• Aucun résultat trouvé

Chapitre I : Etude bibliographique sur les capteurs à CO2

C. Les configurations coplanaires

IV. Conclusion

Ces rappels bibliographiques nous montrent l’étendue des recherches déjà effectuées sur les capteurs potentiométriques. Le développement de capteurs potentiométriques « ouverts » tout solide semble le plus prometteur.

Les électrodes sensibles à base de carbonate de sodium présente l’avantage d’une importante conductivité à haute température et de réagir avec le dioxyde de carbone indépendamment de la pression partielle d’oxygène. Ces aspects certes connus ne sont jamais vérifiés dans la réalisation d’une électrode sensible.

Les mélanges d’oxydes permettent l’élaboration d’une électrode de référence sensible à la pression partielle d’oxygène pour les capteurs «ouverts ». Cependant, l’influence de la composition de ces électrodes n’a pas encore fait l’objet d’une étude approfondie.

Les études physiques et électriques des matériaux de nos capteurs potentiométriques « ouverts » à CO2 permettront d’optimiser les paramètres de travail et les performances de chaque composant (électrode de travail, électrode de référence et électrolyte). Cela nous amènera à proposer des capteurs planaires.

Références bibliographiques

[1] J. W. Severinghaus, M. Stafford, A. F. Bradley, "Electrodes for blood pO2 and pCO2 determination", J. Appl. Physiol., 13, (1958), 515-520.

[2] M. Gauthier, A. Chamberland, "Solid-state detectors for the potentiometric determination of gaseous oxide", J. Electrochem. Soc., 124, (1977), 1579-1583.

[3] T. Ogata, S. Fujitsu, K. Koumoto, H. Yamagida, "CO2 gas sensor using β-Al2O3 and metal carbonate", J. Mater.Sci. Letters, 5, (1986), 285-286.

[4] T. Maruyama, X. Y. Ye, Y. Saito, "Electromotice force of a CO-CO2 sensor in CO-CO2-H2-H2O atmospheres and simultaneous determination of partial pressures of CO and CO2",

Solid State Ionics, 24, (1987), 281-287.

[5] T. Maruyama, S. Sasaki, Y. Saito, "Potentiometric gas sensor for carbon dioxide using solid electrolytes", Solid State Ionics, 23, (1987), 107-112.

[6] Y. Saito, T. Maruyama, "Recent developments of the sensors for carbon oxides using solid electrolytes", Solid State Ionics, 28-30, (1988), 1644-1647.

[7] W. Weppner, "Solid-state electrochemical gas sensor", Sensors and Actuators B, 12, (1987), 107-119.

[8] P. Fabry, E. Siebert, "Electrochemical sensors (chap. X)", CRC Handbook of Solid State

Electrochemistry, CRC press, P.J. Gellings and H.M.J. Bouwmeester, (1997), 3/29-23/69.

[9] J. Liu, W. Weppner, "θ-sensors: a new concept for advance solid state ionic gas sensors",

Appl. Phys. A, 55, (1992), 255-257.

[10] N. Miura, S. Yao, M. Sato, Y. Shimizu, S. Kuwata, N. Yamazoe, "Carbon dioxide sensor using combination of fluoride ion conductor and metal carbonate", Chem. Lett., (1993), 1973-1976.

[11] T. Maruyama, X. Ye, Y. Saito, "Electromotive force of the CO-CO2-O2 concentration cell using Na2CO3 as a solid electrolyte at low oxtgen partial pressures", Solid State Ionics, 23, (1987), 113-117.

[12] A. Dubbe, M. Wake, Y. Sadaoka, "Yttria/carbonate composite solid electrolytes for potentiometric CO2 sensors", Solid State Ionics, 96, (1997), 201-208.

[13] S. Yao, Y. Shimizu, N. Miura, Y. N., "Solid electrolyte carbon dioxide sensor using binary carbonate electrode", Chem. Lett., 11, (1990), 2033-2036.

[14] N. Miura, S. Yao, Y. Shimizu, N. Yamazoe, "Carbon dioxide sensor using sodium ion conductor and binary carbonate auxiliary electrode", J. Electrochem. Soc., 139, (1992), 1384-1388.

[15] N. Miura, S. Yao, Y. Shimizu, N. Yamazoe, "High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode", Sensors and Actuators B, 9, (1992), 165-170.

[16] N. Imanaka, T. Kawasato, G. Adachi, "A carbon dioxide gas sensor probe based on a lithium ionic conductor", Chem. Lett., (1990), 497-500.

[17] N. Imanaka, T. Murata, T. Kawasato, G. Adachi, "The operating temperature lowering for CO2 sensor using NASICON and Li-based binary carbonate electrode", Chem. Lett., (1992), 103-106.

[18] N. Imanaka, T. Murata, T. Kawasato, G.-y. Adachi, "CO2 detection with lithium solid electrolyte sensors", Sensors and Actuators B, 13, (1993), 476-479.

[19] S. Yao, Y. Shimizu, N. Miura, N. Yamazoe, "Solid electrolyte carbon dioxide sensor using sodium ionic conductor and lithium carbonate-based auxiliary electrode", Appl. Phys. A, 57, (1993), 25-29.

[20] D. D. Lee, S. D. Choi, K. W. Lee, "Carbon dioxide sensor using NASICON prepared by the sol-gel method", Sensors and Actuators B, 24-25, (1995), 607-609.

[21] S. Yao, S. Hosohara, Y. Shimizu, N. Miura, H. Futata, N. Yamazoe, "Solid electrolyte CO2 sensor using NASICON and Li+-based binary carbonate electrode", Chem. Lett., (1991), 2069-2072.

[22] K. Shimanoe, H. Kawate, N. Miura, N. Yamazoe, "Interface structure of CO2 sensing devices using Li2CO3-CaCO3/NASICON junction", Chemical sensors, (1998), 14.

[23] H. Futata, K. Ogino, "A study of heating-up characteristics of solid-electrolyte type CO2 sensors", Sensors and Actuators B, 52, (1998), 112-118.

[24] T. Kida, H. Kawate, K. Shimanoe, N. Miura, N. Yamazoe, "Interfacial structure of NASICON-based sensor attached with Li2CO3-CaCO3 auxiliary phase for detection of CO2",

Solid State Ionics, 136-137, (2000), 647-653.

[25] T. Kida, Y. Miyachi, K. Shimanoe, N. Yamazoe, "NASICON thick film-based CO2 sensor prepared by a sol-gel method", Sensors and Actuators B, 80, (2001), 28-32.

[26] T. Kida, K. Shimanoe, N. Miura, N. Yamazoe, "Stability of NASICON-based CO2 sensor under humid conditions at low temperature", Sensors and Actuators B, 75, (2001), 179-187.

[27] P. Pasierb, S. Komornicki, R. Gajerski, S. Kozinski, M. Rekas, "The performance and long-time stability of potentiometric CO2 gas sensors based on the (Li-Ba)CO3|NASICON|(Na-Ti-O) electrochemical cells", Solid State Ionics, 157, (2003), 357-363.

[28] P. Pasierb, S. Komornicki, S. Kozinski, R. Gajerski, M. Rekas, "Long-term stability of potentiometric CO2 sensors based on Nasicon as a solid electrolyte", Sensors and Actuators B, 101, (2004), 47-56.

[29] Y. Sadaoka, "Solid-state electrochemical CO2 gas sensor using zircon-based sodium ionic conductors", J. Mat. Sci., 28, (1993), 5783-5792.

[30] J. Liu, W. Weppner, "Beta-alumina solid electrolytes for solid state electrochemical CO2 gas sensors ", Solid State Comm., 76, (1990), 311-313.

[31] H. Schettler, J. Liu, H. R.A., "Investigation of solid sodium reference electrodes for solid-state electrochemical gas sensors", Appl. Phys. A, 57, (1993), 31-35.

[32] M. Holzinger, J. Maier, W. Sitte, "Potentiometric detection of complex gases: Application to CO2", Solid State Ionics, 94, (1997), 217-225.

[33] J. Maier, U. Warhus, "Thermodynamic investigations of Na2ZrO3 by electrochemical means", J. Chem. Thermodynamics, 18, (1986), 309-316.

[34] J. Maier, "Electrical sensing of complex gaseous species by making use of acid-base properties", Solid State Ionics, 62, (1993), 105-111.

[35] M. Holzinger, J. Maier, W. Sitte, "Fast CO2-selective potentiometric sensor with open reference electrode", Solid State Ionics, 86-88, (1996), 1055-1062.

[36] L. Wang, R. V. Kumar, "A novel carbon dioxide gas sensor based on solid bielectrolyte",

Sensors and Actuators B, 88, (2003), 292-299.

[37] N. Imanaka, M. Kamikawa, S. Tamura, G. Adachi, "CO2 sensor based on the combination of trivalent Sc3+ ion-conducting Sc2(WO4)3 and O2- ion conducting stabilized zirconia solid electrolytes", Electrochemical and solid-state letters, 2, (1999), 602-604.

[38] Y. Sadaoka, S. Nakayama, Y. Sakai, M. Wake, "Preparation of K2O---Sm2O3---nSiO2-based solid-state electrolyte and its application to electrochemical CO2 gas sensor", Sensors

and Actuators B, 24, (1995), 282-286.

[39] Y. Shimamoto, T. Okamoto, H. Aono, L. Montanaro, Y. Sadaoka, "Deterioration phenomena of electrochemical CO2 sensor with Pt, Na2CO3/Na2O-Al2O3-4SiO2//YSZ/Pt structure", Sensors and Actuators B, 99, (2004), 141-148.

[40] Y. Shimamoto, T. Okamoto, Y. Itagaki, H. Aono, Y. Sadaoka, "Performance and stability of potentiometric CO2 gas sensor based on the Pt, Li2CO3/Na2O-Al2O3-4SiO2//YSZ/Pt electrochemical cell", Sensors and Actuators B, 99, (2004), 113-117.

[41] S. Yao, Y. Shimizu, N. Miura, N. Yamazoe, "Solid electrolyte carbon dioxide sensor using sodium-ion conductor and Li2CO3-BaCO3 electrode", Jpn. J. Appl. Phys., 31, (1992), L197-L199.

[42] V. Leonhard, D. Fischer, H. Erdmann, M. Ilgenstein, H. Köppen, "Comparison of thin- and thick-film CO2 sensors", Sensors and Actuators B, 13-14, (1993), 530-531.

[43] Y. Sadaoka, Y. Sakai, T. Manabe, "Detection of CO2 using a solid-state electrochemical sensor based on sodium ionic conductors", Sensors and Actuators B, 15, (1993), 166-170. [44] J. Maier, M. Holzinger, W. Sitte, "Fast potentiometric CO2 sensors with open reference electrodes", Solid State Ionics, 74, (1994), 5-9.

[45] N. Miura, Y. Yan, M. Sato, S. Yao, S. Nonaka, Y. Shimizu, N. Yamazoe, "Solid-state potentiometric CO2 sensors using anion conductor and metal carbonate", Sensors and

Actuators B, 24, (1995), 260-265.

[46] N. Miura, Y. Yan, S. Nonaka, N. Yamazoe, "Sensing properties and mechanism of a planar carbon dioxide sensor using magnesia-stabilized zirconia and lithium carbonate auxiliary phase ", J. Mater. Chem., 5, (1995), 1391-1394.

[47] H. Narita, Z. Yi Can, J. Mizusaki, H. Tagawa, "Solid state CO2 sensor using an electrolyte in the system Li2CO3-Li3PO4-Al2O3", Solid State Ionics, 79, (1995), 349-353.

[48] G. M. Kale, A. J. Davidson, D. J. Fray, "Investigation into an improved design of CO2 sensor", Solid State Ionics, 86-88, (1996), 1107-1110.

[49] N. Yamazoe, S. Hosohara, T. Fukuda, K. Isono, N. Miura, "Gas sensing interfaces of solid electrolyte based carbon dioxide sensors attached with metal carbonate", Sensors and

Actuators B, 34, (1996), 361-366.

[50] Y. C. Zhang, H. Tagawa, S. Asakura, J. Mizusaki, H. Narita, "Solid-state electrochemical CO2 sensor by coupling lithium ion conductor (Li2CO3-Li3PO4-Asl2O3) with oxide ion-electron mixed conductor (La0.9Sr0.1MnO3)", Solid State Ionics, 100, (1997), 275-281.

[51] H. Näfe, "On the electrode reaction of the Au|CO2, O2,Me2CO3 (Me = Li, Na, K)| yttria-stabilized zirconia electrode", J. Electrochem. Soc., 144, (1997), 915-922.

[52] F. Salam, P. Birke, W. Weppner, "Solid-state CO2 sensor with Li2CO3-MgO electrolyte and LiMn2O4 as solid reference electrode", Electrochemical and solid-state letters, 4, (1999), 201-204.

[53] K. Singh, P. Ambekar, S. S. Bhoga, "An investigation of Na2CO3-ABO3 (A=Li/K/Ba and B=Nb/Ti) heterogeneous solid electrolyte systems for electrochemical CO2 gas sensor application", Solid State Ionics, 122, (1999), 191-196.

[54] G. He, T. Goto, T. Narushima, Y. Iguchi, "Electrical conductivity of alkaline-earth metal

β-aluminas and their application to a CO2 gas sensor", Solid State Ionics, 121, (1999), 313-319.

[55] Y. Shimizu, N. Yamashita, "Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode", Sensors and Actuators B, 64, (2000), 102-106.

[56] E. Traversa, H. Aono, Y. Sadaoka, L. Montanaro, "Electrical properties of sol-gel processed NASICON having new compositions", Sensors and Actuators B, 65, (2000), 204-208.

[57] H. Näfe, F. Aldinger, "CO2 sensor based on a solid state oxygen concentration cell",

Sensors and Actuators B, 69, (2000), 46-50.

[58] N. Imanaka, N. Kamikawa, S. Tamura, G. Adachi, "Carbon dioxide gas sensor with multivalent cation conducting solid electrolytes", Sensors and Actuators B, 77, (2001), 301-306.

[59] T. Goto, G. He, T. Narushima, Y. Iguchi, "Application of Srβ-alumina solid electrolyte to a CO2 gas sensor", Solid State Ionics, 156, (2003), 329-336.

[60] Y. Miyachi, G. Sakai, K. Shimanoe, N. Yamazoe, "Fabrication of CO2 sensor using NASICON thick film", Sensors and Actuators B, 93, (2003), 250-256.

[61] J. Ramirez-Salgado, P. Fabry, "Study of CO2 electrodes in open devices of potentiometric sensors", Solid State Ionics, 158, (2003), 297-308.

[62] L. Wang, R. V. Kumar, "Thick film CO2 sensors based on Nasicon solid electrolyte",

Solid State Ionics, 158, (2003), 309-315.

[63] S. Baliteau, A.-L. Sauvet, C. Lopez, P. Fabry, "Characterization of a NASICON based potentiometric CO2 sensor", J. Eur. Ceram. Soc., 25, (2005), 2965-2968.

[64] F. Ménil, B. Ould Daddah, P. Tardy, H. Debéda, C. Lucat, "Planar LiSICON-based potentiometric CO2 sensors: influence of the working and reference electrodes relative size on the sensing properties ", Sensors and Actuators B, 107, (2005), 695-707.

[65] F. Qiu, L. Sun, X. Li, M. Hirata, H. Suo, B. Xu, "Static characteristic of planar-type CO2 sensor based on NASICON and with an inner-heater", Sensors and Actuators B, 45, (1997), 233-238.

[66] M.-S. Lee, J.-U. Meyer, "A new process for fabricating CO2-sensing layers based on BaTiO3 and additives", Sensors and Actuators B, 68, (2000), 293-299.

[67] M. Alonso-Porta, R. V. Kumar, "Use of NASICON/Na2CO3 system for measuring CO2",

Sensors and Actuators B, 71, (2000), 173-178.

[68] B. Ould Daddah, "Capteurs potentiométriques de gaz carbonique réalisés en technologie microélectronique hybride "couche épaisse"", (2000), Thèse de l'Université Bordeaux I.

[69] F. Ménil, M. Susbielles, H. Debéda, C. Lucat, P. Tardy, "Evidence of a correlation between the non-linearity of chemical sensors and the asymmetry of their response and recovery curves", Sensors and Actuators B, 106, (2005), 407-423.

Documents relatifs