• Aucun résultat trouvé

Bioaccumulation du chrome (VI) par la souche lactique ( St.sa )

Ce test nous a permis d’évaluer la capacité de St. salivarius à accumuler le Cr(VI) chaque 24h pendant 72h d’incubation à 37°C sous agitation, en présence d’une concentration initiale de 50mg/L en Cr(VI), en comparant avec un témoin constitué d’une culture dans les mêmes conditions mais en absence du Cr (VI). Les résultats du test sont présentés ci-dessous (Figure 7).

La concentration du chrome intracellulaire est donnée en mg de chrome accumulé par 1g de poids sec de la biomasse.

Figure 7. Bioaccumulation du Cr(VI) par St. salivarius en absence et en présence de 50 mg/L du Cr dans le bouillon MRS incubé à 37°C.

On observe qu’il ya une différence remarquable dans la concentration du chrome accumulé par la bactérie cultivée dans un milieu dépourvu de métal et l’autre cultivée en présence d’une concentration initiale de 50 mg/L en Cr(VI). Une augmentation progressive du Cr accumulé est aussi constatée, il atteint une concentration de 13,31mg du Cr(VI)/g du poids sec de la biomasse, cependant sa concentration en absence du métal reste presque constante à une valeur de 1,9 mg du Cr(VI)/g du poids sec. Ces résultats permettent de confirmer la capacité de notre souche St. salivarius à accumuler le chrome hexavalent. Cette capacité à bioaccumuler le Cr(VI) peut être expliquée par l’existence d’interactions électrostatiques entre les métaux lourds et la surface De cette bactérie, ces interactions sont préalables à la biosorption ou bioaccumulation des métaux mettant en jeu des liaisons avec les protéines membranaires de la bactérie (Halttunenet al, 2007).

0 2 4 6 8 10 12 14 J1 J2 J3 con ce n tr at ion d e Cr ac cu m u en m g/ g d u p oid s se c

Temps d'incubation (jours)

32

Chang et al.(2012), ont testé la capacité de Lactobacillus bulgaricus NBRC13953 et Streptococcus thermophilus NBRC13957 à éliminer le chrome, le cuivre et l’arsenic (isolés à partir des déchets de bois traité par l'arséniate de cuivre chromaté), ils ont trouvé que l’acide lactique et l’acide pyruvique produits par les bactéries lactiques jouent un rôle dans la biosorption des métaux lourds.

Sheng et al. (2016), ont étudié la capacité de Lactococcus lactis subsp. lactis à accumuler le cadmium dans différents compartiments cellulaires en présence de différentes concentrations du métal (0, 10, 25, 50, 100, 200 mg/L) pendant 24h. Ils ont trouvé que cette souche tolère et accumule le Cd dans la cellule, ils ont donc suggéré que les protéines membranaires, les polysaccharides et l’acide phosphatidique jouent un rôle dans la biosorption du Cd à cause de sa charge négative. La bioaccumulation est localisée dans la surface cellulaire à l’aide des groupements fonctionnels comme –OH et –NH2. Ces travaux rapportent que la bioaccumulation des métaux lourds entraine des changements de la charge et de l’hydrophobicité de la surface et par conséquent affecte la structure cellulaire, ils suggèrent que ces changements sont l’un des mécanismes de résistance aux métaux lourds.

Conclusion

et

34

Cette étude a pour but de tester la capacité de la souche Streptococcus salivarius isolée à partir du lait cru à éliminer le chrome hexavalent présent à une concentration de 50mg/L dans le milieu de culture. Dans la première partie, notre étude est fondée sur la résistance et la croissance en présence des métaux lourds (Cr(VI), Pb et Hg). Dans la deuxième partie, nous avons étudié la capacité d’élimination et de bioaccumulation du Cr(VI) par la souche lactique St. salivarius.

Les résultats de cette étude montrent que :

Cette souche lactique St. salivarius tolère une concentration supérieure à 450 mg/L pour le Cr(VI) et le Pb. Une concentration minimale inhibitrice égale à 30 mg/L pour le Hg

Une bonne croissance bactérienne à un pH égal à 7 et une élimination du Cr(VI) à un pH égal à 5 sous agitation modérée.

L’élimination du chrome (VI) par le mécanisme de bioaccumulation intracellulaire par la souche St. salivarius a été confirmée en mettant en œuvre son analyse par la méthode colorimétrique par le 1,5 diphénylcarbazide, donc elle est capable d’accumuler une concentration remarquable de Cr(VI) égale à 13,31mg du Cr(VI) / g du poids sec de la biomasse.

Ces résultats préliminaires semblent indiquer le rôle détoxifiant de la souche lactique St. salivarius.

Nous suggérons l’utilisation de cette souche pour la détoxification des aliments contaminés, ou l’utilisation comme un probiotique dans les produits alimentaires pour la détoxification de l’organisme humain du chrome qui peut être ingéré par l’eau ou les aliments contaminés, ceci ouvre une nouvelle voie de recherche dans le domaine des probiotiques.

Références

35

A

Ackerley, D. F., Gonzalez, C. F., Keyhan, M., Blake, R., et Matin, A. (2004a). Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology, 6(8), 851-860.

Ackerley, D. F., Gonzalez, C. F., Park, C. H., Blake, R., Keyhan, M., et Matin, A. (2004b).

Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 70(2), 873-882.

Afify, A. E. M. R., Romeliah, R. M., Sultan, S. I., et Hussein, M. M. (2012). Antioxidant activity and biological evaluations of probiotic bacteria strains. International Journal of Academic Research, 4(6), 131-139.

Alexandre, Y., Le Blay, G., Boisramé-Gastrin, S., Le Gall, F., Héry-Arnaud, G., Gouriou, S., ... et Le Berre, R. (2014). Probiotics: A new way to fight bacterial pulmonary infections?.

Médecine et Maladies Infectieuses, 44(1), 9-17.

Alvarez, A. H., Moreno-Sánchez, R., et Cervantes, C. (1999). Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. Journal of Bacteriology, 181(23), 7398-7400.

Apostolou, E., Kirjavainen, P. V., Saxelin, M., Rautelin, H., Valtonen, V., Salminen, S. J., & Ouwehand, A. C. (2001). Good adhesion properties of probiotics: a potential risk for bacteremia? FEMS Immunology & Medical Microbiology, 31(1), 35-39.

Ashraf, R., Vasiljevic, T., Day, S. L., Smith, S. C., et Donkor, O. N. (2014). Lactic acid bacteria and probiotic organisms induce different cytokine profile and regulatory T cells mechanisms. Journal of Functional Foods, 6, 395-409.

B

Balakrishnan, R., Kumar, C. S., Reddy, K. K., Rani, M. U., Srikanth, M. K., Kavitha, K., ...et Reddy, A. G. (2014). Antioxidant activity of coated probiotic Lactobacillus casei on chromium (VI) induced oxidative stress in rats. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(2), 305-310.

36

Behnsen, J., Deriu, E., Sassone-Corsi, M., et Raffatellu, M. (2013). Probiotics: properties, examples, and specific applications. Cold Spring Harbor Perspectives in Medicine, 3(3), a010074.

Besser, J. M., Brumbaugh, W. G., Kemble, N. E., May, T. W., et Ingersoll, C. G. (2004).

Effects of sediment characteristics on the toxicity of chromium (III) and chromium (VI) to the amphipod, Hyalella azteca. Environmental Science & Technology, 38(23), 6210-6216.

Bhakta, J. N., Ohnishi, K., Munekage, Y., et Iwasaki, K. (2010). Isolation and probiotic characterization of arsenic-resistant lactic acid bacteria for uptaking arsenic. International Journal of Chemical and Biological Engineering, 3(4), 167-174.

Bhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K., et Wei, M. Q. (2012). Characterization of lactic acid bacteria‐based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology, 112(6), 1193-1206.

Bhattacharya, A., et Gupta, A. (2013). Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environmental Science and Pollution Research, 20(9), 6628-6637.

Burton, J. P., Wescombe, P. A., Moore, C. J., Chilcott, C. N., et Tagg, J. R. (2006). Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Applied and Environmental Microbiology, 72(4), 3050-3053.

Butel, M. J. (2014a). Les probiotiques et leur place en médecine humaine. Journal des Anti-infectieux, 16(2), 33-43.

Butel, M. J. (2014b). Probiotics, gut microbiota and health. Médecine et Maladies Infectieuses,

44(1), 1-8.

C

Cervantes, C., Campos‐García, J., Devars, S., Gutiérrez‐Corona, F., Loza‐Tavera, H., Torres‐Guzmán, J. C., et Moreno‐Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25(3), 335-347.

Chang, Y. C., Choi, D., & Kikuchi, S. (2012). Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus. Bioresource Technology, 103(1), 477-480.

37

Cherfi, A., Abdoun, S., et Gaci, O. (2014). Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food and Chemical Toxicology, 70, 48-53.

Cheung, K. H., et Gu, J. D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration & Biodegradation, 59(1), 8-15).

Costa, M. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 188(1), 1-5.

D

Davies Jr, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., et SaraivaGrossi, J. A. (2002).

Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition, 25(11), 2389-2407.

Delorme, C., Abraham, A. L., Renault, P., et Guédon, E. (2015). Genomics of Streptococcus salivarius, a major human commensal. Infection, Genetics and Evolution, 33, 381-392.

Deng, X., et Wang, P. (2012).Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresource Technology. 121: 342-347.

Dhal, B., Thatoi, H. N., Das, N. N., et Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials, 250, 272-291.

Djamaa, Z. (2014). Etude physico-chimique du poly (4-vinylpyridine) de différentes tailles modifiées par des chaînes alkyles. Application à la rétention du chrome hexavalent (Doctoral dissertation).

E

Elsanhoty, R. M., Al-Turki, I. A., et Ramadan, M. F. (2016). Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Science and Technology, 74(3), 625-638.

El-Sheekh, M., Allam, N. G., Ibrahi, N., et Alfakharany, G. (2016). Potential role of probiotic bacteria as antioxidants agent. Journal of Bioscience and Applied Research, 2, 595-600.

38

F

Faghfoori, Z., Gargari, B. P., Gharamaleki, A. S., Bagherpour, H., et Khosroushahi, A. Y. (2015). Cellular and molecular mechanisms of probiotics effects on colorectal cancer. Journal of Functional Foods, 18, 463-472.

G

Gajalakshmi, S., Iswarya, V., Ashwini, R., Divya, G., Mythili, S., et Sathiavelu, A. (2012).

Evaluation of heavy metals in medicinal plants growing in Vellore District. European Journal of Experimental Biology, 2(5), 1457-1461.

Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219-232.

Gerbino, E., Carasi, P., Tymczyszyn, E. E., et Gómez-Zavaglia, A. (2014). Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity. Journal of Dairy Research, 81(03), 280-287.

Gomaa, E. Z. (2016). Cryoprotection of probiotic bacteria with poly-γ-glutamic acid produced by

Bacillus subtilis and Bacillus licheniformis. Journal of Genetic Engineering and

Biotechnology, 14(2), 269-279.

Goullé, J. P., Saussereau, E., Grosjean, J., Doche, C., Mahieu, L., Thouret, J. M., ... et Lacroix, C. (2012). Accidental potassium dichromate poisoning. Toxicokinetics of chromium by ICP-MS-CRC in biological fluids and in hair. Forensic Science International, 217(1), e8-e12.

Guglielmetti, S., Taverniti, V., Minuzzo, M., Arioli, S., Zanoni, I., Stuknyte, M., ... & Mora, D. (2010). A dairy bacterium displays in vitro probiotic properties for the pharyngeal mucosa by antagonizing group A streptococci and modulating the immune response. Infection and Immunity,

78(11), 4734-4743.

Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J. et He Y. (2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium

Bacillus sp L14.Bioresource Technology, 101: 8599–8605.

Gupta, P., et Diwan, B. (2016). Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports.

39

H

Halttunen, T., Salminen, S., et Tahvonen, R. (2007). Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology, 114(1), 30-35.

Hansda, A., et Kumar, V. (2016). A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology and Biotechnology, 32(10), 170.

Hossini, H., Makhdoumi, P., Mohammadi-Moghadam, F., Javid, A., et Mirzaei, N. (2016). A review of toxicological, environmental and health effects of chromium from aqueous medium; available removal techniques. Acta Medica Mediterranea, 32, 1463-1469.

I

Ibrahim, A. S., El-Tayeb, M. A., Elbadawi, Y. B., et Al-Salamah, A. A. (2011). Bioreduction of Cr (VI) by potent novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr5 isolated from hypersaline Soda lakes. African Journal of Biotechnology, 10(37), 7207-7218.

Ibrahim, F., Halttunen, T., Tahvonen, R., et Salminen, S. (2006). Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 52(9), 877-885.

Ishibashi, N., et Yamazaki, S. (2001). Probiotics and safety. The American Journal of Clinical Nutrition, 73(2), 465s-470s.

Islam, M. M., Kabir, S. M. L., Sarker, Y. A., Sikder, M. M. H., Islam, S. K. S., Akhter, A. H. M. T., et Hossain, M. M. (2017). Risk assessment of chromium levels in broiler feeds and meats from selected farms of Bangladesh. Bangladesh Journal of Veterinary Medicine, 14(2), 131-134.

J

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., et Beeregowda, K. N. (2014).Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72.

Joutey, N. T., Sayel, H., Bahafid, W., et El Ghachtouli, N. (2015). Mechanisms of hexavalent chromium resistance and removal by microorganisms. In Reviews of Environmental Contamination and Toxicology Volume 233 (pp. 45-69). Springer International Publishing.

40

K

Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., ... et Kimura, K. (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology, 164(7), 701-709.

Kirman, C. R., Suh, M., Hays, S. M., Gürleyük, H., Gerads, R., De Flora, S., ... et Proctor, D. M. (2016). Reduction of hexavalent chromium by fasted and fed human gastric fluid. II. Ex vivo gastric reduction modeling. Toxicology and Applied Pharmacology, 306, 120-133.

Kumar, N., Kumar, V., Panwar, R., et Ram, C. (2016). Efficacy of indigenous probiotic

Lactobacillus strains to reduce cadmium bioaccessibility-An in vitro digestion

model. Environmental Science and Pollution Research, 1-10.

L

Lewicki, S., Zdanowski, R., Krzyzowska, M., Lewicka, A., Debski, B., Niemcewicz, M., et Goniewicz, M. (2014). The role of Chromium (III) in the organism and its possible use in diabetes and obesity treatment. Annals of Agricultural and Environmental Medicine, 21(2).

Li, Y., Wang, W., Zhou, L., Liu, Y., Mirza, Z. A., et Lin, X. (2017). Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Chemosphere, 169, 131-138.

Lopez-Luna, J., Gonzalez-Chavez, M. C., Esparza-Garcia, F. J., et Rodriguez-Vazquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials,

163(2), 829-834.

Lukina, A. O., Boutin, C., Rowland, O., et Carpenter, D. J. (2016). Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants. Chemosphere, 162, 355-364.

M

Mahmood, A., et Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7(1), 91-99.

41

Malaviya, P., et Singh, A. (2016). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 42(4), 607-633.

Mamais, D., Noutsopoulos, C., Kavallari, I., Nyktari, E., Kaldis, A., Panousi, E., ... et Nasioka, M. (2016). Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. Chemosphere, 152, 238-244.

Markad, U. S., Kalekar, A. M., Naik, D. B., Sharma, K. K. K., Kshirasagar, K. J., & Sharma, G. K. (2017). Photo enhanced detoxification of chromium (VI) by formic acid using 3D palladium nanocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 338, 115-122.

Marzouk Trifi, I. (2012). Étude de l'élimination du chrome VI par adsorption sur l'alumine activée par dialyse ionique croisée. Thèse de doctorat. Université Paris-Est. 67-70.

MinYan, H., XiangYang, L., Liang, G., Miller, S. J., Rensing, C., et GeJiao, W. (2010).

Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BioMed Central Microbiology, 10(221).

Masdea, L., Kulik, E. M., Hauser-Gerspach, I., Ramseier, A. M., Filippi, A., &Waltimo, T. (2012). Antimicrobial activity of Streptococcus salivarius K12 on bacteria involved in oral malodour. Archives of oral biology, 57(8), 1041-1047.

Mishra, S., et Bharagava, R. N. (2016).Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health, Part C, 34(1), 1-32.

Mizock, B. A. (2015). Probiotics. Disease-a-Month, 7(61), 259-290.

Monachese, M., Burton, J. P., et Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics?. Applied and Environmental Microbiology, 78(18), 6397-6404.

Mrvčić, J., Butorac, A., Šolić, E., Stanzer, D., Bačun-Družina, V., Cindrić, M., et Stehlik-Tomas, V. (2013). Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions. World Journal of Microbiology and Biotechnology, 29(1), 75-85.

Mrvčić, J., Stanzer, D., Šolić, E., et Stehlik-Tomas, V. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology, 28(9), 2771-2782.

42

N

Nader-Macías, M. E. F., et Tomás, M. S. J. (2015).Profiles and technological requirements of urogenital probiotics. Advanced Drug Delivery Reviews, 92, 84-104.

Narayani, M., et Shetty, K. V. (2013). Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Critical Reviews in Environmental Science and Technology, 43(9), 955-1009.

Neish, A. S. (2016). Probiotics of the Acidophilus Group: Lactobacillus acidophilus, delbrueckii

subsp. bulgaricus and johnsonii in : The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis(Floch, M. H., Ringel, Y., et Walker, W. A.). Academic Press.

Nithya, C., Gnanalakshmi, B., et Pandian, S. K. (2011).Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria. Marine Environmental Research, 71: 283-294.

O

Oelschlaeger, T. A. (2010). Mechanisms of probiotic actions–a review. International Journal of Medical Microbiology, 300(1), 57-62.

Oliveira, H. (2012). Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany, 2012.

O'Shea, E. F., Cotter, P. D., Stanton, C., Ross, R. P., et Hill, C. (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 152(3), 189-205.

Oves, M., Khan, M. S., et Zaidi, A. (2013). Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences, 20(2), 121-129.

P

Pawełczyk, A., Božek, F., et Grabas, K. (2016). Impact of military metallurgical plant wastes on the population's health risk. Chemosphere, 152, 513-519.

43

Puranik, P. R., et Paknikar, K. M. (1999). Biosorption of lead, cadmium, and zinc by

Citrobacter strain MCM B‐181: Characterization Studies. Biotechnology progress, 15(2), 228-237.

Q

Qambrani, N. A., Hwang, J. H., et Oh, S. E. (2016). Comparison of chromium( III) and (VI) toxicities in water using sulfur-oxidizing bacterial bioassays. Chemosphere, 160, 342-348.

Quigley, E. M. M. (2016). Bifidobacteria as Probiotic Organisms: An Introduction in: The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis (Floch, M. H., Ringel, Y., & Walker, W. A.). Academic Press.

R

Ramírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J., et

Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium

compounds. Biometals, 21(3), 321-332.

Rao, L. N., et Prabhakar, G. (2011). Removal of heavy metals by biosorption-an overall review. Journal of Engineering Research and Studies, 2(4), 17-22.

Roy, D. (2011). Probiotics, Chapter 4.49. Comprehensive Biotechnology, 4, 591-600.

S

Saha, B., et Orvig, C. (2010). Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 254(23), 2959-2972.

Saha, R., Nandi, R., et Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782-1806.

Sazakli, E., Villanueva, C. M., Kogevinas, M., Maltezis, K., Mouzaki, A., et Leotsinidis, M. (2014). Chromium in drinking water: association with biomarkers of exposure and effect. International Journal of Environmental Research and Public Health, 11(10), 10125-10145.

Schultz, M., Burton, J.P. (2016). Escherichia coli Nissle 1917 in : The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis (Floch, M. H., Ringel, Y., & Walker, W. A.). Academic Press.

44

Sforzini, S., Moore, M. N., Mou, Z., Boeri, M., Banni, M., et Viarengo, A. (2017). Mode of action of Cr (VI) in immunocytes of earthworms: Implications for animal health. Ecotoxicology and Environmental Safety, 138, 298-308.

Sheng, Y., Wang, Y., Yang, X., Zhang, B., He, X., Xu, W., et Huang, K. (2016). Cadmium tolerant characteristic of a newly isolated Lactococcus lactis subsp. lactis. Environmental Toxicology and Pharmacology, 48, 183-190.

Shukla, R., Iliev, I., et Goyal, A. (2014). Leuconostoc mesenteroides NRRL B-1149 as probiotic and its dextran with anticancer properties. Journal BioScience and Biotechnology, 3, 79-87.

Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., et Kohli, R. K. (2013).Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229-254.

Singh, K., Kallali, B., Kumar, A., et Thaker, V. (2011). Probiotics: A review. Asian Pacific Journal of Tropical Biomedicine, 1(2), S287-S290.

Sivakumar, S., et Subbhuraam, C.V. (2005). Toxicity of chromium (III) and chromium (VI) to the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 62(1), 93-98.

Soccol, C. R., Vandenberghe, L. P. D. S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., Lindner, J. D. D., ... et Thomaz-Soccol, V. (2010). The potential of probiotics: a review. Food Technology and Biotechnology, 48(4), 413-434.

Sofu, A., Sayilgan, E., et Guney, G. (2015). Experimental design for removal of Fe (II) and Zn (II) ions by different lactic acid bacteria biomasses. International Journal of Environmental Research, 9(1), 93-100.

Srinath, T., Verma, T., Ramteke, P. W., et Garg, S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48(4), 427-435.

Sukumar, C., Janaki, V., Kamala-Kannan, S., et Shanthi, K. (2014). Biosorption of chromium (VI) using Bacillus subtilis SS-1 isolated from soil samples of electroplating industry. Clean Technologies and Environmental Policy, 16(2), 405-413.

T

Tang, R. B., Chang, J. K., et Chen, H. L. (2015). Can probiotics be used to treat allergic diseases?. Journal of the Chinese Medical Association, 78(3), 154-157.

45

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., et Sutton, D. J. (2012).Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology (pp. 133-164).Springer Basel.

Thatoi, H., Das, S., Mishra, J., Rath, B. P., et Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Journal of Environmental Management, 146, 383-399.

Thompson, C. M., Proctor, D. M., Suh, M., Haws, L. C., Kirman, C. R., et Harris, M. A. (2013). Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Critical Reviews in Toxicology, 43(3), 244-274.

U

Upreti, R. K., Shrivastava, R., et Chaturvedi, U. C. (2004). Gut microflora & toxic metals: chromium as a model. Indian Journal of Medical Research, 119, 49-59.

V

Van Kranenburg, R., Golic, N., Bongers, R., Leer, R. J., De Vos, W. M., Siezen, R. J., et Kleerebezem, M. (2005). Functional analysis of three plasmids from Lactobacillus plantarum. Applied and Environmental Microbiology, 71(3), 1223-1230.

Viti, C., Marchi, E., Decorosi, F., et Giovannetti, L. (2014).Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiology Reviews, 38(4), 633-659.

Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., et Whitman, W. (Eds.). (2011). Bergey's Manual of Systematic Bacteriology: Volume 3: The Firmicutes (Vol. 3). Springer Science & Business Media.

W

Wang, N., Kunz, J. L., Ivey, C. D., Ingersoll, C. G., Barnhart, M. C., et Glidewell, E. A. (2017). Toxicity of Chromium (VI) to Two Mussels and an Amphipod in Water-Only Exposures with or Without a Co-stressor of Elevated Temperature, Zinc, or Nitrate. Archives of Environmental Contamination and Toxicology, 72(3), 449-460.

46

Welling, R., Beaumont, J. J., Petersen, S. J., Alexeeff, G. V., et Steinmaus, C. (2015).

Chromium (VI) and stomach cancer: a meta-analysis of the current epidemiological evidence. Occupational and Environmental Medicine, 72(2), 151-159.

Wong, P. T., et Trevors, J. T. (1988). Chromium toxicity to algae and bacteria(pp. 305-315).. in

Chromium in the Natural and Human Environments Nriagu, J. O., & Nieboer, E. (1988). (Vol. 20). John Wiley &Sons: New York.

Wu, D., Sun, M. Z., Zhang, C., et Xin, Y. (2014). Antioxidant properties of Lactobacillus and its protecting effects to oxidative stress Caco-2 cells. The Journal of Animal and Plant Sciences, 24(6), 1766-1771.

X

Xie, H., Holmes, A. L., Wise, S. S., Young, J. L., Wise, J. T., et Wise, J. P. (2015). Human Skin Cells Are More Sensitive than Human Lung Cells to the Cytotoxic and Cell Cycle Arresting Impacts of Particulate and Soluble Hexavalent Chromium. Biological Trace Element Research, 166(1), 49-56.

Y

Yi, Y. J., Lim, J. M., Gu, S., Lee, W. K., Oh, E., Lee, S. M., et Oh, B. T. (2017). Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb (II) toxicity. Journal of Microbiology, 55(4), 296-303.

Younan, S., Sakita, G. Z., Albuquerque, T. R., Keller, R., et Bremer‐Neto, H. (2016).

Chromium (VI) bioremediation by probiotics. Journal of the Science of Food and Agriculture, 96(12), 3977-3982.

Z

Zayed, A. M., et Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil, 249(1), 139-156.

Documents relatifs