C+2/3 specimen

Dans le document The DART-Europe E-theses Portal (Page 137-150)

• Drill a hole in the PMMA where the surface is plane. Fix it then on the aluminium bar using a washer to provide better support (Fig.B.9, left).

• Place the +2/3 part of the print-out on bone and fix it to the sample holder (Fig. B.9, left).

• Align the perpendicular line at C+2/3 position with blade and cut out the C+2/3 cube following the steps explained above.

– First, two transversal cuts.

– Then, two radial cuts.

– Finally, two axial cuts (Fig. B.9, right).

B.6. C+2/3 specimen 129

Figure B.9: Cutting of the C+2/3 specimen.

Bibliography

S. Adhikari and J. Woodhouse. Identification of damping: part 1, viscous damping.

J. Sound Vib., 243(1):43–61, 2001.

P. Ammann and R. Rizzoli. Bone strength and its determinants. Osteoporosis Int., 14(3):13–18, 2003.

R. B. Ashman, S. C. Cowin, W. C. Van Buskirk, and J. C. Rice. A continuous wave technique for the measurement of the elastic properties of cortical bone. J.

Biomech., 17(5):349–361, 1984.

B. A. Auld. Acoustic fields and waves in solids, 2nd edition, volume 1. Krieger, Malabar, Florida, 1990.

R. L. Austman, J. S. Milner, D. W. Holdsworth, and C. E. Dunning. The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone. J. Biomech., 41(15):3171 – 3176, 2008.

S. Bernard, Q. Grimal, S. Haupert, and P. Laugier. Assessment of anisotropic elas-ticity of small bone samples with resonant ultrasound spectroscopy: attenuation does not prevent the measurements. In Ultrasonics Symposium (IUS), IEEE, Sept. 2011.

S. Bernard, Q. Grimal, and P. Laugier. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy. J. Mech. Behav. Biomed.

Mater., 18(0):12–19, 2013.

S. Bernard, Q. Grimal, and P. Laugier. Resonant ultrasound spectroscopy for vis-coelastic characterization of anisotropic attenuative solid materials. J. Acoust.

Soc. Am., 135(5):2601–2613, 2014.

J.-P. Berteau, C. Baron, M. Pithioux, F. Launay, P. Chabrand, and P. Lasaygues.

In vitro ultrasonic and mechanic characterization of the modulus of elasticity of children cortical bone. Ultrasonics, 54(5):1270–1276, 2014.

A. F. Bower. Applied mechanics of solids. CRC Press, Bocca Raton, Florida, 2009.

M. D. Brodt, C. B. Ellis, and M. J. Silva. Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J.

Bone Miner. Res., 14(12):2159–2166, 1999.

D. Carter and W. Hayes. The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg., 59(7):954–962, 1977.

G. Casella and E. I. George. Explaining the gibbs sampler.Am. Stat., 46(3):167–174, 1992.

V. Cerný. Thermodynamical approach to the traveling salesman problem: An effi-cient simulation algorithm. J. Optim. Theory Appl., 45(1):41–51, 1985.

N. L.-T. Chattah, A. Sharir, S. Weiner, and R. Shahar. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: A new approach for characterizing small-bone material properties. Bone, 45(1):84–90, 2009.

S. Cowin. Bone mechanics handbook. CRC Press, 2nd edition, 2001.

J. Currey. Strain rate and mineral content in fracture models of bone. J. Orthop.

Res., 6(1):32–38, 1988a.

J. Currey. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech., 21(2):131–139, 1988b.

T. Delaunay, B. Morvan, M. Guennou, H. Dammak, M. P. Thi, and G. Feuillard.

Full tensorial characterization of PZN-12PT single crystal by resonant ultrasound spectroscopy. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 55(2):476–488, February 2008.

H. H. Demarest. Cube resonance method to determine the elastic constants of solids.

J. Acoust. Soc. Am., 49(3B):768–775, 1971.

J. M. Deuerling, W. Yue, A. A. E. Orias, and R. K. Roeder. Specimen-specific multi-scale model for the anisotropic elastic constants of human cortical bone. J.

Biomech., 42(13):2061–2067, 2009.

G. N. Duda, M. Heller, J. Albinger, O. Schulz, E. Schneider, and L. Claes. Influence of muscle forces on femoral strain distribution. J. Biomech., 31(9):841 – 846, 1998.

A. A. Espinoza Orias, J. M. Deuerling, M. D. Landrigan, J. E. Renaud, and R. K.

Roeder. Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur. J. Mech. Behav. Biomed. Mater., 2:255–263, 2008.

F. Farzbod and D. Hurley. Using eigenmodes to perform the inverse problem associ-ated with resonant ultrasound spectroscopy. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 59(11), November 2012.

J. Foiret, J.-G. Minonzio, C. Chappard, M. Talmant, and P. Laugier. Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering

Bibliography 133

study on in vitro cortical bone samples.IEEE Trans. Ultrason., Ferroelectr., Freq.

Control, 61(9):1478–1488, Sept 2014.

D. B. Fraser and R. C. LeCraw. Novel method of measuring elastic and anelastic properties of solids. Rev. Sci. Instrum., 35(9):1113–1115, 1964.

P. Fratzl. Biomimetic materials research: what can we really learn from nature’s structural materials? J. R. Soc. Interface., 4(15):637–642, 2007.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin.

Bayesian data analysis. CRC press, third edition, 2013.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6:721–

741, Nov 1984.

W. Gilks, S. Richardson, and D. Spiegelhalter. Markov Chain Monte Carlo in Practice. Chapman & Hall, London, UK, 1995.

M. Granke. Multiscale investigation of bone quality using ultrasound. PhD thesis, Université Paris VII - Denis Diderot, 2012.

M. Granke, Q. Grimal, A. Saïed, P. Nauleau, F. Peyrin, and P. Laugier. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone, 49(5):1020–1026, 2011.

Q. Grimal, S. Haupert, D. Mitton, L. Vastel, and P. Laugier. Assessment of cortical bone elasticity and strength: Mechanical testing and ultrasound provide comple-mentary data. Med. Eng. Phys., 31(9):1140–1147, 2009.

Q. Grimal, K. Raum, A. Gerisch, and P. Laugier. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech. Model. Mechanobiol., 10(6):925–937, 2011.

G. Haïat. Linear ultrasonic properties of cortical bone: in vitro studies. In P. laugier and G. Haïat, editors, Bone Quantitative Ultrasound. Springer, 2011.

B. Hartmann and J. Jarzynski. Ultrasonic hysteresis absorption in polymers. J.

Appl. Phys., 43(11):4304–4312, 1972.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 1970.

P. Heyliger, A. Jilani, H. Ledbetter, R. G. Leisure, and C.-L. Wang. Elastic constants of isotropic cylinders using resonant ultrasound. J. Acoust. Soc. Am., 94(3):1482–

1487, 1993.

P. R. Heyliger and W. L. Johnson. Traction-free vibrations of finite trigonal elastic cylinders. J. Acoust. Soc. Am., 113(4):1812–1825, 2003.

G. Holzer, G. von Skrbensky, L. A. Holzer, and W. Pichl. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J. Bone Miner. Res., 24(3):468–474, 2009.

B. Hosten and M. Castaings. Comments on the ultrasonic estimation of the vis-coelastic properties of anisotropic materials.Composites Part A, 39(6):1054–1058, 2008.

D. G. Isaak and I. Ohno. Elastic constants of chrome-diopside: application of reso-nant ultrasound spectroscopy to monoclinic single-crystals. Phys. Chem. Miner., 30(7):430–439, 2003.

T. Iyo, Y. Maki, N. Sasaki, and M. Nakata. Anisotropic viscoelastic properties of cortical bone. J. Biomech., 37(9):1433–1437, 2004.

T. Jaglinski and R. S. Lakes. Resonant ultrasound spectroscopy of cylinders over the full range of poisson’s ratio. Rev. Sci. Instrum., 82(3):035105–035105–7, 2011.

J. L. Katz and H. S. Yoon. The structure and anisotropic mechanical properties of bone. IEEE Trans. Biomed. Eng., BME-31(12):878 –884, dec. 1984.

T. M. Keaveny, D. L. Kopperdahl, L. J. Melton, P. F. Hoffmann, S. Amin, B. L.

Riggs, and S. Khosla. Age-dependence of femoral strength in white women and men. J. Bone Miner. Res., 25(5):994–1001, 2010.

T. S. Keller. Predicting the compressive mechanical behavior of bone. J. Biomech., 27(9):1159–1168, 1994.

G. Kim, A. L. Boskey, S. P. Baker, and M. C. van der Meulen. Improved prediction of rat cortical bone mechanical behavior using composite beam theory to integrate tissue level properties. J. Biomech., 45(16):2784–2790, 2012.

J. H. Kinney, J. R. Gladden, G. W. Marshall, S. J. Marshall, J. H. So, and J. D. May-nard. Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. J. Biomech., 37(4):437–441, 2004.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.

D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods. Wiley, Hoboken, New Jersey, 2011.

Bibliography 135

R. Kumaresan and D. Tufts. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans. Acoust., Speech, Signal Process., 30(6):833–840, dec 1982.

R. Lakes. Viscoelastic materials. Cambridge University Press, 2009.

R. Lakes, H. S. Yoon, and J. L. Katz. Ultrasonic wave propagation and attenuation in wet bone. J. Biomed. Eng., 8(2):143–148, 1986.

R. S. Lakes and J. L. Katz. Viscoelastic properties of wet cortical bone – II. Relax-ation mechanisms. J. Biomech., 12(9):679–687, 1979.

H. Lamb. On the vibrations of an elatic sphere. P. Lond. Math. Soc., 13:189–212, 1882.

M. Landa, P. Sedlák, H. Seiner, L. Heller, L. Bicanová, P. Šittner, and V. Novák.

Modal resonant ultrasound spectroscopy for ferroelastics. Appl. Phys., A, 96:

557–567, 2009.

S. B. Lang. Elastic coefficients of animal bone. Science, 165(3890):287–288, 1969.

P. Laugier. Instrumentation for in vivo ultrasonic characterization of bone strength.

IEEE Trans. Ultrason., Ferroelectr., Freq. Control., 55(6):1179–1196, June 2008.

P. Laugier and Q. Grimal. Preface to the special section: ultrasonics of bone.

Ultrasonics, 54(5):1123–1124, 2014.

P. Laugier and G. Haïat. Bone Quantitative Ultrasound. Springer, 2011.

A. V. Lebedev. Method of linear prediction in the ultrasonic spectroscopy of rock.

Acoust. Phys., 48:339–346, 2002.

A. V. Lebedev, L. A. Ostrovskii, A. M. Sutin, I. A. Soustova, and P. A. Johnson.

Resonant acoustic spectroscopy at low Qfactors. Acoust. Phys., 49:81–87, 2003.

H. Ledbetter, C. Fortunko, and P. Heyliger. Orthotropic elastic constants of a boron-aluminum fiber-reinforced composite: An acoustic-resonance-spectroscopy study. J. Appl. Phys., 78(3):1542–1546, 1995.

H. Ledbetter, H. Ogi, and N. Nakamura. Elastic, anelastic, piezoelectric coefficients of monocrystal lithium niobate. Mech. Mater., 36(10):941–947, 2004.

T. Lee, R. S. Lakes, and A. Lal. Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy.

Rev. Sci. Instrum., 71(7):2855–2861, 2000.

T. Lee, R. S. Lakes, and A. Lal. Investigation of bovine bone by resonant ultrasound spectroscopy and transmission ultrasound. Biomech. Model. Mechanobiol., 1:165–

175, 2002.

R. Leisure, K. Foster, J. Hightower, and D. Agosta. Internal friction studies by resonant ultrasound spectroscopy. Mater. Sci. Eng., A, 370:34–40, 2004.

G. Li and J. R. Gladden. High temperature resonant ultrasound spectroscopy: A review. Int. J. Spectrosc., 2010.

G. Liu and J. Maynard. Measuring elastic constants of arbitrarily shaped samples using resonant ultrasound spectroscopy. J. Acous. Soc. Am., 131(3):2068–2078, 2012.

A. Love. A Treatise on the Mathematical Theory of Elasticity. Dover Pubilcations„

1944.

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-bridge University Press, 2003.

J. D. Maynard. The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement. J. Acoust. Soc. Am., 91(3):

1754–1762, 1992.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21:1087–1092, June 1953.

A. Migliori. Resonances and time-of-flight: Ultrasonic probes of condensed matter go digital. Acoustics Today, 4(1):17–22, 2008.

A. Migliori and J. D. Maynard. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Rev. Sci. Instrum., 76(12):121301, 2005.

A. Migliori and J. L. Sarrao. Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation. Wiley, New York, 1997.

A. Migliori, W. M. Visscher, S. E. Brown, Z. Fisk, S.-W. Cheong, B. Alten, E. T.

Ahrens, K. A. Kubat-Martin, J. D. Maynard, Y. Huang, D. R. Kirk, K. A. Gillis, H. K. Kim, and M. H. W. Chan. Elastic constants and specific-heat measurements on single crystals of La2CuO4. Phys. Rev. B, 41:2098–2102, Feb 1990.

Bibliography 137

A. Migliori, J. L. Sarrao, W. M. Visscher, T. M. Bell, M. Lei, Z. Fisk, and R. G.

Leisure. Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B, 183(1-2):1–24, 1993.

R. D. Mindlin. Simple modes of vibration of crystals. J. Appl. Phys., 27(12):1462–

1466, 1956.

J.-G. Minonzio, J. Foiret, M. Talmant, and P. Laugier. Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates. J. Acoust. Soc. Am., 130(6):3574–3582, 2011.

E. Mochizuki. Application of group theory to free oscillations of an anisotropic rectangular parallelepiped. J. Phys. Earth, 35:159–170, 1987.

R. Nalla, J. Kruzic, J. Kinney, M. Balooch, J. A. III, and R. Ritchie. Role of mi-crostructure in the aging-related deterioration of the toughness of human cortical bone. Mat. Sci. Eng. C, 26(8):1251–1260, 2006.

H. Ogi, K. Sato, T. Asada, and M. Hirao. Complete mode identification for resonance ultrasound spectroscopy. J. Acoust. Soc. Am., 112(6):2553–2557, 2002.

H. Ogi, N. Nakamura, K. Sato, M. Hirao, and S. Uda. Elastic, anelastic, and piezo-electric coefficients of langasite: resonance ultrasound spectroscopy with laser-doppler interferometry. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 50(5):

553 –560, 2003.

C. Ohman, M. Baleani, C. Pani, F. Taddei, M. Alberghini, M. Viceconti, and M. Manfrini. Compressive behaviour of child and adult cortical bone. Bone, 49(4):769–776, 2011.

I. Ohno. Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals. J. Phys. Earth, 24:

355–379, 1976.

I. Ohno. Rectangular parallellepiped resonance method for piezoelectric crystals and elastic constants of alpha-quartz. Phys. Chem. Miner., 17(5):371–378, 1990.

I. Ohno, S. Yamamoto, O. L. Anderson, and J. Noda. Determination of elastic constants of trigonal crystals by the rectangular parallelepiped resonance method.

J. Phys. Chem. Solids, 47(12):1103–1108, 1986.

W. Parnell, M. Vu, Q. Grimal, and S. Naili. Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone. Biomech.

Model. Mechanobiol., 11(6):883–901, 2011.

W. J. Parnell and Q. Grimal. The influence of mesoscale porosity on cortical bone anisotropy. investigations via asymptotic homogenization. J. Roy. Soc. Int., 6 (30):97–109, 2009.

J. Plesek, R. Kolman, and M. Landa. Using finite element method for the deter-mination of elastic moduli by resonant ultrasound spectroscopy. J. Acoust. Soc.

Am., 116(1):282–287, 2004.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in C: the art of scientific computing, 2nd edition. Cambridge University Press, 1992.

K. Raum. Microscopic elastic properties. In P. laugier and G. Haïat, editors, Bone Quantitative Ultrasound. Springer, 2011.

K. Raum, Q. Grimal, P. Varga, R. Barkmann, C. Glüer, and P. Laugier. Ultrasound to assess bone quality. Curr. Osteoporos. Rep., 12(2):154–162, 2014.

S. J. Reese, K. Telschow, T. Lillo, and D. H. Hurley. On the establishment of a method for characterization of material microstructure through laser-based reso-nant ultrasound spectroscopy.IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 55(4):770–777, April 2008.

A. G. Reisinger, D. H. Pahr, and P. K. Zysset. Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech. Model. Mechanobiol., 10(1):

67–77, 2011a.

A. G. Reisinger, D. H. Pahr, and P. K. Zysset. Principal stiffness orientation and degree of anisotropy of human osteons based on nanoindentation in three distinct planes. J. Mech. Behav. Biomed. Mater., 4(8):2113 – 2127, 2011b.

M. C. Renken, S. Kim, K. Hollman, and C. Fortunko. Accuracy of resonant ul-trasound spectroscopy: an experimental study. InUltrasonics Symposium (IUS), IEEE, volume 1, pages 483–488, Oct. 1997.

J.-Y. Rho. An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics, 34(8):777–783, 1996.

J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos. Mechanical properties and the hier-archical structure of bone. Med. Eng. Phys., 20(2):92–102, 1998.

R. O. Ritchie, M. J. Buehler, and P. Hansma. Plasticity and toughness in bone.

Phys Today, 62(6):41–47, 2009.

Bibliography 139

D. Rohrbach, S. Lakshmanan, F. Peyrin, M. Langer, A. Gerisch, Q. Grimal, P. Laugier, and K. Raum. Spatial distribution of tissue level properties in a human femoral cortical bone. J. Biomech., 45(13):2264–2270, 2012.

D. Royer and E. Dieulesaint. Elastic waves in solids, volume 1. Springer, 2000.

D. J. Rudy, J. M. Deuerling, A. A. E. Orías, and R. K. Roeder. Anatomic variation in the elastic inhomogeneity and anisotropy of human femoral cortical bone tissue is consistent across multiple donors. J. Biomech., 44(9):1817–1820, 2011.

M. Sasso, G. Haïat, Y. Yamato, S. Naili, and M. Matsukawa. Dependence of ultra-sonic attenuation on bone mass and microstructure in bovine cortical bone. J.

Biomech., 41(2):347–355, 2008.

M. B. Schaffler and D. B. Burr. Stiffness of compact bone: Effects of porosity and density. J. Biomech., 21(1):13–16, 1988.

R. Schapery. A theory of crack initiation and growth in viscoelastic media. Int. J.

Fract., 11(1):141–159, 1975.

E. Schileo, F. Taddei, A. Malandrino, L. Cristofolini, and M. Viceconti. Subject-specific finite element models can accurately predict strain levels in long bones.

J. Biomech., 40(13):2982–2989, 2007.

E. Schileo, E. Dall‘Ara, F. Taddei, A. Malandrino, T. Schotkamp, M. Baleani, and M. Viceconti. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J. Biomech., 41(11):2483–2491, 2008.

E. Schreiber and O. L. Anderson. Properties and composition of lunar materials:

Earth analogies. Science, 168(3939):1579–1580, 1970.

S. Schuit, M. van der Klift, A. Weel, C. de Laet, H. Burger, E. Seeman, A. Hofman, A. Uitterlinden, J. van Leeuwen, and H. Pols. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study.Bone, 34(1):195–202, 2004.

P. Sedlák, H. Seiner, J. Zídek, M. Janovská, and M. Landa. Determination of all 21 independent elastic coefficients of generally anisotropic solids by resonant ultrasound spectroscopy: Benchmark examples. Exp. Mech., pages 1–13, 2014.

E. Seeman and P. D. Delmas. Bone quality - The material and structural basis of bone strength and fragility. N. Eng. J. Med., 354(21):2250–2261, 2006.

H. Seiner, P. Sedlak, L. Bodnarova, A. Kruisova, M. Landa, A. de Pablos, and M. Belmonte. Sensitivity of the resonant ultrasound spectroscopy to weak gradi-ents of elastic properties. J. Acoust. Soc. Am., 131(5):3775–3785, 2012.

H. Seiner, P. Sedlák, M. Koller, M. Landa, C. Ramírez, M. Osendi, and M. Belmonte.

Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites. Compos. Sci. Technol., 75:93–97, 2013.

R. Shahar, P. Zaslansky, M. Barak, A. Friesem, J. Currey, and S. Weiner.

Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry. J. Biomech., 40(2):252–264, 2007.

H. Sievänen, S. Cheng, S. Ollikainen, and K. Uusi-Rasi. Ultrasound velocity and cortical bone characteristics in vivo. Osteoporosis Int., 12(5):399–405, 2001.

J. So and A. Leissa. Three-dimensional vibrations of thick circular and annular plates. J. Sound Vib., 209(1):15–41, 1998.

P. S. Spoor, J. D. Maynard, and A. R. Kortan. Elastic isotropy and anisotropy in quasicrystalline and cubicAlCuLi. Phys. Rev. Lett., 75:3462–3465, 1995.

A. Stekel, J. L. Sarrao, T. M. Bell, M. Lei, R. G. Leisure, W. M. Visscher, and A. Migliori. Method for identification of the vibrational modes of a rectangular parallelepiped. J. Acoust. Soc. Am., 92(2):663–668, 1992.

A. Tarantola.Inverse Problem Theory and methods for model parameters estimation.

SIAM, 2005.

T. Ulrich, K. R. McCall, and R. A. Guyer. Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy. J. Acous. Soc. Am., 111(4):

1667–1674, 2002.

W. Van Buskirk, S. Cowin, and R. N. Ward. Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone. J. Biomech. Eng., 103(2):67–72, 1981.

G. H. van Lenthe, R. Voide, S. K. Boyd, and R. Müller. Tissue modulus calculated from beam theory is biased by bone size and geometry: Implications for the use of three-point bending tests to determine bone tissue modulus.Bone, 43(4):717–723, 2008.

W. M. Visscher, A. Migliori, T. M. Bell, and R. A. Reinert. On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects.J. Acoust. Soc.

Am., 90(4):2154–2162, 1991.

S. Wallach, J. D. Feinblatt, J. H. Carstens, and L. V. Avioli. The bone "quality"

problem. Calcif. Tissue Int., 51(3):169–172, 1992.

L. J. Walpole. The elastic shear moduli of a cubic crystal. J. Phys. D: Appl. Phys., 19(3):457, 1986.

Bibliography 141

Y. C. Wang and R. S. Lakes. Resonant ultrasound spectroscopy in shear mode. Rev.

Sci. Instrum., 74(3):1371–1373, 2003.

L. Wasserman. Bayesian model selection and model averaging. J. Math. Psychol., 44(1):92–107, 2000.

S. Weiner and H. D. Wagner. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci., 28(1):271–298, 1998.

Z. Wu, T. C. Ovaert, and G. L. Niebur. Viscoelastic properties of human cortical bone tissue depend on gender and elastic modulus.J. Orthop. Res., 30(5):693–699, 2012.

R. Yang and J. Berger. A catalog of noninformative priors. ISDS Discussion paper, 97(42), 1997.

A. Yoneda. Intrinsic eigenvibration frequency in the resonant ultrasound spec-troscopy: Evidence for a coupling vibration between a sample and transducers.

Earth Planets Space, 54(7):763–770, 2002. ISSN 1343-8832.

H. S. Yoon and J. L. Katz. Ultrasonic wave propagation in human cortical bone, I. Theoretical considerations for hexagonal symmetry. J. Biomech., 9(6):407–412, 1976a.

H. S. Yoon and J. L. Katz. Ultrasonic wave propagation in human cortical bone, II.

Measurements of elastic properties and microhardness.J. Biomech., 9(7):459–464, 1976b.

R. M. Zebaze, A. C. Jones, M. G. Pandy, M. A. Knackstedt, and E. Seeman. Differ-ences in the degree of bone tissue mineralization account for little of the differDiffer-ences in tissue elastic properties. Bone, 48(6):1246–1251, 2011.

H. Zhang, R. S. Sorbello, C. Hucho, J. Herro, J. R. Feller, D. E. Beck, M. Levy, D. Isaak, J. D. Carnes, and O. Anderson. Radiation impedance of resonant ultra-sound spectroscopy modes in fused silica. J. Acoust. Soc. Am., 103(5):2385–2394, 1998.

E. A. Zimmermann, E. Schaible, H. Bale, H. D. Barth, S. Y. Tang, P. Reichert, B. Busse, T. Alliston, J. W. Ager, and R. O. Ritchie. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. PNAS, 108(35):14416–14421, 2011.

Dans le document The DART-Europe E-theses Portal (Page 137-150)