• Aucun résultat trouvé

IT infrastructure has transformed itself from being a necessary evil to that of a key business enabler, helping companies develop solutions to differentiate them from their competitors. IT infrastructure in modern day enterprises is the backbone that helps them stand straight with their head above the competition. To this effect, the data center landscape, which hosts this infrastructure, has evolved from a few servers in an obscure corner room of a building to that of thousands of servers in different buildings spread across various geographies. The technologies deployed in these data centers also have transformed from Mainframe and Unix systems, running e-mail and legacy applications to heterogeneous, distributed solutions involving database, middleware servers, Commercial off the Shelf (COTS), packaged, and custom applications. Further, these products and solutions interact among themselves to provide external facing business services and enable day-to-day internal business operations. The advent of Web 2.0 and cloud computing and niche features such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) have further complicated the landscape.

The following image shows a functional view of a typical enterprise IT infrastructure:

Chapter 1

[ 9 ]

The infrastructure consists of both external and internal applications serving various classes of users. These users access various applications through different access points and devices. Even though actual IT infrastructures are far more intricate depending on the business domain of the enterprise, the above minimalist view clearly demonstrates the complexities involved. To this view, if we add the collaborations among the various entities, the topology becomes almost unmanageable. The following is a very simplistic illustration of the physical topology of the infrastructure that supports the earlier functional view:

It can be seen how, IT impacts every aspect of the business operations—ranging from customer care to end user interactions to accounting to employee self service.

Needless to say, the performance of the IT infrastructure is a key driver towards the success of the enterprise business.

This complexity in the IT landscape necessitates deployment of a highly sophisticated management solution across the enterprise. Such a solution must be able to manage all aspects of the IT infrastructure, starting from physical hosts and devices to packaged applications. While the solution should definitely cater to managing disparate components individually, it must also provide visibility into the complex business processes and usage of the underlying infrastructure. The former view is required as a tool for day-to-day IT operations by system administrators and support personnel who know the physical topology very well. The latter view provides the CXO-level senior management with invaluable insight into the effectiveness of the underlying infrastructure in driving business operations.

Many of the applications and business processes interact with each other and come together, to provide meaningful services to both external and internal users. Such interactions are achieved using diverse technologies and architectures such as SOA, web services, cloud computing, Web 2.0, and so on. These services must also cater to the availability and performance expectations of customers and internal users.

These expectations are formally referred to as service-levels. The commitment on availability and performance of these services, commonly referred to as business services by the service provider, is defined formally using Service-Level Agreements or SLAs. Enterprise-wide management of these business services including their service levels requires technology-independent perspectives that provide the CXOs with the big picture. The above management concepts fall under the broad category of BSM.

Modeling

Prior to discussing the various modeling options, it is important to understand the necessity of modeling the IT infrastructure. As discussed in the previous section, a typical data center consists of numerous heterogeneous hardware and software components. The hardware components present in a data center are as varied as network routers, switches, machines ranging from servers to desktops, Mainframes, storage devices, load balancers, and so on. The software components deployed on such hardware are significantly more diverse such as operating systems, databases, application servers, middleware, and so on. In an enterprise data center, both hardware and software will be sourced from multiple vendors. To further add another layer of complexity, it is very likely that multiple versions of the same software product, from the same vendor, could be deployed across the enterprise.

Chapter 1

[ 11 ]

As an example, the data center of a large commercial bank could contain network switches and routers from Cisco, Mainframes from IBM, and industry standard servers from HP. This hardware will be utilized to run mission-critical CRM

applications from Oracle running on Oracle middleware and Oracle Real Application Cluster (RAC) databases running a Solaris operating system. These applications would interact with Enterprise Resource Planning (ERP) systems from SAP. There will also be custom applications built in-house, running on Oracle WebLogic Application Server. In the previous topology, although the database used by both CRM and ERP systems could be supplied by Oracle, their versions could be different, that is, Oracle Database 10g and Oracle Database 11g.

In a large enterprise, the CTO staff will comprise various teams of administrators having focused responsibilities on managing different components within the data center. For instance, network engineers will be assigned network router operations whereas DBAs will be responsible for database maintenance. In addition, there will be a set of administrators who maintain the enterprise applications such as CRM, Siebel, and so on. Such administrators are responsible for regular operational tasks of different components in the data center. The DBAs will need to perform regular tasks such as re-indexing, performing backup and recovery, managing table spaces, and so on. The application administrators will be handling configuration of middleware, deployment of applications, provisioning users, and so on. In addition to the regular tasks, these administrators will also be responsible for the stability and health of their respective areas.

These operational teams will be complemented by a strategy team that will be responsible for IT budgeting and planning. These teams will be responsible for driving the efficiency of IT infrastructure and operations. As an example, the CTO strategy team might have a goal of increasing the IT hardware utilization by 10 percent for a fiscal year. Another goal may be to project the additional hardware requirements to support an upcoming business strategy. In order to achieve such goals, the team will require data such as usage, operational efficiency, capacity, and so on. The data requirements will be both current and historical.

The strategy and the operations team need to work together to meet the compliance requirements. These requirements touch areas such as security, configuration, and storage. While the strategy team is responsible for setting compliance standards and goals, the administrators are entrusted with the responsibility of ensuring that these compliance levels are adhered to. To illustrate this, let us consider the security requirements on a CRM On-Demand application. In order to meet a specific customer security requirement around passwords, the administrator will have to configure the applications accordingly.

It is clear from the above explanation that the different responsibilities require focused perspectives of the IT infrastructure. The focused perspectives must enable the administrators to view their components of interest. They must also include other components that are dependent on these as well as the areas on which a component is dependent on. Since the different components in a data center do not operate in isolation and interact with one another, it is imperative that the IT staff get a holistic view of the enterprise IT topology.