• Aucun résultat trouvé

5 Résultats et discussion

5.5 Comparaison et discussion

Afin d’évaluer l’impact de la taille de l’ensemble de formation sur les résultats, nous testons de nouveau notre algorithme contre l’ensemble SKI10. Cette fois, nous choisissons quatre images aléatoires de l’ensemble SKI10, dont trois sont utilisées pour entraîner l’algorithme et une comme ensemble de test. Nous appelons cette collection l’ensemble « Tiny SKI10 ». Dans ce test, notre objectif est de confirmer que, si notre algorithme s’entraîne avec un ensemble d’entraînement similaire à SKI10 concernant la taille (60 images), nous nous attendons à ce que les résultats soient plutôt bons pour notre algorithme. Le tableau 13 montre les résultats obtenus à l’aide d’une collection de trois images de l’ensemble SKI10 en tant qu’ensemble d’entraînement et une seule image en tant que test.

Le déclin énorme dans la qualité des résultats obtenus à l’aide de l’ensemble « Tiny SKI10 », ainsi que l’utilisation d’un ensemble d’entraînement de trois images similaires à partir de l’ensemble BodyCad améliore ce résultat, il est supposé que si nous entraînons la version étendue de notre algorithme avec un ensemble plus grand, nous pourrions nous attendre à ce que l’algorithme produise de meilleurs résultats qu’il produit en utilisant l’ensemble d’entraînement complet de SKI10.

Tableau 13 – Résultats obtenus en utilisant quatre images de l’ensemble SKI10 optimisées

Cartilage Paramètre Valeur (moyenne de l'ensemble)

Fémoral DSC 0.6114 IOU 44.17 % Précision 96.52 % Sensibilité 48.39 % Spécificité 99.44 % Temps de calcul 3.01 s Tibial DSC 0.6006 IOU 43.05 % Précision 96.42 % Sensibilité 47.53 % Spécificité 99.39 % Temps de calcul 3.36 s

83

Les données présentées dans le tableau 10 confirment que la version préliminaire de notre algorithme fonctionne presque aussi bien que les meilleurs algorithmes qui ont participé aux défis SKI10. En plus, le fait que la spécificité montrée dans le tableau 12 soit la spécificité maximale produite au cours de cette étude suggère que l'ajout de l'image secondaire a un impact énorme sur la qualité des résultats. Enfin, la différence entre les valeurs des tableaux 13 et 6 suggère que, en segmentant des images IRM supplémentaires et en les insérant dans l'ensemble d’entraînement BodyCad, nous pouvons nous attendre à ce que l'algorithme produise de meilleurs résultats que ce qui est produit en utilisant l’ensemble SKI10.

84

Bibliographie

Acremann, Y., Back, C. H., Buess, M., Portmann, O., Vaterlaus, A., Pescia, D., & Melchior, H. (2000). Imaging Precessional Motion of the Magnetization Vector. Science, 290(5491), 492–495.

https://doi.org/10.1126/science.290.5491.492

Artan, Y., Haider, M. A., Langer, D. L., Kwast, T. H. van der, Evans, A. J., Yang, Y., Yetik, I. S. (2010). Prostate Cancer Localization With Multispectral MRI Using Cost-Sensitive Support Vector Machines and Conditional Random Fields. IEEE Transactions on Image Processing, 19(9), 2444–2455. https://doi.org/10.1109/TIP.2010.2048612

Ateshian, G. A. (1993). A B-spline least-squares surface-fitting method for articular surfaces of diarthrodial joints. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF

BIOMECHANICAL ENGINEERING, 115, 366–366.

Ateshian, G. A., Kwak, S. D., Soslowsky, L. J., & Mow, V. C. (1994). A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods. Journal

of Biomechanics, 27(1), 111–124.

Ateshian, G. A., Rosenwasser, M. P., & Mow, V. C. (1992). Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. Journal of Biomechanics,

25(6), 591–607.

Ateshian, G. A., Soslowsky, L. J., & Mow, V. C. (1991). Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. Journal of Biomechanics, 24(8), 761– 776.

Beucher, S., & Meyer, F. (1992). The morphological approach to segmentation: the watershed transformation.

OPTICAL ENGINEERING-NEW YORK-MARCEL DEKKER INCORPORATED-, 34, 433–433.

Bolog, N. V., Andreisek, G., & Ulbrich, E. J. (2015). MRI of the Knee. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-08165-6

85

Carballido-Gamio, J., Bauer, J. S., Stahl, R., Lee, K.-Y., Krause, S., Link, T. M., & Majumdar, S. (2008). Inter- subject comparison of MRI knee cartilage thickness. Medical Image Analysis, 12(2), 120–135. https://doi.org/10.1016/j.media.2007.08.002

Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing,

10(2), 266–277. https://doi.org/10.1109/83.902291

Chen, T., & Metaxas, D. (2003). Gibbs prior models, marching cubes, and deformable models: A hybrid framework for 3d medical image segmentation. Medical Image Computing and Computer-Assisted

Intervention-MICCAI 2003, 703–710.

Clarke, L. P., Velthuizen, R. P., Camacho, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., Silbiger, M. L. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13(3), 343–368. https://doi.org/10.1016/0730-725X(94)00124-L

Cohen, Z. A., McCarthy, D. M., Kwak, S. D., Legrand, P., Fogarasi, F., Ciaccio, E. J., & Ateshian, G. A. (1999). Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis and Cartilage, 7(1), 95–109. https://doi.org/10.1053/joca.1998.0165 Currie, S., Hoggard, N., Craven, I. J., Hadjivassiliou, M., & Wilkinson, I. D. (2013). Understanding MRI: basic

MR physics for physicians. Postgraduate Medical Journal, 89(1050), 209–223. https://doi.org/10.1136/postgradmedj-2012-131342

Dam, E. B. (2015). Validation of the KneeIQ segmentation framework on SKI10. Submission to SKI10 at

Http://Www. ski10. Org/Data/2015-23-03-0904. Pdf, 23. Retrieved from

https://pdfs.semanticscholar.org/11e0/6651a759a62fec43e396e1bf36306c5f0e18.pdf Dodin, P., Pelletier, J. P., Martel-Pelletier, J., & Abram, F. (2010). Automatic Human Knee Cartilage

Segmentation From 3-D Magnetic Resonance Images. IEEE Transactions on Biomedical

Engineering, 57(11), 2699–2711. https://doi.org/10.1109/TBME.2010.2058112

Eckstein, F., Cicuttini, F., Raynauld, J.-P., Waterton, J. C., & Peterfy, C. (2006). Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis and

86

Eckstein, F., Kunz, M., Schutzer, M., Hudelmaier, M., Jackson, R. D., Yu, J., Schneider, E. (2007). Two year longitudinal change and test–retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthritis and Cartilage, 15(11), 1326–1332.

https://doi.org/10.1016/j.joca.2007.04.007

Eckstein, F., Maschek, S., Wirth, W., Hudelmaier, M., Hitzl, W., Wyman, B., Group, the O. I. (2009). One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Annals of the Rheumatic Diseases, 68(5), 674–679.

https://doi.org/10.1136/ard.2008.089904

Eckstein, F., Müller, S., Faber, S. C., Englmeier, K.-H., Reiser, M., & Putz, R. (2002). Side differences of knee joint cartilage volume, thickness, and surface area, and correlation with lower limb dominance—an MRI-based study. Osteoarthritis and Cartilage, 10(12), 914–921.

https://doi.org/10.1053/joca.2002.0843

Eckstein, Felix, Gavazzeni, A., Sittek, H., Haubner, M., Lösch, A., Milz, S., Reiser, M. (1996). Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magnetic Resonance in Medicine, 36(2), 256–265.

Elmaoğlu, M., & Çelik, A. (2012). MRI Handbook. Boston, MA: Springer US. https://doi.org/10.1007/978-1- 4614-1096-6

Everingham, M., Eslami, S. A., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2015). The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1), 98– 136.

Folkesson, J., Dam, E. B., Olsen, O. F., Pettersen, P. C., & Christiansen, C. (2007). Segmenting Articular Cartilage Automatically Using a Voxel Classification Approach. IEEE Transactions on Medical

87

Fripp, J., Crozier, S., Warfield, S. K., & Ourselin, S. (2010). Automatic Segmentation and Quantitative Analysis of the Articular Cartilages From Magnetic Resonance Images of the Knee. IEEE Transactions on

Medical Imaging, 29(1), 55–64. https://doi.org/10.1109/TMI.2009.2024743

Fripp, Jurgen, Crozier, S., Warfield, S. K., & Ourselin, S. (2007). Automatic segmentation of the bone and extraction of the bone–cartilage interface from magnetic resonance images of the knee. Physics in

Medicine and Biology, 52(6), 1617.

Gandy, S. J., Dieppe, P. A., Keen, M. C., Maciewicz, R. A., Watt, I., & Waterton, J. C. (2002). No loss of cartilage volume over three years in patients with knee osteoarthritis as assessed by magnetic resonance imaging. Osteoarthritis and Cartilage, 10(12), 929–937.

https://doi.org/10.1053/joca.2002.0849

García, C., & Moreno, J. A. (2004). Kernel based method for segmentation and modeling of magnetic resonance images. In Ibero-American Conference on Artificial Intelligence (pp. 636–645). Springer. Retrieved from http://link.springer.com.acces.bibl.ulaval.ca/chapter/10.1007/978-3-540-30498-2_64 Gold, G. E., McCauley, T. R., Gray, M. L., & Disler, D. G. (2003). Special Focus Session: What’s New in

Cartilage? 1. Radiographics, 23(5), 1227–1242.

Grau, V., Mewes, A. U. J., Alcaniz, M., Kikinis, R., & Warfield, S. K. (2004). Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging, 23(4), 447–458. https://doi.org/10.1109/TMI.2004.824224

Hahn, E. L. (1950). Spin Echoes. Physical Review, 80(4), 580–594. https://doi.org/10.1103/PhysRev.80.580 HarounExplainIt. (2013). How does MRI work. Retrieved from

https://www.youtube.com/watch?v=SwH2OEB0DKU

Haubner, M., Eckstein, F., Schnier, M., Lösch, A., Sittek, H., Becker, C., Englmeier, K.-H. (1997). A non- invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI part 2: Validation using CT arthrography. Magnetic Resonance Imaging, 15(7), 805–813.

88

Hayes, C. W., Sawyer, R. W., & Conway, W. F. (1990). Patellar cartilage lesions: in vitro detection and staging with MR imaging and pathologic correlation. Radiology, 176(2), 479–483.

Heimann, T., Morrison, B. J., Styner, M. A., Niethammer, M., & Warfield, S. (2010a). Segmentation of knee images: A grand challenge. In Proc. MICCAI Workshop on Medical Image Analysis for the Clinic (pp. 207–214). Retrieved from http://www.diagnijmegen.nl/~bram/grandchallenge2010/207.pdf

Heimann, T., Morrison, B. J., Styner, M. A., Niethammer, M., & Warfield, S. K. (2010b). Segmentation of Knee Images: A Grand Challenge. Retrieved May 4, 2017, from

http://www.diagnijmegen.nl/~bram/grandchallenge2010/207.pdf

Hodler, J., Trudell, D., Pathria, M. N., & Resnick, D. (1992). Width of the articular cartilage of the hip:

quantification by using fat-suppression spin-echo MR imaging in cadavers. AJR. American Journal of

Roentgenology, 159(2), 351–355.

Hohe, J., Ateshian, G., Reiser, M., Englmeier, K.-H., & Eckstein, F. (2002). Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in vivo. Magnetic Resonance in Medicine, 47(3), 554–561. https://doi.org/10.1002/mrm.10097

Ida, T., & Sambonsugi, Y. (2000). Self-affine mapping system and its application to object contour extraction.

IEEE Transactions on Image Processing, 9(11), 1926–1936. https://doi.org/10.1109/83.877213

Invention of MRI. (n.d.). Retrieved May 11, 2017, from http://mriquestions.com/who-invented-mri.html Jacobs, M. A., Ibrahim, T. S., & Ouwerkerk, R. (2007). MR Imaging: Brief Overview and Emerging

Applications. RadioGraphics, 27(4), 1213–1229. https://doi.org/10.1148/rg.274065115 Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of

Computer Vision, 1(4), 321–331. https://doi.org/10.1007/BF00133570

Kauffmann, C., Gravel, P., Godbout, B., Gravel, A., Beaudoin, G., Raynauld, J. P., Guise, J. A. de. (2003). Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model. IEEE Transactions on Biomedical Engineering, 50(8), 978– 988. https://doi.org/10.1109/TBME.2003.814539

89

Kaus, M. R., Warfield, S. K., Nabavi, A., Black, P. M., Jolesz, F. A., & Kikinis, R. (2001). Automated Segmentation of MR Images of Brain Tumors. Radiology, 218(2), 586–591.

https://doi.org/10.1148/radiology.218.2.r01fe44586

Koo, S., Gold, G. E., & Andriacchi, T. P. (2005). Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy. Osteoarthritis and Cartilage, 13(9), 782–789. https://doi.org/10.1016/j.joca.2005.04.013

Koo, Seungbum, Hargreaves, B. A., & Gold, G. E. (2009, December 10). US20090306496 A1. Retrieved from http://www.google.com.au/patents/US20090306496

Kornaat, P. R., Reeder, S. B., Koo, S., Brittain, J. H., Yu, H., Andriacchi, T. P., & Gold, G. E. (2005). MR imaging of articular cartilage at 1.5 T and 3.0 T: Comparison of SPGR and SSFP sequences.

Osteoarthritis and Cartilage, 13(4), 338–344. https://doi.org/10.1016/j.joca.2004.12.008

Kwak, S. D., Colman, W. W., Ateshian, G. A., Grelsamer, R. P., Henry, J. H., & Mow, V. C. (1997). Anatomy of the human patellofemoral joint articular cartilage: surface curvature analysis. Journal of Orthopaedic

Research, 15(3), 468–472.

Lee, C.-H., Schmidt, M., Murtha, A., Bistritz, A., Sander, J., & Greiner, R. (2005). Segmenting Brain Tumors with Conditional Random Fields and Support Vector Machines. In SpringerLink (pp. 469–478). Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_47

Li, X., Benjamin Ma, C., Link, T. M., Castillo, D.-D., Blumenkrantz, G., Lozano, J., Majumdar, S. (2007). In vivo T1ρ and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis

and Cartilage, 15(7), 789–797. https://doi.org/10.1016/j.joca.2007.01.011

Lorenz, C., & von Berg, J. (2005). Fast automated object detection by recursive casting of search rays.

International Congress Series, 1281, 230–235. https://doi.org/10.1016/j.ics.2005.03.249

Lösch, A., Eckstein, F., Haubner, M., & Englmeier, K.-H. (1997). A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI part 1: Development of a computational method. Magnetic Resonance Imaging, 15(7), 795–804. https://doi.org/10.1016/S0730-

90

MRI: A Guided Tour - MagLab. (n.d.). Retrieved May 5, 2017, from

https://nationalmaglab.org/education/magnet-academy/learn-the-basics/stories/mri-a-guided-tour Pakin, S. K., Gaborski, R. S., Barski, L. L., Foos, D. H., & Parker, K. J. (2001). Segmentation of bone and soft

tissue regions in digital radiographic images of extremities. Retrieved May 1, 2017, from http://www.ece.rochester.edu/projects/Parker/Pubs%20PDF%20versions/99_SegDigRad.pdf Pakin, S. K., Tamez-Pena, J. G., Totterman, S., & Parker, K. J. (2002). Segmentation, surface extraction, and

thickness computation of articular cartilage (Vol. 4684, pp. 155–166). https://doi.org/10.1117/12.467113

Pooley, R. A. (2005). Fundamental Physics of MR Imaging. RadioGraphics, 25(4), 1087–1099. https://doi.org/10.1148/rg.254055027

Raynauld, J.-P., Kauffmann, C., Beaudoin, G., Berthiaume, M.-J., de Guise, J. A., Bloch, D. A., Martel-

Pelletier, J. (2003). Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees. Osteoarthritis and

Cartilage, 11(5), 351–360. https://doi.org/10.1016/S1063-4584(03)00029-3

Recht, M. P., Kramer, J., Marcelis, S., Pathria, M. N., Trudell, D., Haghighi, P., Resnick, D. (1993). Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology,

187(2), 473–478.

Roerdink, J. B., & Meijster, A. (2000). The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae, 41(1, 2), 187–228.

Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on

Medical Imaging, 18(8), 712–721. https://doi.org/10.1109/42.796284

Saadatmand-Tarzjan, M. (2015). Self-affine snake for medical image segmentation. Pattern Recognition

Letters, 59, 1–10. https://doi.org/10.1016/j.patrec.2015.03.006

Schnier, M., Eckstein, F., Priebsch, J., Haubner, M., Sittek, H., Becker, C. et al. (1997). Dreidimensionale Dicken-und Volumenbestimmung des Kniegelenkknorpels in der MRT: Validierung am anatomischen

91

Präparat mittels CT-Arthrographie. In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der

bildgebenden Verfahren (Vol. 167, pp. 521–526). \copyright Georg Thieme Verlag Stuttgart· New

York. Retrieved from https://www-thieme-connect-

com.acces.bibl.ulaval.ca/products/ejournals/abstract/10.1055/s-2007-1015574 Segmentation of magnetic resonance imaging data. (2013, May 9). Retrieved from

https://patents.google.com/patent/US9514539B2/en

Seim, H., Kainmueller, D., Lamecker, H., Bindernagel, M., Malinowski, J., & Zachow, S. (2010). Model-based auto-segmentation of knee bones and cartilage in MRI data. Medical Image Analysis for the Clinic: A

Grand Challenge, Beijing. Retrieved from

http://www.diagnijmegen.nl/~bram/grandchallenge2010/215.pdf

SKI10 : Rules. (n.d.). Retrieved September 6, 2017, from http://www.ski10.org/rules.php

Smith, S. W. et al. (1997). The scientist and engineer’s guide to digital signal processing. Retrieved from http://www.dspguide.com/CH28.PDF

Soslowsky, L. J., Flatow, E. L., Bigliani, L. U., Pawluk, R. J., Ateshian, G. A., & Mow, V. C. (1992). Quantitation of in situ contact areas at the glenohumeral joint: a biomechanical study. Journal of Orthopaedic

Research, 10(4), 524–534.

Stachowiak, G. P., Stachowiak, G. W., & Podsiadlo, P. (2006). Automated classification of articular cartilage surfaces based on surface texture. Proceedings of the Institution of Mechanical Engineers, Part H:

Journal of Engineering in Medicine, 220(8), 831–843. https://doi.org/10.1243/09544119JEIM214

Stammberger, T., Eckstein, F., Englmeier, K.-H., & Reiser, M. (1999). Determination of 3 D cartilage thickness data from MR imaging: Computational method and reproducibility in the living. Magnetic Resonance

in Medicine, 41(3), 529–536.

Tamez-Pena, J. G. (1999). Four-dimensional Reconstruction and Visualization of Complex Musculoskeletal

92

Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Sixth International

Conference on Computer Vision (IEEE Cat. No.98CH36271) (pp. 839–846).

https://doi.org/10.1109/ICCV.1998.710815

Vincent, G., Wolstenholme, C., Scott, I., & Bowes, M. (2010). Fully automatic segmentation of the knee joint using active appearance models. Medical Image Analysis for the Clinic: A Grand Challenge, 224– 230.

W. Dean Bidgood, J. (1997). Understanding and Using DICOM, the Data Interchange Standard for Biomedical Imaging. Journal of the American Medical Informatics Association, 4(3), 199.

Warfield, S. K., Kaus, M., Jolesz, F. A., & Kikinis, R. (2000). Adaptive, template moderated, spatially varying statistical classification. Medical Image Analysis, 4(1), 43–55. https://doi.org/10.1016/S1361- 8415(00)00003-7

Xu, C., Pham, D. L., & Prince, J. L. (2000). Image segmentation using deformable models. Handbook of

Medical Imaging, 2, 129–174.

Xu, C., & Prince, J. L. (1998). Generalized gradient vector flow external forces for active contours1. Signal

Processing, 71(2), 131–139. https://doi.org/10.1016/S0165-1684(98)00140-6

Zhang, J., Ma, K.-K., Er, M.-H., & Chong, V. (2004). Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In International Workshop on Advanced Image

Technology (IWAIT’04) (pp. 207–211). Retrieved from https://hal.inria.fr/inria-00548532/

Zhang, K., Deng, J., & Lu, W. (2011). Segmenting human knee cartilage automatically from multi-contrast MR images using support vector machines and discriminative random fields. In 2011 18th IEEE

International Conference on Image Processing (pp. 721–724).

https://doi.org/10.1109/ICIP.2011.6116655

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M. C., Kaus, M. R., Haker, S. J., Kikinis, R. (2004). Statistical validation of image segmentation quality based on a spatial overlap index 1: Scientific reports. Academic Radiology, 11(2), 178–189. https://doi.org/10.1016/S1076-6332(03)00671-8

Documents relatifs