• Aucun résultat trouvé

L’objectif principal de cette étude était de vérifier les niveaux circulants des sélénoprotéines et du mercure associé dans le plasma d’adultes inuits du Nunavik, chez qui le statut en sélénium et les concentrations du mercure sont élevés. Pour ce faire, une méthode analytique combinant une séparation par chromatographie d’affinité couplée à la spectrométrie de masse à plasma induit avec une quantification par dilution isotopique a été développée. L’application de cette méthode à l’ensemble des échantillons plasmatiques nous a permis de quantifier avec précision les concentrations des sélénoprotéines et d’avoir une meilleure évaluation du statut en sélénium chez les Inuits du Nunavik. De plus, la quantification du signal du mercure associé aux sélénoprotéines nous a permis de vérifier la possibilité d’une interaction entre ces deux entités.

Ainsi, les espèces plasmatiques de sélénoprotéines (GPx3, SelP et SeAlb) ont été séparées et quantifiées dans 852 échantillons. Nos résultats indiquent que le sélénium plasmatique, en moyenne chez les Inuits du Nunavik, est incorporé à plus de 50% dans la SelP alors que le reste est partagé entre les deux autres sélénoprotéines. Cette distribution du sélénium n’était pas différente de celles retrouvées dans d’autres populations dont le statut en sélénium était comparable. Ceci indique que les sélénoprotéines sont maintenues à un équilibre lorsque le statut en sélénium plasmatique est élevé, à l’exception de la SeAlb qui varie selon le statut de la SeMet.

Nous avons pu aussi quantifier le mercure plasmatique qui représentait 15% du mercure total. Ce mercure n’était pas totalement libre dans le plasma et était associé aux pics de sélénoprotéines lors de la séparation chromatographique. Ces résultats suggèrent que le mercure se lie aux sélénoprotéines plasmatiques, probablement par affinité aux groupements sélénols. Toutefois, cette liaison diminue la biodisponibilité du mercure mais ne permet pas de prouver un quelconque antagonisme entre le mercure et les sélénoprotéines.

Les analyses sanguines effectuées nous ont permis de comparer les niveaux sanguins du sélénium avec ceux du plasma. Nous avons été surpris de l’écart existant entre les valeurs sanguines et plasmatiques dans cette population. En effet, nos résultats démontrent que la relation entre le sélénium plasmatique et sanguin était non-linéaire et que le sélénium dans le sang continuait à augmenter alors qu’il atteignait un plateau dans le plasma. Cette observation était semblable à ce qui a été rapporté par Hansen et al en 2004 chez les Inuits du Groenland alors que chez les Brésiliens d’Amazonie, une relation linéaire était observée. Nous pensons que cette différence entre les Inuits et les Brésiliens réside dans l’espèce de sélénium consommée. De ce fait, nous supposons que l’alimentation traditionnelle des Inuits contient une ou plusieurs formes de sélénium qui sont redirigées vers les cellules sanguines où elles sont stockées. De plus, on se basant sur les données de Yamashita, nous supposons aussi que le sélénium dans les cellules sanguines est sous forme de sélénonéine.

Enfin, au terme de cette étude il devient clair de mentionner que pour mieux caractériser le statut en sélénium dans une population comme celle des Inuits du Nunavik, une spéciation dans la fraction cellulaire sanguine s’impose. Cette dernière va nous permettre de mieux comprendre l’effet que peut avoir une alimentation riche en sélénium sur la santé des Inuits et donnera plus de détails quant aux interactions que peut avoir le sélénium avec les différents contaminants environnementaux, principalement le mercure.

57

Références:

[1]. Barceloux, D.G. and D. Barceloux, Selenium. Clinical Toxicology, 1999. 37(2): p. 145-72.

[2]. Nelson, A.A., O.G. Fitzhugh and H.O. Calvery, Liver tumors following cirrhosis caused by selenium in rats. Cancer Research, 1943. 3(4): p. 230-36.

[3]. Schwarz, K. and C.M. Foltz, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society, 1957. 79(12): p. 3292-93.

[4]. Rotruck, J.T., et al., Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973. 179(4073): p. 588-90.

[5]. Flohe, L., W.A. Gunzler and H.H. Schock, Glutathione peroxidase: a selenoenzyme. FEBS Lett, 1973. 32(1): p. 132-34.

[6]. Loscalzo, J., Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med, 2014. 370(18): p. 1756-60.

[7]. Cheng, Y.Y. and P.C. Qian, The effect of selenium-fortified table salt in the prevention of Keshan disease on a population of 1.05 million. Biomed Environ Sci, 1990. 3(4): p. 422-28.

[8]. Rayman, M.P., Selenium and human health. Lancet, 2012. 379(9822): p. 1256-68. [9]. Wen, H. and J. Carignan, Reviews on atmospheric selenium: Emissions, speciation and fate. Atmospheric Environment, 2007. 41(34): p. 7151-65.

[10]. ATSDR Agency For Toxic Substances And Disease Registry, A.G.U.S., Toxicological profiles for selenium. 2003, [http://www.atsdr.cdc.gov/toxprofiles/tp92.pdf Last accessed: December 15, 2014].

[11]. Liu, G., et al., Comparative on causes and accumulation of selenium in the tree- rings ambient high-selenium coal combustion area from Yutangba, Hubei, China. Environ Monit Assess, 2007. 133(1-3): p. 99-103.

[12]. Schutz, D.F. and K.K. Turekian, The investigation of the geographical and vertical distribution of several trace elements in sea water using neutron activation analysis. Geochimica et Cosmochimica Acta, 1965. 29(4): p. 259-313.

[13]. Alexander, J., Chapter 52 - Selenium, in Handbook on the Toxicology of Metals (Fourth Edition). 2015: San Diego. p. 1175-208.

[14]. Gore, F., J. Fawell and J. Bartram, Too much or too little? A review of the conundrum of selenium. J Water Health, 2010. 8(3): p. 405-16.

[15]. WHO, Guidelines for drinking-water quality. 2011, Geneva: World Health Organization. 564.

[16]. Johnson, C.C., F.M. Fordyce and M.P. Rayman, Symposium on 'Geographical and geological influences on nutrition': Factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc Nutr Soc, 2010. 69(1): p. 119- 32.

[17]. Reilly, C. and S.E.L. SpringerLink, Selenium in food and health. 2006, New York. [18]. Floor, G.H. and G. Romà N-Ross, Selenium in volcanic environments: A review. Applied Geochemistry, 2012. 27(3): p. 517-31.

[19]. Brown, K.M. and J.R. Arthur, Selenium, selenoproteins and human health: a review. Public Health Nutr, 2001. 4(2B): p. 593-99.

[20]. Kryukov, G.V., et al., Characterization of mammalian selenoproteomes. Science, 2003. 300(5624): p. 1439-43.

[21]. Bock, A., et al., Selenocysteine: the 21st amino acid. Mol Microbiol, 1991. 5(3): p. 515-20.

[22]. Rayman, M.P., The importance of selenium to human health. The Lancet, 2000. 356(9225): p. 233-41.

[23]. Cone, J.E., et al., Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci U S A, 1976. 73(8): p. 2659-63.

[24]. Labunskyy, V.M., D.L. Hatfield and V.N. Gladyshev, Selenoproteins: molecular pathways and physiological roles. Physiol Rev, 2014. 94(3): p. 739-77.

[25]. Dolph L. Hatfield, I.S.C.T., Selenocysteine tRNA[Ser]Sec isoacceptors as central components in selenoprotein biosynthesis in eukaryotes, in Selenium in Biology and Human Health. 1994, Springer New York. p. 25-44.

[26]. Hatfield, D.L., et al., Selenocysteine incorporation machinery and the role of selenoproteins in development and health. Prog Nucleic Acid Res Mol Biol, 2006. 81: p. 97-142.

[27]. Lee, B.J., et al., Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem, 1989. 264(17): p. 9724-27.

[28]. Xu, X.M., et al., Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol, 2007. 5(1): p. e4.

[29]. Yuan, J., et al., RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A, 2006. 103(50): p. 18923-27.

[30]. Guimaraes, M.J., et al., Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Proc Natl Acad Sci U S A, 1996. 93(26): p. 15086-91.

[31]. Berry, M.J., et al., Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature, 1991. 353(6341): p. 273-76.

[32]. Seeher, S., Y. Mahdi and U. Schweizer, Post-transcriptional control of selenoprotein biosynthesis. Curr Protein Pept Sci, 2012. 13(4): p. 337-46.

[33]. Chavatte, L., B.A. Brown and D.M. Driscoll, Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol, 2005. 12(5): p. 408-16.

[34]. Miniard, A.C., et al., Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression. Nucleic Acids Res, 2010. 38(14): p. 4807-20.

[35]. Budiman, M.E., et al., Eukaryotic initiation factor 4a3 is a selenium-regulated RNA- binding protein that selectively inhibits selenocysteine incorporation. Mol Cell, 2009. 35(4): p. 479-89.

[36]. Schrauzer, G.N., Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr, 2000. 130(7): p. 1653-56.

[37]. Schrauzer, G.N., The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res, 2003. 47: p. 73-112.

[38]. Qawwad, H.K., et al., Se75-selenomethionine incorporation into human plasma proteins and erythrocytes. Metabolism, 1966. 15(7): p. 626-40.

59 [40]. Yamashita, Y., T. Yabu and M. Yamashita, Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J Biol Chem, 2010. 1(5): p. 144-50.

[41]. Yamashita, M., et al., Identification and determination of selenoneine, 2-selenyl-N alpha , N alpha , N alpha -trimethyl-L-histidine, as the major organic selenium in blood cells in a fish-eating population on remote Japanese Islands. Biol Trace Elem Res, 2013. 156(1-3): p. 36-44.

[42]. Cheng, W.H., et al., Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J Nutr, 1997. 127(8): p. 1445-50.

[43]. Lei, X.G., W.H. Cheng and J.P. McClung, Metabolic regulation and function of glutathione peroxidase-1. Annu Rev Nutr, 2007. 27: p. 41-61.

[44]. Weiss, S.S. and R.A. Sunde, Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver. Biochem J, 2001. 357(Pt 3): p. 851-58.

[45]. Cheng, W., et al., Selenium-dependent cellular glutathione peroxidase protects mice against a pro-oxidant-induced oxidation of NADPH, NADH, lipids, and protein. FASEB J, 1999. 13(11): p. 1467-75.

[46]. Ho, Y.S., et al., Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem, 1997. 272(26): p. 16644-51. [47]. D'Autreaux, B. and M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. 2007. 8(10): p. 813-24.

[48]. Lubos, E., J. Loscalzo and D.E. Handy, Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal, 2011. 15(7): p. 1957-97.

[49]. Wingler, K. and R. Brigelius-Flohe, Gastrointestinal glutathione peroxidase. Biofactors, 1999. 10(2-3): p. 245-49.

[50]. Chu, F.F., J.H. Doroshow and R.S. Esworthy, Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx- GI. J Biol Chem, 1993. 268(4): p. 2571-76.

[51]. Florian, S., et al., Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic Res, 2001. 35(6): p. 655-63.

[52]. Yoshimura, S., et al., Tissue specific expression of the plasma glutathione peroxidase gene in rat kidney. J Biochem, 1991. 109(6): p. 918-23.

[53]. Hoffmann, P.R., et al., The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res, 2007. 35(12): p. 3963-73.

[54]. Papp, L.V., et al., From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal, 2007. 9(7): p. 775-806.

[55]. Wolin, M.S., Plasma glutathione peroxidase activity is potentially a key regulator of vascular disease-associated thrombosis. Circulation, 2011. 123(18): p. 1923-24.

[56]. Scheerer, P., et al., Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4). Biochemistry, 2007. 46(31): p. 9041-49.

[57]. Imai, H. and Y. Nakagawa, Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med, 2003. 34(2): p. 145-69.

[58]. Takebe, G., et al., A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem, 2002. 277(43): p. 41254-58.

[59]. Conrad, M., et al., Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol Chem, 2007. 388(10): p. 1019-25.

[60]. Ursini, F., et al., Dual function of the selenoprotein PHGPx during sperm maturation. Science, 1999. 285(5432): p. 1393-96.

[61]. Conrad, M., et al., The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol, 2005. 25(17): p. 7637-44.

[62]. Yoo, S.E., et al., Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic Biol Med, 2012. 52(9): p. 1820-27. [63]. Imai, H., et al., Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun, 2003. 305(2): p. 278-86.

[64]. Saito, Y. and K. Takahashi, Characterization of selenoprotein P as a selenium supply protein. Eur J Biochem, 2002. 269(22): p. 5746-51.

[65]. Hill, K.E., et al., Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem, 2003. 278(16): p. 13640-46.

[66]. Schomburg, L., et al., Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J, 2003. 370(Pt 2): p. 397-402.

[67]. Krol, M.B., J. Gromadzinska and W. Wasowicz, SeP, ApoER2 and megalin as necessary factors to maintain Se homeostasis in mammals. Journal of Trace Elements in Medicine and Biology, 2012. 26(4): p. 262-66.

[68]. Olson, G.E., et al., Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem, 2008. 283(11): p. 6854-60.

[69]. Burk, R.F. and K.E. Hill, Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr, 2005. 25: p. 215-35.

[70]. St, G.D., et al., Insights into the role of deiodinases from studies of genetically modified animals. Thyroid, 2005. 15(8): p. 905-16.

[71]. Gereben, B., et al., Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev, 2008. 29(7): p. 898-938.

[72]. Silva, J.E. and P.R. Larsen, Potential of brown adipose tissue type II thyroxine 5'- deiodinase as a local and systemic source of triiodothyronine in rats. J Clin Invest, 1985. 76(6): p. 2296-305.

[73]. Dentice, M., et al., The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest, 2010. 120(11): p. 4021-30. [74]. Arner, E.S. and A. Holmgren, Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem, 2000. 267(20): p. 6102-09.

[75]. Jeong, W., et al., Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa. New insights into the specificity of thioredoxin function. J Biol Chem, 2004. 279(5): p. 3142-50.

[76]. Jeong, W., et al., Roles of TRP14, a thioredoxin-related protein in tumor necrosis factor-alpha signaling pathways. J Biol Chem, 2004. 279(5): p. 3151-59.

61 [77]. Ahsan, M.K., et al., Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal, 2009. 11(11): p. 2741-58.

[78]. Weissbach, H., et al., Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys, 2002. 397(2): p. 172-78.

[79]. Jakupoglu, C., et al., Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol, 2005. 25(5): p. 1980-88.

[80]. Peng, X., et al., Sec-containing TrxR1 is essential for self-sufficiency of cells by control of glucose-derived H2O2. 2014. 5: p. e1235.

[81]. Sun, Q.A., et al., Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem, 1999. 274(35): p. 24522-30.

[82]. Conrad, M., et al., Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol, 2004. 24(21): p. 9414-23.

[83]. Nalvarte, I., A.E. Damdimopoulos and G. Spyrou, Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex III inhibition. Free Radic Biol Med, 2004. 36(10): p. 1270-78.

[84]. Kim, M.R., et al., Involvements of mitochondrial thioredoxin reductase (TrxR2) in cell proliferation. Biochem Biophys Res Commun, 2003. 304(1): p. 119-24.

[85]. Choksi, S., et al., A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2. Mol Cell, 2011. 42(5): p. 597-609. [86]. Li, C., et al., CERKL interacts with mitochondrial TRX2 and protects retinal cells from oxidative stress-induced apoptosis. Biochim Biophys Acta, 2014. 1842(7): p. 1121- 29.

[87]. Soerensen, J., et al., The Role of thioredoxin reductases in brain development. PLoS ONE, 2008. 3(3): p. e1813.

[88]. Sun, Q.A., et al., Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci U S A, 2001. 98(7): p. 3673-78.

[89]. Su, D., et al., Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J Biol Chem, 2005. 280(28): p. 26491-98. [90]. Lu, J. and A. Holmgren, The thioredoxin antioxidant system. Free Radical Biology and Medicine, 2014. 66(0): p. 75-87.

[91]. Kim, H.Y. and V.N. Gladyshev, Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J, 2007. 407(3): p. 321- 29.

[92]. Lee, B.C., et al., Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta, 2009. 1790(11): p. 1471-77.

[93]. Boschi-Muller, S., et al., The enzymology and biochemistry of methionine sulfoxide reductases. Biochim Biophys Acta, 2005. 1703(2): p. 231-38.

[94]. Lee, B.C., et al., MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol Cell, 2013. 51(3): p. 397- 404.

[95]. Jia, Y., et al., Involvement of MsrB1 in the regulation of redox balance and inhibition of peroxynitrite-induced apoptosis in human lens epithelial cells. Exp Eye Res, 2012. 100: p. 7-16.

[96]. Stadtman, E.R., Protein oxidation and aging. Free Radic Res, 2006. 40(12): p. 1250- 58.

[97]. Petit, N., et al., Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet, 2003. 12(9): p. 1045-53.

[98]. Rederstorff, M., A. Krol and A. Lescure, Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci, 2006. 63(1): p. 52-59.

[99]. Castets, P., et al., Selenoprotein N in skeletal muscle: from diseases to function. J Mol Med (Berl), 2012. 90(10): p. 1095-107.

[100]. Castets, P., et al., Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet, 2011. 20(4): p. 694-704.

[101]. Jurynec, M.J., et al., Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A, 2008. 105(34): p. 12485-90.

[102]. Arbogast, S., et al., Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol, 2009. 65(6): p. 677-86.

[103]. Han, S.J., et al., Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein. PLoS One, 2014. 9(4): p. e95518.

[104]. Horibata, Y. and Y. Hirabayashi, Identification and characterization of human ethanolaminephosphotransferase1. J Lipid Res, 2007. 48(3): p. 503-08.

[105]. Loflin, J., et al., Selenoprotein W during development and oxidative stress. J Inorg Biochem, 2006. 100(10): p. 1679-84.

[106]. Gu, Q.P., et al., Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol Cell Biochem, 2000. 204(1-2): p. 49-56.

[107]. Beilstein, M.A., et al., Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J Inorg Biochem, 1996. 61(2): p. 117-24.

[108]. Jeong, D., et al., Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett, 2002. 517(1-3): p. 225-28.

[109]. Chung, Y.W., et al., Antioxidative role of selenoprotein W in oxidant-induced mouse embryonic neuronal cell death. Mol Cells, 2009. 27(5): p. 609-13.

[110]. Jeon, Y.H., et al., Inhibition of 14-3-3 binding to Rictor of mTORC2 for Akt phosphorylation at Ser473 is regulated by selenoprotein W. Biochim Biophys Acta, 2013. 1833(10): p. 2135-42.

[111]. Park, Y.H., Y.H. Jeon and I.Y. Kim, Selenoprotein W promotes cell cycle recovery from G2 arrest through the activation of CDC25B. Biochim Biophys Acta, 2012. 1823(12): p. 2217-26.

[112]. Novoselov, S.V., et al., Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J Biol Chem, 2007. 282(16): p. 11960-68.

[113]. Panee, J., et al., Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem, 2007. 282(33): p. 23759-65.

[114]. Wu, R.T., et al., Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation. J Biol Chem, 2014. 289(49): p. 34378-88.

[115]. Korotkov, K.V., et al., Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol Cell Biol, 2002. 22(5): p. 1402-11.

[116]. Ferguson, A.D., et al., NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J Biol Chem, 2006. 281(6): p. 3536-43.

63 [117]. Reeves, M.A., F.P. Bellinger and M.J. Berry, The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid Redox Signal, 2010. 12(7): p. 809-18.

[118]. Qiao, X., et al., Galectin-1 is an interactive protein of selenoprotein M in the brain. Int J Mol Sci, 2013. 14(11): p. 22233-45.

[119]. Chen, P., et al., Different forms of selenoprotein M differentially affect Abeta aggregation and ROS generation. Int J Mol Sci, 2013. 14(3): p. 4385-99.

[120]. Labunskyy, V.M., D.L. Hatfield and V.N. Gladyshev, The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life, 2007. 59(1): p. 1-05.

[121]. Kumaraswamy, E., et al., Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J Biol Chem, 2000. 275(45): p. 35540-47.

[122]. Korotkov, K.V., et al., Association between the 15-kDa selenoprotein and UDP- glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem, 2001. 276(18): p. 15330-36.

[123]. Labunskyy, V.M., et al., A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase. J Biol Chem, 2005. 280(45): p. 37839-45.

[124]. Kasaikina, M.V., et al., Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J Biol Chem, 2011. 286(38): p. 33203-12.

[125]. Shchedrina, V.A., et al., Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J Biol Chem, 2011. 286(50): p. 42937-48.

[126]. Dikiy, A., et al., SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry, 2007. 46(23): p. 6871-82.

[127]. Grumolato, L., et al., Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J, 2008. 22(6): p. 1756-68.

[128]. Fairweather-Tait, S.J., Bioavailability of selenium. Eur J Clin Nutr, 1997. 51 Suppl 1: p. S20-23.

[129]. Van Dael, P., et al., Selenium absorption and retention from a selenite- or selenate- fortified milk-based formula in men measured by a stable-isotope technique. Br J Nutr, 2001. 85(2): p. 157-63.

[130]. Bjornstedt, M., S. Kumar and A. Holmgren, Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. J Biol Chem, 1992. 267(12): p. 8030-34.

[131]. Boehler, C.J., A.M. Raines and R.A. Sunde, Deletion of thioredoxin teductase and tffects of telenite and telenate toxicity in Caenorhabditis elegans. PLoS ONE, 2013. 8(8): p. e71525.

[132]. Suzuki, K.T., C. Doi and N. Suzuki, Metabolism of 76Se-methylselenocysteine compared with that of 77Se-selenomethionine and 82Se-selenite. Toxicology and Applied Pharmacology, 2006. 217(2): p. 185-95.

[133]. Esaki, N., et al., Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution and purification and properties of pig liver enzyme. J Biol Chem, 1982. 257(8): p. 4386-91.

[134]. Pinto, J., et al., Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds. 2011. 41(1): p. 29-41.

[135]. Lu, J. and A. Holmgren, Selenoproteins. J Biol Chem, 2009. 284(2): p. 723-27. [136]. Kobayashi, Y., et al., Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proceedings of the National Academy of Sciences, 2002. 99(25): p. 15932-36.

[137]. Ohta, Y., et al., Speciation analysis of selenium metabolites in urine and breath by HPLC- and GC-inductively coupled plasma-MS after administration of selenomethionine and methylselenocysteine to rats. Chemical Research in Toxicology, 2009. 22(11): p. 1795- 801.

[138]. Zhang, J.X., et al., Association of glutathione peroxidase-1 (GPx-1) rs1050450 Pro198Leu and Pro197Leu polymorphisms with cardiovascular risk: a meta-analysis of observational studies. J Geriatr Cardiol, 2014. 11(2): p. 141-50.

[139]. Voetsch, B., et al., Promoter polymorphisms in the plasma glutathione peroxidase (GPx-3) gene: a novel risk factor for arterial ischemic stroke among young adults and children. Stroke, 2007. 38(1): p. 41-49.

[140]. Baez-Duarte, B.G., et al., Glutathione peroxidase 3 serum levels and GPX3 gene polymorphisms in subjects with metabolic syndrome. Arch Med Res, 2014. 45(5): p. 375- 82.

[141]. Alanne, M., et al., Variation in the selenoprotein S gene locus is associated with coronary heart disease and ischemic stroke in two independent Finnish cohorts. Hum Genet, 2007. 122(3-4): p. 355-65.

[142]. Stranges, S., et al., Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol, 2006. 163(8): p. 694-99.

[143]. Rees, K., et al., Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev, 2013. 1: p. D9671.

[144]. Xun, P., et al., Longitudinal association between toenail selenium levels and measures of subclinical atherosclerosis: the CARDIA trace element study. Atherosclerosis, 2010. 210(2): p. 662-67.

[145]. Flores-Mateo, G., et al., Selenium and coronary heart disease: a meta-analysis. Am J

Documents relatifs