• Aucun résultat trouvé

La transitine est une protéine cytosquelettique de la famille des filaments intermédiaires exprimée transitoirement dans les cellules progénitrices aviaires des tissus nerveux et musculaires. Lors de la myogenèse, la transitine est exprimée conjointement avec la vimentine dans les myoblastes et coexiste avec la desmine pendant une courte période de la différenciation puis elle devient absente dans les myotubes matures (Cossette et Vincent, 1991). Notre laboratoire travaille depuis plusieurs années sur l'expression et les caractéristiques biochimiques et moléculaires de cette protéine ainsi que sur son homologie avec la nestine de mammifères. Cependant, son rôle précis dans les cellules neurogéniques et myogéniques demeure inconnue. Récemment, une étude publiée par l'équipe de Wakamatsu (2007) a montré que la transitine est importante dans la régulation de la neurogenèse en agissant comme plateforme d'ancrage du déterminant d'identité cellulaire Numb et assurant la distribution asymétrique de cette protéine dans les cellules neuroépithéliales aviaires en mitose. Par contre, la fonction précise de cette protéine dans les cellules myogéniques reste inconnue jusqu'à ce jour.

Dans un premier temps, ce présent projet de maitrise visait à mettre en évidence le rôle de la transitine dans la distribution asymétrique de l'antagoniste de Notch, Numb, dans les cellules progénitrices des tissus musculaires par l'étude de la localisation fine de ces deux protéines dans le somite en différenciation. Les résultats ont montré que la transitine et Numb ne colocalisent que dans les cellules de la lèvre dorsale de dermomyotome qui sont des cellules progénitrices du tissu musculaire. Plus précisément, ces deux protéines colocalisent dans le coté basai des cellules mitotiques de la lèvre dorsale de dermomyotome. Nous proposons donc que la transitine est importante dans la régulation de la myogenèse en assurant la localisation asymétrique de Numb dans les cellules myogéniques en cours de la division. Ceci reste à être confirmé par des techniques microscopiques offrant une meilleure résolution que celles utilisées dans cette étude.

Dans un second temps, ce projet de maitrise a consisté à étudier l'effet de l'atténuation de l'expression de la transitine par interférence à l'ARN (ARNi) sur la différenciation myogénique dans un modèle cellulaire, la lignée QM7, afin de déterminer l'implication directe de la transitine durant la formation des muscles. Nous avons d'abord démontré

78

que l'atténuation de l'expression de la transitine altère la morphologie cellulaire et influence la capacité des cellules de proliférer. La transitine peut donc jouer un rôle majeur dans le maintien de la structure de la cellule et de sa capacité de prolifération. Par la suite, nous avons démontré que l'atténuation de l'expression de la transitine altère la capacité des cellules de se fusionner, de se différencier et d'exprimer les marqueurs de la différenciation myogénique. Nos résultats ont montré qu'en absence de la transitine, les cellules gardent le caractère d'une cellule précurseur myogénique en exprimant les gènes précoces de la myogenèse d'une manière similaire avec celles cultivées dans un milieu de prolifération, après leur incubation dans un milieu de différenciation, alors qu'elles n'expriment pas le facteur de régulation myogénique, la myogenine, et les marqueurs des cellules musculaires matures, la desmine et la myosine. Selon ces résultats, nous avons proposé que la transitine puisse être impliquée dans la formation des muscles durant des étapes précoces de la myogenèse en aval de l'expression de MyoD et amont de l'expression de la myogenine.

Finalement, nous avons vérifié l'implication de Numb dans la régulation de la myogenèse des cellules dont l'expression de la transitine est diminuée. Nos résultats ont montré qu'en absence de la transitine, l'inhibition de la différenciation ne résulte pas de l'incapacité de Numb d'inhiber Notch et suggèrent par conséquent que la transitine est impliquée dans la régulation de la différenciation pendant une étape en aval de l'inhibition de Notch par Numb. Nos résultats ont aussi permis de supposer que cette protéine peut jouer un rôle clé dans la régulation de la synthèse/stabilité de Numb et que l'augmentation du niveau de Numb dans les cellules, dont l'expression de la transitine est diminuée, peut être à l'origine de l'inhibition de leur différenciation. En effet, nous avons constaté que le niveau d'expression de Numb est élevé dans ces cellules alors qu'aucun effet sur l'expression de l'ARNm n'a été observé.

80 Ando, S., Tanabe, K., Gonda, Y., Sato, C. and Inagaki, M. (1989). Domain- and sequence-specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry 28,2974-2979.

Antin, P. B., and C. P. Ordahl. (1991). Isolation and characterization of an avian myogenic cell line. Dev Biol 143,111-121.

Aoyama, II. and Asamoto, K. (1988). Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104, 15-24.

Aubin, J. E., Osborn, M., Franke, W. W., and Weber, K. (1980). Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis. Exp Cell Res 129, 149-165.

Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L., Weintraub, H.(1990). The protein Id: A negative regulator of helix-loop-helix DNA-binding protein. Cell 61, 49- 59.

Bengal, E., Ransone, L., Scharfmann, R., Dwarki, V. J., Tapscot, S. J., Weintraub, H. and Verma, I. M. (1992). Functional antagonism between c-Jun and MyoD proteins: a direct physical association. Cell 68, 507-519.

Berdnik, D., Torok, T., Gonzalez-Gaitan, M., Knoblich, J. A. (2002). The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 3, 221-231.

Black, B. L. and Olson, E. N. (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14, 167-196.

Borycki, A., Brown, A. M., Emerson, C. P. (2000). Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites. Development 127, 2075-2087.

Bousquet, O., Ma, L., Yamada, S., Gu, C , Idei, T., Takahashi, K., Wirt/.. 1)., and Coulombe, P. A. (2001). The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro. J Cell Biol 155, 747-754.

Braun, T., Buschhausen-Denker, (... Bober, I... Tannich, E. and Arnold, H. H. (1989). A novel human muscle factor related to but distinct from MyoDl induces myogenic conversion in 10T1/2 fibroblasts. EMBOJS, 701-709.

Buckingham, M. (1992). Making muscle in mammals. Trends Genet 8, 144-149.

Buckingham, M. (2001). Skeletal muscle formation in vertebrates. Current Opinion in Genetics and Development 11, 440-448.

Byun, Y. et al. (2001). Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ 8, 443-450.

Capetanaki, Y., Milner, D. J. and Weitzer, G. (1997). Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Function 22, 103-116.

Carmena, A., Murugasu-Oei, B., Menon, D., Jimenez, F., Chia, W. (1998). Inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Genes Dev 12, 304-315.

Caulin, C , Ware, C. F., Magin, T. M. and Oshima, R. G. (2000). Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol 149, 17-22.

82 Chen, A. C , Kraut, N., Groudine, M., Weintraub, H. (1996). I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Cell 86, 731-741.

Chen, F., Chang, R., Trivedi, M., Capetanaki, Y. and Cryns, V. L. (2003). Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis. J Biol Chem 278, 6848-6853.

Cheng, T. C , Wallace, M. C , Merlie, J. P. and Olson, E. N. (1993). Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 261,215-218.

Chenn, A. and McConnell, S. K. (1995). Cleavage orientation and the asymmetric inheritance of Notchl immunoreactivity in mammalian neurogenesis. Cell 82, 631-642.

Chou, Y. H., Bischoff, J. R., Beach, D., and Goldman, R. D. (1990). Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell 62, 1063-1071.

Chou, Y. H., Khuon, S., Herrmann, H. and Goldman, R. D. (2003). Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Mol Biol Cell 14, 1468-1478.

Chou, Y. H., Opal, P., Quinlan, R. A., and Goldman, R. D. (1996). The relative roles of specific N- and C-terminal phosphorylation sites in the disassembly of intermediate filament in mitotic BHK-21 cells. J Cell Sci 109, 817-826.

Christ, B. and Ordahl, C. P. (1995). Early stages of chick somite development. Anat Embryol 191, 381-396.

Conboy, I. M. and Rando, T. A. (2002). The regulation of notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Developmental Cell 3, 397-409.

Cossette, K. J., and Vincent, M. (1991). Expression of a developmental ly regulated cross linking intermediate filament-associated protein (IFAPa-400) during the replacement of vimentin fordesmin in muscle cell differentiation. J Cell Sci 98, 251-260.

Costa, M. L., Escaleira, R., Cataldo, A., Oliveira, F. and Mermelstein, C. S. (2004). Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res 37, 1819-1830.

Coulombe, P. A. and Wong, P. (2004). Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6, 699-706.

Dahlstrand, J., Collins, V. P. and Lendahl, U. (1992). Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 52, 5334-5341.

Daniel, C , Albrecht, H., Ludke, A. and Hugo, C. (2008). Nestin expression in repopulating mesangial cells promotes their proliferation. Lab Invest 88, 387-397.

Darenfed, H. S., Ma, X. S., Davis, L. S., Juge, N. S., Savard, P. E., Cole, G. J. and Vincent, M. J. (2001). Molecular polymorphism of the intermediate filament protein transitin. Histochem Cell Biol 116, 397-409.

Davis, R. L., Weintraub, H. and Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000.

84

Day, K., Paterson, B. and Yablonka-Reuveni, Z. (2009). A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Developmental Dynamics 238, 1001-

1009.

De Angelis, L., Berghella, L., Coletta, M., Lattanzi, L., Zanchi, M., Cusella-De Angelis, M. G., Ponzetto, C , and Cossu, G. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147, 869-877.

Denetclaw, W. F. and Ordahl, C. P. (2000). The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 127, 893-905.

Duprez, D., Fournier-Thibault, C. and Le Douarin, N. (1998). Sonic Hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 125, 495-505.

Elia, D., Madhala, D., Ardon, E., Reshef, R. and Halevy, O. (2007). Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: involvement of MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta Mol Cell Res 1773, 1438- 1446.

Emerson, C. P (1993). Skeletal myogenesis: genetics and embryology to the fore. Curr Opin Genet Dev 3, 265-274.

Eriksson, J. I.., He, T., Trejo-Skalli, A.V., Harmala-Brasken, A. S., Hellman, J., Chou, Y. H. et al. (2004). Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 117, 919-932.

Fiddler, T. A., Smith, L., Tapscott, S. J., Thayer, M. J. (1996). Amplification of MDM2 inhibits MyoD-mediated myogenesis. Mol Cell Biol 16, 5048-5057.

Franke, W. W., Schmid, E., Grund, C , and Geiger, B. (1982). Intermediate filament proteins in nonfilamentous structures: transient disintegration and inclusion of subunit proteins in granular aggregates. Cell 30, 103-113.

Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y., Jan, Y. N. (1996). The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage. Proc Natl Acad Sci USA 93, 11925-11932.

Galaktionov, K., Chen, X. and Beach, D. (1996). Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382, 511-517.

Gilbert, S., Loranger, A., Daigle, N. and Marceau, N. (2001). Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154, 763-773.

Goto, H., Kosako, H., Tanabe, K., Yanagida, M., Sakusai, M., Amano, M., Kaibuchi, K. and Inagaki, M. (1998). Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J Biol Chem 273, 11728-11736.

Goto, H., Yasui, Y., Kawajiri, A., Nigg, E. A., Terada, Y., Tatsuka, M., Nagata, K. and Inagaki, M. (2003). Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278, 8526-8530.

Goulding, M. D., Chalepakis, G., Deutsch, U., Erselius, J. R. and Gruss, P. (1991). Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO 10, 1135-1147.

86 Granger, B. L. and Lazarides, E. (1978). The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell 15, 1253-1268.

Gros, J., Scaal, M. and Marcelle, C. (2004). A two-step mechanism for myotome formation in chick. Dev Cell 6, 875-882.

Gu, L. H. and Coulombe, P. A. (2007). Keratin function in skin epithelia: A broadening palette with surprising shades. Curr Opin Cell Biol 19, 13-23.

Gu, W., Schneider, J.W., Condorelli, G., Kaushal, S., Mahdavi, V. and Nadal- Ginard, B. (1993). Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72, 309-324.

Guerette, D., Khan, P. A., Savard, P. E. and Vincent, M. (2007). Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol 7, 164.

Guo, K., Wang, J., Andres, V., Smith, R. C. and Walsh, K. (1995). MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. Mol Cell Biol 15, 3823-3829.

Guo, M., Jan, L. Y. and Jan, Y. N. (1996). Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27—41.

Haddad, L. A., Smith, N., Bowser, M., Niida, Y., Murthy, V., Gonzalez-Agosti, C , and Ramesh, V. (2002). The TSCI tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J Biol Chem 277, 44180-44186.

Hasty, P., Bradley, A., Morris, J. H., Edmondson, J. M., Venuti, J. M., Olson, E. N. and Klein, W. H., (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501-506.

He, T., Stepulak, A., Holmstrom, T. H., Omary, M. B. and Eriksson, J. E. (2002). The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N- terminal kinase. J Biol Chem 277, 10767-10774.

Hemken, P. M., Bellin, R. M., Sernett, S. W., Becker, B., Huiatt, T. W., Robson, R. M. (1997). Molecular characteristics of the novel intermediate filament protein paranemin. Sequence reveals EAP-300 and IFAPa-400 are highly homologous to paranemin. J Biol Chem 272, 32489-32499.

Herrmann, H. and Aebi, U. (2000). Intermediate filaments and their associates: multi- talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12,79-90.

Herrmann, H., Fouquet, B., Franke, W. W. (1989). Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin. Development 105, 299-307.

Hirsinger, E., Malapert, P., Dubrulle, J., Delfini, M. C , Duprez, I)., Henrique, I)., Ish-Horowicz, D. and Pourquie, O. (2001). Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 128, 107-116.

Holowacz, T., Zeng, L. and Lassar, A. B. (2006). Asymmetric localization of numb in the chick somite and the influence of myogenic signals. Dev Dyn 235, 633-645.

Houzelstein, I)., Auda-Boucher, G., Chéraud, Y., Rouaud, T., Blanc, I., Tajbakhsh, S., Buckingham, M. E., Fontaine-Pérus, J. and Robert, B. (1999). The homeobox gene Msxl is expressed in a subset of somites, and in muscle progenitor cells migrating into the forelimb. Development 126, 2689-2701.

88 Hutchison, C. J. (2002). Lamins: building blocks or regulators of gene expression? Nature Rev Mol Cell Biol 3, 848-858.

Imai, T., Tokunaga, A., Yoshida, T., Hashimoto, M., Mikoshiba, K., Weinmaster, G., Nakafuku, M. and Oka no, H. (2001). The neural RNA-binding protein musashil translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol and Cell Biol 21, 3888-3900.

Inada, H. et al. (2001). Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J Cell Biol 155, 415^126.

Izawa, I. et al. (2000). Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein. J Biol Chem 275, 34521-34527.

Jones, J. C , Goldman, A. E., Yang, H. Y., and Goldman, R. D. (1985). The organizational fate of intermediate filament networks in two epithelial cell types during mitosis. J Cell Biol 100, 93-102.

Jory, A., Le Ropux, I., Gayraud-Morel, B., Rocheteau, P., Cohen-Tannoudji, M., Cumano, A. and Tajbakhsh, S. (2009). Numb Promotes an Increase in Skeletal Muscle Progenitor Cells in the Embryonic Somite. Stem Cells 27, 2769-2780.

Jostes, B., Walther, C. and Gruss, P. (1991). The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech of Develop 33, 27-38.

Kachinsky, A. M., Dominov, J. A. and Miller, J. B (1994). Myogenesis and the intermediate filament protein, nestin. Dev Biol 165, 216-228.

Kassar-Duchossoy, L., Gayraud-Morel, B., Gomes, D., Rocancourt, D., Buckingham, M., Shinin, V. and Tajbakhsh, S. (2004) Mrf4 determines skeletal muscle identitiy in Myf5: MyoD double-mutant mice. Nature 431, 466—471.

Keynes, R. J. and Stern, C. D. (1988). Mechanisms of vertebrate segmentation. Development 103, 413-429.

Kiefer, J. C. and Hauschka, S. D. (2001). Myf-5 is transiently expressed in nonmuscle mesoderm and exhibits dynamic regional changes within the presegmented mesoderm and somites I-IV. Dev Biol 232, 77-90.

Kim, S. and Coulombe, P. A. (2007). Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 21, 1581-1597.

Knudsen, E. S., Pazzagli, C , Born, T. L., Bertolaet, B. L., Knusen, K. E., Arden K. C. et al. (1998). Elevated cyclins and cyclin-dependent kinase activity in the rhabdomyosarcoma cell line RD. Cancer Res 58, 2042-2049.

Kong, Y., Flick, M. J., Kudla, A. J. and Konieczny, S. F. (1999). Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 17, 47504760.

Kopan, R., Nye, J. S. and Weintraub, H. (1994). The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop- helix region of MyoD. Development 120, 2385-2396.

Kophengnavong, T., Michnowicz, J. E. and Blackwell, T. K.(2000). Establishment of distinct MyoD, E2A, and twist DNA binding specificities by different basic region-DNA conformations. Mol Cell Biol 20, 261-272.

90 Kruger, M., Mennerich, D., Fees, S., Schafer, R., Mundlos, S. and Braun, T. (2001). Sonic hedgehog is a survival factor for hypaxial muscles during mouse development. Development 128, 743-752.

Ku, N. O. and Omary, M. B. (2006). A disease- and phosphorylation-related nonmechanical function for keratin S.J Cell Biol 174, 115-125.

Ku, N. O., Liao, J. and Omary, M. B. (1998). Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J17, 1892-1906.

Kuroda, K., Tani, S., Tamura, K., Minoguchi, S., Kurooka, H. and Honjo, T. (1999). Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J Biol Chem 274, 7238-7244.

Langlands, K., Yin, X., Anand, G., and Prochownik, E. V. (1997). Differential interactions of Id proteins with basic-helix-loop- helix transcription factors. J Biol Chem 272, 19785-19793.

Lassar, A. and Munsterberg, A. (1994). Wiring diagrams: regulatory circuits and the control of skeletal myogenesis. Curr Opin Cell Biol 6, 432-442.

Lee, J. C , Schickling, O., Stegh, A. H., Oshima, R. G., Dinsdale, D., Cohen, G. M., and Peter, M. E. (2002). DEDD regulates degradation of intermediate filaments during apoptosis. J Cell Biol 158, 1051-1066.

Lendahl, U., Zimmerman, L. B. and McKay, R. D. G. (1990). CNS stem cells express a new class of intermediate filament protein. Cell 60, 585-595.

Li, H. et al. (1994). Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin. J Cell Biol 124, 827-841.

Li, L., Chambard, J - C , Karin, M., and Olson, E. N. (1992). Fos and jun repress transcriptional activation by myogenin and MyoD: The amino terminus of jun can mediate repression. Genes Dev 6, 676-689.

Liao, J., Lowthert, L. A., Ghori, N. and Omary, M. B. (1995). The 70-kDa heat shock proteins associate with glandular intermediate filaments in an ATP-dependent manner. J Biol Chem 270, 915-922.

Lim, R. W., Hauschka, S. D. (1984). A rapid decrease in epidermal growth factor- binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro. J Cell Bio9S, 739-747.

Lin, L., Holbro, T., Alonso, G., Gerosa, D., and Burger, M. M. (2001). Molecular interaction between human tumor marker protein pl50, the largest subunit of eIF3, and intermediate filament protein K7. J Cell Biochem 80, 483^190.

Lowe, D. A., Lund, T. and Alway, S. E. (1998). Hypertrophy-stimulated myogenic regulatory factor mRNA increases are attenuated in fast muscle of aged quails. Am J Physiol Cell Physiol 275, 155-162.

Lu, J., McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2000). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6, 233-244.

Lu, J.-R., Webb, R., Richardson, J. A., Olson, E. N. (1999). MyoR: A muscle- restricted basic helix-loop-helix transcriptional factor that antagonizes the actions of MyoD. Proc Natl Acad Sci 96, 552-557.

Luo, B., Aster, J. C , Hasserjian, R. P., Kuo, F., Sklar, J. (1997). Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notch 1 receptor. Mol Cell Biol 17, 6057-6067.

92

Luo, D., Renault, V. M. and Rando, T. A. (2005). The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16, 612-622.

Ma, X., Charron, F., Cole, G. J, Savard, P. E., Vincent, M. (1998). The developmentally regulated avian protein IFAPa-400 is transitin. Brain Res Dev Brain Res 109, 59-66.

Maione, R. and Amati, P. (1997). Interdependence between muscle differentiation and cell-cycle control. Biochim Biophys Acta 1332, 19-30.

Mai, A., Sturniolo, M., Schiltz, R. L., Ghosh, M. K. and Harter, M. L. (2001). A role for histone deacetylase HDAC1 in modulating the transcriptional activity of Myod: inhibition of the myogenic program. EMBO J 20, 1739-1753.

Marcelle, C , Ahlgren, S. and Bronner-Fraser, M. (1999). In vivo regulation of somite differentiation and proliferation by Sonic Hedgehog. Dev Biol 214, 277-287.

Martin, P. (1997). Wound healing — aiming for perfect skin regeneration. Science 276, 75-81.

Mauro, A. (1961). Satellite cells of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493^.95.

McCabe, C. F., Thompson, R. P. and Cole, G. J. (1992). Distribution of the novel developmentally regulated protein EAP-300 in the embryonic chick nervous system. Dev Brain Res 66, 11-23.

McGill, M. A. and McGlade, C. J. (2003). Mammalian numb proteins promote Notch 1 receptor ubiquitination and degradation of the Notch 1 intracellular domain. J Biol Chem 278,23196-23203.

Miner, J. H. and Wold, B. J. (1991). C-mycinhibition of MyoD and myogenin-initiated myogenic differentiation. Mol Cell Biol 11, 2842-2851.

Miska, E. A., Karlsson, C , Langley, E., Nielsen, S. J., Pines, J., Kouzarides, T. (1999). HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J18, 5099-5107.

Mumm J. S. and Kopan, R. (2000). Notch signaling: from the outside in. Dev Biol 228, 151-165.

Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I. and Nabeshima, Y. (1993). Myogenin gene disruption results in perinatal lethality because of a severe muscle defect. Nature 364, 532-535.

Naidu, P. S., Ludolph, D. C , To, R. Q., Hinterberger, T. J. and Konieczny, S. F. (1995). Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol Cell Biol 15, 2707-2718.

Napier, A., Yuan, A., Cole, G. J. (1999). Characterization of the chicken transitin gene reveals a strong relationship to the nestin filament class. J Mol Neurosci 12, 11-22.

Naya, F. and Olson, E. N. (1999). Mef2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11, 683-688.

Nie, J., McGill, M. A., Dermer, M., Dho, S. E., Wolfing, C. D. and MC, J. (2002). LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBOJ21, 93-102.

94

Nofziger, D., Miyamoto, A., Lyons, K. M. and Weinmaster, G. (1999). Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126, 1689-1702.

Ohkawa Y., Yoshimura S., Higashi C , Marfella C. G., Dacwag C. S., Tachibana T. and Imbalzano A. N. (2007). Myogenin and the SWI/SNF ATPase Brgl maintain myogenic gene expression at different stages of skeletal myogenesis. J Biol Chem 282, 6564-6570.

Olson, E. N. (1990). MyoD family: a paradigm for development? Genes Dev 4, 1454- 1461.

Omary, M. B., Coulombe, P. A., and McLean, W. H. 1. (2004). Intermediate filament

Documents relatifs