• Aucun résultat trouvé

B. Approches, techniques et systèmes biologiques

2. Autres méthodes d’exploration cérébrale

2.4. Approche comportementale chez l’animal de laboratoire

L’approche comportementale est une manière d’accéder à l’intégrité des grandes

fonctions contrôlées par le système nerveux central. Certaines fonctions végétatives ne

peuvent pas donner lieu à ce type d’approche. En effet, même si elles sont elles-aussi régies par le système nerveux central, elles peuvent être évaluées soit directement sur les organes en question soit par dosage, le tout générant respectivement, des données cliniques et biochimiques.

Certes, les tests comportementaux sur animaux de laboratoire ne peuvent prétendre tester que des fonctions communes avec l’homme. D’où une certaine prudence à conserver afin de ne pas extrapoler trop hâtivement entre espèces.

2.4.1. Tests comportementaux

Afin d’appréhender de manière objective l’intégrité des fonctions les plus facilement distinguables, elles-mêmes pouvant signer une localisation d’atteinte préférentielle, des tests non invasifs ont donc été développés. Parmi les grandes fonctions pouvant être testées, les tests permettant de détecter des déficiences motrices affectant l’activité locomotrice globale (Openfield) ou la coordination motrice plus fine (Locotronic®), des altérations des centres

de la mémoire spatiale et/ou temporelle, matérialisées chez les rongeurs uniquement par des

altérations des processus d’Apprentissage (Labyrinthe aquatique de Morris, Labyrinthe en Y).

D’autres tests permettent de tester, non plus des fonctions en tant que telles, mais plutôt des manifestations pouvant elles-mêmes signer des altérations fonctionnelles, comme les tests évaluant les niveaux d’anxiété (Test du labyrinthe en croix surélevé, Planche à trous) ou le niveau de dépression (Test de la nage forcée ou Porsolt) des animaux.

Enfin, certains tests tentent de mettre en évidence des altérations du comportement

social (Test du Résident/intrus), mais sont plus complexes à dépouiller et les résultats sont

également plus délicats à interpréter.

2.4.2. Facteurs de variation

Ces tests et ces approches permettent de donner des éléments d’information mais doivent toujours être interprétés avec prudence. En effet, les résultats peuvent être très facilement influencés par différents facteurs, tels l’utilisation des souches génétiques animales différentes (transgéniques, sauvages) (82), leur origine (laboratoire, élevage, fournisseurs), le sexe (83) et les cycles hormonaux (84), l’âge, les facteurs environnementaux différents (luminosité, matériaux utilisés pour la construction des tests, éléments aversifs ou au contraire attractifs, enrichissement du milieu), le type d’administration du composé éventuel à tester (gavage, per os, intraveineuse, intrapéritonéale, intracérébral, …), l’environnement social, la période d’essai (impact de tests effectués précédemment). D’où la nécessité d’être particulièrement rigoureux lors de la mise en place et lors de l’interprétation de ces tests afin de ne pas extrapoler trop rapidement et de façon abusive les résultats obtenus, d’autant plus que l’on ne peut pas mesurer ni leur répétabilité ni leur reproductibilité.

2.4.3. Applications, Intérêts

Ces tests comportementaux sont le plus souvent utilisés en vue de i ) tester une

molécule chimique, pharmacologique, molécule naturelle végétale (85,86) drogue ou toxique (87) ou contaminant alimentaire ou environnemental (88), ii) évaluer la résultante de la

modification d’un gène par utilisation le plus souvent de souches transgéniques chez

lesquelles un gène en particulier a été modifié, ceci permettant parfois de révéler des modèles

animaux de maladies (89), iii) évaluer de grandes fonctions comme la douleur (90). Dans tous les cas, les tests comportementaux viennent apporter un surplus d’information par rapport à d’autres données obtenues par des approches complémentaires.

Dans notre étude, les tests comportementaux ont eu pour but de venir tester un extrait d’origine végétale, administré per os mais par ingestion spontanée, à la dose de 9%, sur souris mâles, afin de rendre compte de la présence éventuelle de fonctions nerveuses centrales atteintes.

Références :

(1) Kendall, W.T., (1884) The diseases of Australian Horses. Cameron Laing and Co., Melbourne, 183-185.

(2) Huntington, P.J., Jeffcott, L.B., Friend, S.C., Luff, A.R., Finkelstein, D.I., and Flynn, R.J., (1989) Australian Stringhalt-epidemiological, clinical and neurological investigations. Equine Vet. J., 21, 266-273.

(3) Barry, W.C., (1956) The incidence of Australian Stringhalt in horses in New Zealand. N. Z. Vet. J., 4, 26-27.

(4) Kerrigan, J., (1917) So-called Australian Stringhalt of horses. New Zealand Journal of Agriculture, 15, 20-23.

(5) Reakes, C.J., (1916) Notes on a form of nerve derangement in horses. New Zealand Journal of Agriculture, 12, 364-368.

(6) Takahashi, T., Kitamura, M., Endo, Y, Eto, D., Aoki, O., Kusunose, R., Yoshihara, T., Kai, M., (2002) An outbreak of stringhalt resembling Australian stringhalt in Japan. J. Equine Vet. Sci., 13, 93-100.

(7) Slocombe, R.F., Huntington, P.J., Friend, S.C., Jeffcott, L.B., Luff, A.R., and Finkelstein, D.K., (1992) Pathological aspects of Australian Stringhalt. Equine Vet. J., 24, 174- 183.

(8) Cahill, J.I., Goulden, B.E., and Jolly, R.D., (1986) Stringhalt in horses: a distal axonopathy. Neuropathol. Appl. Neurobiol., 12, 459-475.

(9) Dixon, R.T. and Stewart, G.A., (1969) Clinical and pharmacological observations in a case of equine stringhalt. Aust. Vet. J., 45, 127-130.

(10) Robertson-Smith, R.G., Jeffcott, L.B., Friend, S.C., and Badcoe, L.M., (1985) An unusual incidence of neurological disease affecting horses during a drought. Aust. Vet. J., 62, 6-12.

(11) Cahill, J.I., Goulden, B.E., and Pearce, H.G., (1985) A review and some observations on stringhalt. N. Z. Vet. J., 33, 101-104.

(12) Read, D.J.a.K., J., (1983) Outbreak of Stringhalt. An. Health Div. N Z Surv., 10, 22-23. (13) Galey, F.D., Hullinger, P.J., and McCaskill, J., (1991) Outbreaks of stringhalt in northern

California. Vet. Hum. Toxicol., 33, 176-177.

(14) Gay, C.C., Fransen, S., Richards, J., and Holler, S., (1993) Hypochoeris-associated stringhalt in North America. Equine Vet. J., 25, 456-457.

(15) Gardner, S.Y., Cook, A.G., Jortner, B.S., Troan, B.V., Sharp, N.J.H., Campbell, N.B., and Brownie, C.F., (2005) Stringhalt associated with a pasture infested with Hypochoeris radicata. Equine vet. Educ., 17, 118-122.

(16) Araya, O., Krause, A., and Solis de Ovando, M., (1998) Outbreaks of stringhalt in southern Chile. Vet. Rec., 142, 462-463.

(17) Gouy, I., Egron, G., Leblond, A., and Cadoré, J.L., (2005) Etude de cas de harper australien après sa recrudescence dans la région lyonnaise. Prat. Vét. Equine, 37, 53- 60.

(18) Mohammed, H.O., Divers, T.J., Summers, B.A., and de Lahunta, A., (2007) Vitamin E deficiency and risk of equine motor neuron disease. Acta Vet. Scand., 49, 17.

(19) Moore, A., Collatos, C., Ortenburger, A., Illanes, O., and Ikede, B., (1994) Motor neuron disease in a horse. Can. Vet. J., 35, 522.

horses moved from a stable following diagnosis of equine motor neuron disease. Can. Vet. J., 48, 1165-1167.

(21) Lofstedt, J. and Ikede, B.O., (1994) Motor neuron disease in a quarter horse from Nova Scotia. Can. Vet. J., 35, 507-509.

(22) Furuoka, H., Hasegawa, M., Kobayashi, Y., and Matsui, T., (1999) Peripheral nerve lesions in a case of equine motor neuron disease. J. Vet. Med. Sci., 61, 557-560.

(23) Sasaki, N., Yamada, M., Morita, Y., Furuoka, H., Itoh, M., Satoh, M., and Yamada, H., (2006) A case of equine motor neuron disease (EMND). J. Vet. Med. Sci., 68, 1367- 1369.

(24) Poxton, I.R., Hunter, L., Lough, H., and Miller, K., (1999) Is Equine Grass Sickness (Mal Seco?) a Form of Botulism? Anaerobe, 5, 291-293.

(25) John, H.A., Marrs, J., and Laffling, A.J., (2000) Investigation of the susceptibility of equine autonomic neuronal cell lines, clonally derived from the same paravertebral ganglion, to toxic plasma from equine dysautonomia (grass sickness) cases. Toxicol. in Vitro, 14, 459-465.

(26) Hudson, N., Mayhew, I., and Pearson, G., (2002) Presence of in vitro electrical activity in the ileum of horses with enteric nervous system pathology: equine dysautonomia (grass sickness). Auton. Neurosci., 99, 119-126.

(27) Wood, J.L.N., Milne, E.M., and Doxey, D.L., (1998) A case-control study of grass sickness (equine dysautonomia) in the United Kingdom. Vet. J., 156, 7-14.

(28) Timoney, P.J. and Wernery, U., (2003) International Conference on Equine Grass Sickness, Dubai, United Arab Emirates September 22-23, 2001. Vet. J., 165, 7-10. (29) Pirie, R.S., (2006) Grass Sickness. Clin. Tech. Equine Pract., 5, 30-36.

(30) Huntington, P.J., Seneque, S., Slocombe, R.F., Jeffcott, L.B., McLean, A., and Luff, A.R., (1991) Use of phenytoin to treat horses with Australian stringhalt. Aust. Vet. J., 68, 221-224.

(31) Wijnberg, I.D., Back, W., and van der Kolk, J.H., (2000) The use of electromyographic examination as a diagnostic tool and phenytoin sodium as treatment in a case of classic springhalt in a Dutch warmblood horse. Tijdschr Diergeneeskd, 125, 743-747. (32) Kannegieter, N.J., Malik, R., (1992) The use of baclofen in the treatment of stringhalt.

Aust. Equine Vet., 10, 90.

(33) Collignon, G., (2007) Contribution à l'étude épidémiologique de l'enzootie de harper australien en France depuis 2003 chez le cheval. Thèse Vétérinaire-Toul 3-4071.

(34) Adams, S.B. and Fessler, J.F., (2000) Atlas of equine surgery, Ed. W.B. Saunders Company, Philadelphia (USA). 381-383.

(35) Seddon, H.R. and Belschner, H.G., (1926) Stringhalt in horses. Agr. Gaz. New S. Wales, 37, 381-382.

(36) O'Connor, J.J., (1950) Dollar's Veterinary surgery. Bailliere, Tindall and Cox; 4th ed., London.

(37) Adams, O.R., (1966) Lameness in Horses. Lea and Febiger, Philadelphia, 313-316. (38) Pemberton, D.H.a.C., I.W., (1979) Investigation of a recent outbreak of stringhalt in

horses in East Gippsland. Vic. Vet. Proc., 16, 16.

(39) Cahill, J.I. and Goulden, B.E., (1992) Stringhalt-current thoughts on aetiology and pathogenesis. Equine Vet. J., 24, 161-162.

(40) Pemberton, D.H. and Caple, I.W., (1980) Australian Stringhalt in horses. Vet. Annu., 20, 167-171.

(41) Nicholson, J.K., Lindon, J.C., and Holmes, E., (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181-1189.

(42) Yang, J., Xu, G., Zheng, Y., Kong, H., Pang, T., Lv, S., and Yang, Q., (2004) Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 813, 59-65.

(43) Odunsi, K., Wollman, R.M., Ambrosone, C.B., Hutson, A., McCann, S.E., Tammela, J., Geisler, J.P., Miller, G., Sellers, T., Cliby, W., Qian, F., Keitz, B., Intengan, M., Lele, S., and Alderfer, J.L., (2005) Detection of epithelial ovarian cancer using 1H-NMR- based metabonomics. Int. J. Cancer, 113, 782-788.

(44) Griffiths, J.R. and Stubbs, M., (2003) Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv. Enzyme Regul., 43, 67-76.

(45) Yang, J., Xu, G., Hong, Q., Liebich, H.M., Lutz, K., Schmulling, R.M., and Wahl, H.G., (2004) Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 813, 53-58.

(46) Brindle, J.T., Antti, H., Holmes, E., Tranter, G., Nicholson, J.K., Bethell, H.W., Clarke, S., Schofield, P.M., McKilligin, E., Mosedale, D.E., and Grainger, D.J., (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using

1

H-NMR-based metabonomics. Nat. Med., 8, 1439-1444.

(47) Sabatine, M.S., Liu, E., Morrow, D.A., Heller, E., McCarroll, R., Wiegand, R., Berriz, G.F., Roth, F.P., and Gerszten, R.E., (2005) Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 112, 3868-3875.

(48) Griffin, J.L., Cemal, C.K., and Pook, M.A., (2004) Defining a metabolic phenotype in the brain of a transgenic mouse model of spinocerebellar ataxia 3. Physiol. Genomics, 16, 334-340.

(49) Dunckley, T., Coon, K.D., and Stephan, D.A., (2005) Discovery and development of biomarkers of neurological disease. Drug Discov. Today, 10, 326-334.

(50) Prabakaran, S., Swatton, J.E., Ryan, M.M., Huffaker, S.J., Huang, J.T., Griffin, J.L., Wayland, M., Freeman, T., Dudbridge, F., Lilley, K.S., Karp, N.A., Hester, S., Tkachev, D., Mimmack, M.L., Yolken, R.H., Webster, M.J., Torrey, E.F., and Bahn, S., (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry, 9, 684-97, 643.

(51) Barshop, B.A., (2004) Metabolomic approaches to mitochondrial disease: correlation of urine organic acids. Mitochondrion, 4, 521-527.

(52) Wang, Y., Holmes, E., Nicholson, J.K., Cloarec, O., Chollet, J., Tanner, M., Singer, B.H., and Utzinger, J., (2004) Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc. Natl. Acad. Sci. U.S.A., 101, 12676-12681.

(53) Braun, K.P., Gooskens, R.H., Vandertop, W.P., Tulleken, C.A., and van der Grond, J., (2003) 1H magnetic resonance spectroscopy in human hydrocephalus. J. Magn. Reson. Imaging, 17, 291-299.

(54) Coen, M., O'Sullivan, M., Bubb, W.A., Kuchel, P.W., and Sorrell, T., (2005) Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin. Infect. Dis., 41, 1582-1590.

(55) Nicholson, J.K., Connelly, J., Lindon, J.C., and Holmes, E., (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov., 1, 153- 161.

(57) Nicholls, A.W., Mortishire-Smith, R.J., and Nicholson, J.K., (2003) NMR spectroscopic- based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem. Res. Toxicol., 16, 1395-1404.

(58) Holmes, E., Tsang, T.M., and Tabrizi, S.J., (2006) The application of NMR-based metabonomics in neurological disorders. NeuroRx, 3, 358-372.

(59) Lindon, J.C., Holmes, E., and Nicholson, J.K., (2007) Metabonomics in pharmaceutical R&D. FEBS J., 274, 1140-1151.

(60) Lindon, J.C., Holmes, E., and Nicholson, J.K., (2006) Metabonomics techniques and applications to pharmaceutical research & development. Pharm. Res., 23, 1075-1088. (61) Vangala, S. and Tonelli, A., (2007) Biomarkers, metabonomics, and drug development:

can inborn errors of metabolism help in understanding drug toxicity? AAPS J., 9, E284-297.

(62) Waters, N.J., Holmes, E., Waterfield, C.J., Farrant, R.D., and Nicholson, J.K., (2002) NMR and pattern recognition studies on liver extracts and intact livers from rats treated with [alpha]-naphthylisothiocyanate. Biochem. Pharmacol., 64, 67-77.

(63) Pivawer, G., Law, M., and Zagzag, D., (2007) Perfusion MR imaging and proton MR spectroscopic imaging in differentiating necrotizing cerebritis from glioblastoma multiforme. Magn. Reson. Imaging, 25, 238-243.

(64) Perlbarg, V. and Marrelec, G., (2008) Contribution of Exploratory Methods to the Investigation of Extended Large-Scale Brain Networks in Functional MRI: Methodologies, Results, and Challenges. Int. J. Biomed. Imaging, 2008, 218519.

(65) Xie, J., Chen, X.Z., Jiang, T., Li, S.W., Li, Z.X., Zhang, Z., Dai, J.P., and Wang, Z.C., (2008) Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with gliomas involving the motor cortical areas. Chin. Med. J., 121, 631-635.

(66) Zagrosek, A., Wassmuth, R., Abdel-Aty, H., Rudolph, A., Dietz, R., and Schulz-Menger, J., (2008) Relation between myocardial edema and myocardial mass during the acute and convalescent phase of myocarditis-a CMR study. J. Cardiovasc. Magn. Reson., 10, 19.

(67) Hayashi, Y., Shima, H., Miyashita, K., Kinoshita, M., Nakada, M., Kida, S., and Hamada, J., (2008) Unusual angiographic changes in an internal carotid artery pseudoaneurysm after infection in the deep neck space. Neurol. Med. Chir. (Tokyo), 48, 216-219.

(68) Galanaud, D., Nicoli, F., Confort-Gouny, S., Le Fur, Y., Dormont, D., Girard, N., Ranjeva, J., and Cozzone, P., (2007) Brain magnetic resonance spectroscopy. J. Radiol., 88, 483-496.

(69) Galanaud, D., Nicoli, F., Confort-Gouny, S., Le Fur, Y., Ranjeva, J.P., Viola, A., Girard, N., and Cozzone, P.J., (2007) Indications for cerebral MR proton spectroscopy in 2007. Rev. Neurol. (Paris), 163, 287-303.

(70) Hollingworth, W., Medina, L.S., Lenkinski, R.E., Shibata, D.K., Bernal, B., Zurakowski, D., Comstock, B., and Jarvik, J.G., (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am. J. Neuroradiol., 27, 1404-1411.

(71) Burtscher, I.M., Skagerberg, G., Geijer, B., Englund, E., Stahlberg, F., and Holtas, S., (2000) Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am. J. Neuroradiol., 21, 84-93.

(72) Hattingen, E., Raab, P., Franz, K., Lanfermann, H., Setzer, M., Gerlach, R., Zanella, F.E., and Pilatus, U., (2008) Prognostic value of choline and creatine in WHO grade II

(73) Mattos, J.P., Marenco, H.A., Campos, J.M., Faria, A.V., Queiroz, L.S., Borges, G., and Oliveira, E., (2006) Cerebellar glioblastoma multiforme in an adult. Arq. Neuropsiquiatr., 64, 132-135.

(74) Khanna, P.C., Godinho, S., Patkar, D.P., Pungavkar, S.A., and Lawande, M.A., (2006) MR spectroscopy-aided differentiation: "giant" extra-axial tuberculoma masquerading as meningioma. AJNR Am. J. Neuroradiol., 27, 1438-1440.

(75) Raizer, J.J., Koutcher, J.A., Abrey, L.E., Panageas, K.S., DeAngelis, L.M., Lis, E., Xu, S., and Zakian, K.L., (2005) Proton magnetic resonance spectroscopy in immunocompetent patients with primary central nervous system lymphoma. J. Neurooncol., 71, 173-180.

(76) Tourbah, A., Stievenart, J.L., Edan, G., Abanou, A., Dormont, D., and Lyon-Caen, O., (2005) Acute demyelination: an insight into the effect of mitoxantrone on CNS lesions. J. Neuroradiol., 32, 63-66.

(77) Fernando, K.T., McLean, M.A., Chard, D.T., MacManus, D.G., Dalton, C.M., Miszkiel, K.A., Gordon, R.M., Plant, G.T., Thompson, A.J., and Miller, D.H., (2004) Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain, 127, 1361-1369.

(78) Kastrup, O., Wanke, I., and Maschke, M., (2005) Neuroimaging of infections. NeuroRx, 2, 324-332.

(79) Grover, V.P., Dresner, M.A., Forton, D.M., Counsell, S., Larkman, D.J., Patel, N., Thomas, H.C., and Taylor-Robinson, S.D., (2006) Current and future applications of magnetic resonance imaging and spectroscopy of the brain in hepatic encephalopathy. World J. Gastroenterol., 12, 2969-2978.

(80) Lundbom, J.O., Vuori, K.E., Gaily, E.K., Granstrom, R.I., Blomstedt, G.C., Hakkinen, A.M., Heikkinen, S.M., and Lundbom, N.M., (2005) Metabolite phantom correction of the nonuniform volume-selection profiles in MR spectroscopic imaging: application to temporal lobe epilepsy. AJNR Am. J. Neuroradiol., 26, 1072-1077.

(81) Miller, S.P., McQuillen, P.S., Hamrick, S., Xu, D., Glidden, D.V., Charlton, N., Karl, T., Azakie, A., Ferriero, D.M., Barkovich, A.J., and Vigneron, D.B., (2007) Abnormal brain development in newborns with congenital heart disease. N. Engl. J. Med., 357, 1928-1938.

(82) McCutcheon, J.E., Fisher, A.S., Guzdar, E., Wood, S.A., Lightman, S.L., and Hunt, S.P., (2008) Genetic background influences the behavioural and molecular consequences of neurokinin-1 receptor knockout. Eur. J. Neurosci., 27, 683-690.

(83) Arters, J., Hohmann, C.F., Mills, J., Olaghere, O., and Berger-Sweeney, J., (1998) Sexually dimorphic responses to neonatal basal forebrain lesions in mice: I. Behavior and neurochemistry. J. Neurobiol., 37, 582-94.

(84) Mora, S., Dussaubat, N., and Diaz-Veliz, G., (1996) Effects of the estrous cycle and ovarian hormones on behavioral indices of anxiety in female rats. Psychoneuroendocrinology, 21, 609-620.

(85) Xu, Q., Pan, Y., Yi, L.T., Li, Y.C., Mo, S.F., Jiang, F.X., Qiao, C.F., Xu, H.X., Lu, X.B., Kong, L.D., and Kung, H.F., (2008) Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biol. Pharm. Bull., 31, 1109-1114.

(86) Uchida, S., Hirai, K., Hatanaka, J., Hanato, J., Umegaki, K., and Yamada, S., (2008) Antinociceptive effects of St. John's wort, Harpagophytum procumbens extract and Grape seed proanthocyanidins extract in mice. Biol. Pharm. Bull., 31, 240-245.

(88) Farag, A.T., Goda, N.F., Shaaban, N.A., and Mansee, A.H., (2007) Effects of oral exposure of synthetic pyrethroid, cypermethrin on the behavior of F1-progeny in mice. Reprod. Toxicol., 23, 560-567.

(89) Galvan, V., Zhang, J., Gorostiza, O.F., Banwait, S., Huang, W., Ataie, M., Tang, H., and Bredesen, D.E., (2008) Long-term prevention of Alzheimer's disease-like behavioral deficits in PDAPP mice carrying a mutation in Asp664. Behav. Brain Res., 191, 246- 255.

(90) Rudick, C.N., Bryce, P.J., Guichelaar, L.A., Berry, R.E., and Klumpp, D.J., (2008) Mast cell-derived histamine mediates cystitis pain. PLoS ONE, 3, e2096.

CHAPITRE II :

DONNEES DE METABONOMIQUE

ET D’IMAGERIE

II. Chapitre II : Données de métabonomique et