 1997, pp. 289–292.

42. Q. Zhang , M. Alfredo Illanes , M. Claire , P. Yves , S. Michel An algorithm for robust and efficient location of T-wave ends in electrocardiogra, in: Irisa (Ed.) Publication Interne 1744, 2005.

43. Moody G, Mark R, MIT-BIH arrhythmia database directory, Harvard MIT Division of Health Sciences and Technology, Biomedical Engineering Center, 1997.

44. H. Dinh, D. Kumer, N. Pah, B. Burton, Wavelets for QRS detection, in: The 23rd Annual EMBS International Conference, 2001.

45. G. Peng Qiu, K. Ray Lui, A robustic method for QRS detection based on modified P-spectrum, in: IEEE (Ed.) Acoustics, Speech and Signal Processing,501–504.

Documents relatifs