• Aucun résultat trouvé

Chapitre 2: Validity of Wearable Sensors at Shoulder Joint: Combining Wireless Electromyography

4.4. Retombées cliniques potentielles

4.4.3. Comparaison avec les outils cliniques actuels

En clinique, la mesure d’amplitude articulaire est mesurée à l’aide d’un goniomètre ou d’un inclinomètre. Ces outils de mesures présentent une erreur de mesure assez grande (limite de concordance de 95 % allant de 2 à 20°) [174] pour des mouvements simples et ne peuvent effectuer de mesures en continu. L’erreur de mesure moyenne des capteurs inertiels présentés dans le Chapitre 2 (≤12.68°) se situe à l’intérieur de l’étendue d’erreurs donnée par l’inclinomètre ou le goniomètre en plus d’offrir la possibilité d’enregistrer l’élévation lors de tâches de la vie de tous les jours, en continu et à l’extérieur du laboratoire. De plus, considérant que l’inclinomètre et le goniomètre permettent seulement de mesurer des mouvements simples, l’erreur de mesure des IMU à ce niveau (≤6.72°) est largement en de ça de celle mesurée par ces outils communément utilisés en clinique.

Conclusion

Dans un premier temps, les résultats du Chapitre 1 permettent de conclure sur la validité de l’utilisation des capteurs inertiels pour la quantification de l’amplitude articulaire aux

76

différentes articulations du corps, mais plus d’études sur leur fidélité doivent être effectuées avant d’émettre des conclusions pour cette qualité psychométrique. Il a également été démontré que plus d’études au niveau du coude et de l’épaule, ainsi que dans des tâches plus représentatives de la vie de tous jours, sont encore nécessaires avant de les utiliser de façon régulière dans un contexte clinique.

Dans un deuxième temps, les résultats du Chapitre 2 ajoutent des informations à ce manque de littérature et permettent de conclure sur la validité, ainsi que l’utilité de combiner un système de capteurs inertiels et un système d’EMG sans-fils pour quantifier la demande à l’épaule d’une tâche de manutention. En effet, ces deux systèmes permettent de mesurer en continu des données d’élévation au membre supérieur et de discriminer le niveau de demande de l’emploi basé sur la mesure d’activité musculaire du muscle deltoïde. Des développements technologiques et logiciels sont toutefois encore nécessaires avant que cette technologie soit accessible en clinique en raison de la complexité d’utilisation et de traitements des données. Plus d’études combinant ces deux technologies sont également nécessaires en contexte réel d’emploi afin de statuer de la validité des données recueillies en environnement non contrôlé, mais les résultats présentés dans ce mémoire sont prometteurs pour le domaine de la réadaptation socioprofessionnelle.

77

Bibliographie

1. Cuthbert, S.C. and G.J. Goodheart, On the reliability and validity of manual muscle testing: a literature review. Chiropractic & Osteopathy, 2007. 15(1): p. 4.

2. Norkin, C. and D. White, Measurement of Joint Motion: A Guide to Goniometry: FA Davis Company. 2009.

3. Gajdosik, R.L. and R.W. Bohannon, Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Physical Therapy, 1987. 67(12): p. 1867-72. 4. Valevicius, A.M., et al., Use of optical motion capture for the analysis of normative upper body

kinematics during functional upper limb tasks: A systematic review. Journal of Electromyography and Kinesiology, 2018. 40: p. 1-15.

5. Ceseracciu, E., Z. Sawacha, and C. Cobelli, Comparison of Markerless and Marker-Based Motion Capture Technologies through Simultaneous Data Collection during Gait: Proof of Concept. PLoS One, 2014. 9(3): p. e87640.

6. Wong, W.Y., M.S. Wong, and K.H. Lo, Clinical applications of sensors for human posture and movement analysis: a review. Prosthet Orthot Int, 2007. 31(1): p. 62-75.

7. Godfrey, A., et al., Direct measurement of human movement by accelerometry. Medical Engineering and Physics, 2008. 30(10): p. 1364-1386.

8. Cavalcanti Garcia, M.A. and T.M.M. Vieira, Surface electromyography: Why, when and how to use it. Revista Andaluza de Medicina del Deporte, 2011. 4(1): p. 17-28.

9. Perry, J., C.S. Easterday, and D.J. Antonelli, Surface versus intramuscular electrodes for electromyography of superficial and deep muscles. Physical Therapy, 1981. 61(1): p. 7-15. 10. Cuesta-Vargas, A.I., A. Galán-Mercant, and J.M. Williams, The use of inertial sensors system for

human motion analysis. Physical Therapy Reviews, 2010. 15(6): p. 462-473.

11. Mustard, C.A., et al., Time trends in musculoskeletal disorders attributed to work exposures in Ontario using three independent data sources, 2004–2011. Occupational and Environmental Medicine, 2015. 72(4): p. 252.

12. Centre de la statistique et de l’information de gestion, D.d.l.c.e.d.l.g.d.l.i., Statistiques sur les lésions attribuables aux TMS en milieu de travail. 2016, CNESST.

13. Huisstede, B.M.A., et al., Incidence and prevalence of upper-extremity musculoskeletal disorders. A systematic appraisal of the literature. BMC Musculoskeletal Disorders, 2006. 7: p. 7-7.

14. Statistiques sur les lésions attribuables aux TMS en milieu de travail 2012-2015. 2016, Commission des normes, de l’équité, de la santé et de la sécurité Québec. p. 7. 15. Lebeau, M., P. Duguay, and A. Boucher, Les coûts des lésions professionnelles

au Québec, 2005-2007(version révisée). 2014, Institut de recherche Robert-Sauvé en santé et en sécurité du travail: Montréal.

16. Zakaria, D., et al., Work-related cumulative trauma disorders of the upper extremity: navigating the epidemiologic literature. American journal of industrial medicine, 2002. 42(3): p. 258-69. 17. (HSE), H.a.s.e., Upper limb disorders in the workplace. Health and safety executive (HSE) ed.

2002, Surrey, UK. 89.

18. Kennedy, C.A., et al., Systematic Review of the Role of Occupational Health and Safety

Interventions in the Prevention of Upper Extremity Musculoskeletal Symptoms, Signs, Disorders, Injuries, Claims and Lost Time. Journal of Occupational Rehabilitation, 2010. 20(2): p. 127-162. 19. Organization, W.H. Occupational and work-related diseases. 2018 [cited 2018 04/09/2018]. 20. Roquelaure, Y., et al., Risk factors for upper-extremity musculoskeletal disorders in the working

population. Arthritis & Rheumatology, 2009. 61(10): p. 1425-1434.

21. Schulte, P.A., et al., Interaction of Occupational and Personal Risk Factors in Workforce Health and Safety. American Journal of Public Health, 2012. 102(3): p. 434-448.

22. Analyses, D., Les risques psychosociaux au travaiL Un panorama d’après l’enquête Santé et itinéraire professionnel 2010, in Dares Analyses. 2014, Direction de l'animation de la recherche, des études et des statistiques.

23. Bongers, P.M., et al., Epidemiology of work related neck and upper limb problems: Psychosocial and personal risk factors (Part I) and effective interventions from a bio behavioural perspective (Part II). Journal of Occupational Rehabilitation, 2006. 16(3): p. 272-295.

78

24. De Lange, A.H., et al., “The Very Best of the Millennium”: Longitudinal Research and the Demand-Control-(Support) Model. Journal of Occupational Health Psychology, 2003. 8(4): p. 282-305.

25. Hauke, A., et al., The impact of work-related psychosocial stressors on the onset of

musculoskeletal disorders in specific body regions: A review and meta-analysis of 54 longitudinal studies. Work & Stress, 2011. 25(3): p. 243-256.

26. Linaker, C.H. and K. Walker-Bone, Shoulder disorders and occupation. Best practice & research. Clinical rheumatology, 2015. 29(3): p. 405-423.

27. Kraatz, S., et al., The incremental effect of psychosocial workplace factors on the development of neck and shoulder disorders: a systematic review of longitudinal studies. International Archives of Occupational and Environmental Health, 2013. 86(4): p. 375-395.

28. Visser, B. and J.H. van Dieën, Pathophysiology of upper extremity muscle disorders. Journal of Electromyography and Kinesiology, 2006. 16(1): p. 1-16.

29. Lundberg, U., et al., Psychophysiological stress responses, muscle tension, and neck and shoulder pain among supermarket cashiers. Journal of Occupational Health Psychology, 1999.

4(3): p. 245-255.

30. Van Galen, G.P., et al., Forearm EMG response activity during motor performance in individuals prone to increased stress reactivity. American journal of industrial medicine, 2002. 41(5): p. 406- 419.

31. Luime, J.J., et al., Work-related risk factors for the incidence and recurrence of shoulder and neck complaints among nursing-home and elderly-care workers. Scandinavian Journal of Work, Environment & Health, 2004. 30(4): p. 279-86.

32. Walker-Bone, K. and C. Cooper, Hard work never hurt anyone: or did it? A review of occupational associations with soft tissue musculoskeletal disorders of the neck and upper limb. Annals of the Rheumatic Diseases, 2005. 64(10): p. 1391.

33. Joksimovic, L., et al., Perceived work stress, overcommitment, and self-reported musculoskeletal pain: a cross-sectional investigation. International journal of behavioral medicine, 2002. 9(2): p. 122-38.

34. Devreux, I., et al., Relation of Work-related Musculoskeletal Disorders and Over-commitment of Rehabilitation Staff in Saudi Arabia. Life Science Journal-Acta Zhengzhou University Overseas Edition, 2012. 9(3): p. 781-785.

35. Lee, S.-J., et al., Psychosocial work factors in new or recurrent injuries among hospital workers: a prospective study. International Archives of Occupational and Environmental Health, 2015. 88(8): p. 1141-1148.

36. Chopp, J.N., S.L. Fischer, and C.R. Dickerson, The impact of work configuration, target angle and hand force direction on upper extremity muscle activity during sub-maximal overhead work. Ergonomics, 2010. 53(1): p. 83-91.

37. van Vilsteren, M., et al., Workplace interventions to prevent work disability in workers on sick leave. The Cochrane database of systematic reviews, 2015(10): p. Cd006955.

38. Punnett, L. and D.H. Wegman, Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. Journal of Electromyography and Kinesiology, 2004. 14(1): p. 13-23. 39. Haering, D., M. Raison, and M. Begon, Measurement and description of three-dimensional

shoulder range of motion with degrees of freedom interactions. Journal of Biomechanical Engineering, 2014. 136(8).

40. Cutlip, R.G., et al., Injury and adaptive mechanisms in skeletal muscle. Journal of Electromyography and Kinesiology, 2009. 19(3): p. 358-372.

41. M Marshall, M. and T. Armstrong, Observational Assessment of Forceful Exertion and the Perceived Force Demands of Daily Activities. Vol. 14. 2004. 281-94.

42. van Rijn, R.M., et al., Associations between work-related factors and specific disorders of the shoulder--a systematic review of the literature. Scandinavian Journal of Work, Environment & Health, 2010. 36(3): p. 189-201.

43. Frost, P., et al., Risk of shoulder tendinitis in relation to shoulder loads in monotonous repetitive work. American journal of industrial medicine, 2002. 41(1): p. 11-18.

79

44. Sluiter, J.K., K.M. Rest, and M.H.W. Frings-Dresen, European Criteria Document for Evaluation of the Work-Relatedness of Upper Extremity Musculoskeletal Disorders. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2000. 44(30): p. 5-445-5-448. 45. Silverstein, B.A., L.J. Fine, and T.J. Armstrong, Hand wrist cumulative trauma disorders in

industry. British Journal of Industrial Medicine, 1986. 43(11): p. 779-84.

46. Barr, A.E. and M.F. Barbe, Pathophysiological Tissue Changes Associated With Repetitive Movement: A Review of the Evidence. Physical Therapy, 2002. 82(2): p. 173-187.

47. Grieve, J.R. and C.R. Dickerson, Overhead work: identification of evidence-based exposure guidelines. Occupational Ergonomics, 2008. 8(1): p. 53-66.

48. Kinali, G., S. Kara, and M.S. Yıldırım, Electromyographic analysis of an ergonomic risk factor: overhead work. Journal Of Physical Therapy Science, 2016. 28(6): p. 1924-1927.

49. Punnett, L., et al., Shoulder disorders and postural stress in automobile assembly work. Scandinavian Journal of Work, Environment & Health, 2000. 26(4): p. 283-91.

50. Rajaee, M.A., et al., Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities. Applied Ergonomics, 2015. 48: p. 22-32.

51. Palmerud, G., et al., Intramuscular pressure of the infra- and supraspinatus muscles in relation to hand load and arm posture. European Journal of Applied Physiology, 2000. 83(2-3): p. 223-30. 52. Hanvold, T.N., et al., Work with prolonged arm elevation as a risk factor for shoulder pain: A

longitudinal study among young adults. Applied Ergonomics, 2015. 47: p. 43-51. 53. Bernard, B.a.a., Musculoskeletal Disorders and Workplace Factors - A Critical Review of

Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back, U.S.D.O.H.A.H. SERVICES, Editor. 1997, National Institute for Occupational Safety and Health: Cincinnati, OH

54. Lamarche, D., et al., Statistiques sur les lésions attribuables aux TMS en milieu de travail 2012- 2015, C.d.l.s.e.d.l.i.d. gestion, Editor. 2016, Commission des normes, de l’équité, de la santé et de la sécurité du travail du Québec Québec.

55. Ogata, K. and L.A. Whiteside, Effects of External Compression on Blood Flow to Muscle and Skin. Clinical Orthopaedics and Related Research, 1982. &NA;(168): p. 105???107.

56. Sjøgaard, G., G. Savard, and C. Juel, Muscle blood flow during isometric activity and its relation to muscle fatigue. European journal of applied physiology and occupational physiology, 1988.

57(3): p. 327-335.

57. Ebaugh, D.D., P.W. McClure, and A.R. Karduna, Effects of shoulder muscle fatigue caused by repetitive overhead activities on scapulothoracic and glenohumeral kinematics. Journal of Electromyography and Kinesiology, 2006. 16(3): p. 224-235.

58. Yoo, W.-g., Changes in Acromion and Scapular Position after Short-term Overhead Work. Journal Of Physical Therapy Science, 2013. 25(6): p. 679-680.

59. Buckle, P.W. and J. Jason Devereux, The nature of work-related neck and upper limb musculoskeletal disorders. Applied Ergonomics, 2002. 33(3): p. 207-217.

60. Bovenzi, M., C.J. Lindsell, and M.J. Griffin, Duration of acute exposures to vibration and finger circulation. Scandinavian Journal of Work, Environment & Health, 1998. 24(2): p. 130-7. 61. Boocock, M.G., et al., Interventions for the prevention and management of neck/upper extremity

musculoskeletal conditions: a systematic review. Occupational and Environmental Medicine, 2007. 64(5): p. 291.

62. Roy, S.D., Marie-Josée; Corriveau, Hélène, L’évaluation des capacités reliées au travail pour une clientèle présentant une déficience physique - Guide de pratique à l’intention des

ergothérapeutes. 2011, Institut de recherche Robert-Sauvé en santé et en sécurité du travail: Montréal, Québec.

63. Saint-Vincent, M., N. Vézina, and M. Bellemare, L'intervention en ergonomie. 2011: Multimondes. 64. Durand, M.-J. and Q.N. Hong, Tools for Assessing Work Disability, in Handbook of Work

Disability: Prevention and Management, P. Loisel and J.R. Anema, Editors. 2013, Springer New York: New York, NY. p. 229-251.

65. Balogh, I., et al., Self-assessed and directly measured occupational physical activities—influence of musculoskeletal complaints, age and gender. Applied Ergonomics, 2004. 35(1): p. 49-56.

80

66. Phellas N., C.B., Alice; Seale, Clive Structured methods: interviews, questionnaires and

observations, in Researching society and culture. 2012, SAGE Publications: Los Angeles. p. 181- 205.

67. Bowling, A., Mode of questionnaire administration can have serious effects on data quality. Journal of Public Health, 2005. 27(3): p. 281-291.

68. Denis, D., M. Lortie, and M. Rossignol, Observation Procedures Characterizing Occupational Physical Activities: Critical Review. International Journal of Occupational Safety and Ergonomics, 2000. 6(4): p. 463-491.

69. Soares, M.M., et al., Cost-efficient observation of working postures from video recordings - more videos, more observers or more views per observer? Work, 2012. 41: p. 2302-2306.

70. Eliasson, K., et al., Inter- and intra- observer reliability of risk assessment of repetitive work without an explicit method. Applied Ergonomics, 2017. 62: p. 1-8.

71. Eichelberger, P., et al., Analysis of accuracy in optical motion capture - A protocol for laboratory setup evaluation. Journal of biomechanics, 2016. 49(10): p. 2085-2088.

72. Richards, J.G., The measurement of human motion: A comparison of commercially available systems. Human Movement Science, 1999. 18(5): p. 589-602.

73. Zhou, H. and H. Hu, Human motion tracking for rehabilitation—A survey. Biomedical Signal Processing and Control, 2008. 3(1): p. 1-18.

74. Muyor, J.M., et al., Test-retest reliability and validity of a motion capture (MOCAP) system for measuring thoracic and lumbar spinal curvatures and sacral inclination in the sagittal plane. Journal of back and musculoskeletal rehabilitation, 2017.

75. Grimaldi, G. and M. Manto, Neurological tremor: sensors, signal processing and emerging applications. Sensors, 2010. 10(2): p. 1399-422.

76. Pasciuto, I., et al., How Angular Velocity Features and Different Gyroscope Noise Types Interact and Determine Orientation Estimation Accuracy. Sensors, 2015. 15(9): p. 23983.

77. Kok, M. and T.B. Schon, Magnetometer Calibration Using Inertial Sensors. IEEE Sensors Journal, 2016. 16(14): p. 5679-5689.

78. Elmenreich, W., An Introduction to Sensor Fusion. 2002.

79. Dadashi, F., et al., Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit. Sensors, 2012. 12(10): p. 12927-12939.

80. Myklebust, H., O. Gloersen, and J. Hallen, Validity of Ski Skating Center-of-Mass Displacement Measured by a Single Inertial Measurement Unit. Journal of Applied Biomechanics, 2015. 31(6): p. 492-8.

81. Kok, M., J. D. Hol, and T. Schön, Using Inertial Sensors for Position and Orientation Estimation. Vol. 11. 2017.

82. Picerno, P., 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Vol. 51. 2016.

83. Wu, G., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of Biomechanics, 2002.

35(4): p. 543-548.

84. Wu, G., et al., ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of

Biomechanics, 2005. 38(5): p. 981-992.

85. Walmsley, C.P., et al., Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review. Sports Medicine - Open, 2018. 4(1): p. 53.

86. Chapman, A.E., The Measurement of Muscular Strength. Br J Sports Med, 1970. 5(1): p. 42-49. 87. Konrad, P., The abc of emg. Vol. 1. 2005.

88. Chowdhury, R.H., et al., Surface Electromyography Signal Processing and Classification Techniques. Sensors, 2013. 13(9): p. 12431-12466.

89. Johnson, V.L., M. Halaki, and K.A. Ginn, The use of surface electrodes to record infraspinatus activity is not valid at low infraspinatus activation levels. Journal of Electromyography and Kinesiology, 2011. 21(1): p. 112-118.

90. Rockwood, C.A., et al., Rockwood and Matsen's The Shoulder E-Book. 2016: Elsevier Health Sciences.

81

91. Nieminen, H., et al., Muscular synergy in the shoulder during a fatiguing static contraction. Clinical Biomechanics, 1995. 10(6): p. 309-317.

92. Chopp-Hurley, J.N. and C.R. Dickerson, The potential role of upper extremity muscle fatigue in the generation of extrinsic subacromial impingement syndrome: a kinematic perspective. Physical Therapy Reviews, 2015. 20(3): p. 201-209.

93. De Luca, C.J., The Use of Surface Electromyography in Biomechanics. Journal of Applied Biomechanics, 1997. 13(2): p. 135-163.

94. Hermens, H.J., et al., SENIAM : European recommendations for surface electromyography : results of the SENIAM project. 1999, [Pays-Bas]: Roessingh Research and Development. 95. Roy, S.H., S.L. Wolf, and D.A. Scalzitti, The Rehabilitation Specialist's Handbook. 2012: F.A.

Davis Company.

96. Blache, Y., et al., Superficial shoulder muscle co-activations during lifting tasks: Influence of lifting height, weight and phase. Journal of Electromyography and Kinesiology, 2015. 25(2): p. 355-362. 97. Blache, Y., et al., Effects of height and load weight on shoulder muscle work during overhead

lifting task. Ergonomics, 2014: p. 1-14.

98. Silvetti, A., et al., Kinematic and electromyographic assessment of manual handling on a supermarket green grocery shelf. Work, 2015. 51(2): p. 261-271.

99. Schepers, H.M., D. Roetenberg, and P.H. Veltink, Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation. Medical & Biological Engineering & Computing, 2010. 48(1): p. 27-37.

100. Zhou, H. and H. Hu, Reducing drifts in the inertial measurements of wrist and elbow positions. IEEE Transactions on Instrumentation and Measurement, 2010. 59(3): p. 575-585.

101. Zhou, H. and H. Hu, Inertial sensors for motion detection of human upper limbs. Vol. 27. 2007. 102. Zhou, H., et al., Use of multiple wearable inertial sensors in upper limb motion tracking. Medical

Engineering & Physics, 2008. 30(1): p. 123-33.

103. Valevicius, A.M., et al., Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review. Journal of electromyography and kinesiology, 2018. 40: p. 1-15.

104. Dejnabadi, H., et al., Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors. IEEE Transactions on Biomedical Engineering, 2006. 53(7): p. 1385- 1393.

105. Dejnabadi, H., B.M. Jolles, and K. Aminian, A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Transactions on Biomedical Engineering, 2005. 52(8): p. 1478-1484.

106. Abyarjoo, F., et al. Implementing a Sensor Fusion Algorithm for 3D Orientation Detection with Inertial/Magnetic Sensors. in Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering. 2015. Cham: Springer International Publishing.

107. Sabatini, A., Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing. Sensors, 2011. 11(2): p. 1489-1525.

108. Fong, D. and Y. Chan, The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review. Sensors, 2010. 10(12): p. 11556-11565. 109. Moher, D., et al., Preferred reporting items for systematic reviews and meta-analyses: the

PRISMA statement. British Medical Journal, 2009. 339: p. b2535.

110. Tong, K. and M.H. Granat, A practical gait analysis system using gyroscopes. Medical Engineering and Physics, 1999. 21(2): p. 87-94.

111. Morris, J.R.W., Accelerometry—A technique for the measurement of human body movements. Journal of Biomechanics, 1973. 6(6): p. 729-736.

112. Djurić-Jovičić, M.D., N.S. Jovičić, and D.B. Popović, Kinematics of Gait: New Method for Angle Estimation Based on Accelerometers. Sensors, 2011. 11(11): p. 10571-10585.

113. Foxlin, E. Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter. in Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium. 1996.

114. Roetenberg, D., C.T.M. Baten, and P.H. Veltink, Estimating body segment orientation by applying inertial and magnetic sensing near ferromagnetic materials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007. 15(3): p. 469-471.

82

115. Terwee, C.B., et al., Quality criteria were proposed for measurement properties of health status questionnaires. Journal of clinical epidemiology, 2007. 60(1): p. 34-42.

116. JC, M., Critical appraisal of study design for psychometric articles evaluation form and

interpretation guide, 3rd edition, in Evidence Based Rehabilitation: A Guide to Practice. , Slack, Editor. 2008: Thorofare, New Jersey. p. 387-392.

117. Balshem, H., et al., GRADE guidelines: 3. Rating the quality of evidence. Journal of Clinical Epidemiology, 2011. 64(4): p. 401-6.

118. Gwet, K.L., Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement Among Raters. 2014, Gaithersburg, Maryland: Advanced Analytics, LLC.

119. Koo, T.K. and M.Y. Li, A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of chiropractic medicine, 2016. 15(2): p. 155-63.

120. van Tulder, M., et al., Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine (Phila Pa 1976), 2003. 28(12): p. 1290-9.

121. de Oliveira, F.C.L., et al., Electromyographic analysis of rotator cuff muscles in patients with rotator cuff tendinopathy: A systematic review. Journal of electromyography and kinesiology, 2017. 35: p. 100-114.

122. Bouvier, B., et al., Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations. Sensors, 2015. 15(8): p. 18813-33.

123. Akins, J.S., et al., Reliability and validity of instrumented soccer equipment. Journal of Applied Biomechanics, 2015. 31(3): p. 195-201.

124. Blair, S., et al., Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. Journal of Biomechanics, 2018.

125. Ertzgaard, P., et al., A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors--A validity study. Manual Therapy, 2016. 21: p. 241-249.

126. Fantozzi, S., et al., Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. Journal of Sports Sciences, 2016. 34(11): p. 1073-80.

127. Gil-Agudo, A., et al., A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural Regeneration Research, 2013. 8(19): p. 1773-82.

128. Godwin, A., M. Agnew, and J. Stevenson, Accuracy of inertial motion sensors in static,

quasistatic, and complex dynamic motion. Journal of Biomechanical Engineering, 2009. 131(11): p. 114501.

129. Pérez, R., et al., Upper Limb Portable Motion Analysis System Based on Inertial Technology for Neurorehabilitation Purposes. Sensors, 2010. 10(12): p. 10733-10751.

130. Plamondon, A., et al., Evaluation of a hybrid system for three-dimensional measurement of trunk posture in motion. Applied Ergonomics, 2007. 38(6): p. 697-712.

131. Robert-Lachaine, X., et al., Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical & Biological Engineering & Computing, 2016.

132. Schall, M.C., et al., Accuracy and repeatability of an inertial measurement unit system for field- based occupational studies. Ergonomics, 2016. 59(4): p. 591-602.

133. Jasiewicz, J.M., et al., Wireless orientation sensors: their suitability to measure head movement

Documents relatifs