• Aucun résultat trouvé

ANNEXES TECHNIQUES

La plupart des techniques sont décrites dans l’article et cette partie ne décrit que les techniques supplémentaires qui n’y sont pas détaillées.

Transfection plasmidique

1µg d’ADN des plasmides pIRESPuro2 (Clontech) codant pour RhoBwt-HA ou RhoBQ63L-HA sont transfectés avec de l’Effectène selon les recommandations du fabricant (Qiagen). Après 4h d’incubation, le milieu de transfection est remplacé par du DMEM 10% SVF.

Immunoprecipitation de PP2A

Les cellules sont lysées dans du tampon RIPA modifié (Tris HCl 50 mM, pH 7.5, NaCl 150 mM, Triton X100 1% et EDTA 5 mM) additionné d’un cocktail d’inhibiteurs de protéases 1% (Biorad) et d’un cocktail d’inhibiteurs de phosphatases 1% (Pierce). 100 µg de protéines sont utilisés pour analyser l’extrait total par immuno-empreinte. Pour l’immuno-précipitation, 800 µg de protéines sont incubés avec 1 µg d’anticorps dirigé contre la sous unité catalytique de PP2A (Millipore) et 25 µL de billes d’agarose A/G (Santa Cruz). Le mélange est incubé à 4°C sous agitation pendant une nuit. Après lavage, les billes sont reprises dans 30 µL de tampon de dénaturation 2.5X (Tris 30 mM, pH 6.8, SDS 50 mM, glycérol 4%, bleu de bromophénol 0.0005%) additionné de DTT 100 mM.

Test activité PI3K

Le protocole fourni avec le kit de dosage de l’activité PI3K « Activity ELISA : Pico » (Echelon) a été suivit. Brièvement, les cellules sont lysées avec le tampon de réaction kinase 1X fourni complémenté avec de l’ATP 25 µM et du DTT 5 mM. Après immuno-précipitation de la p85, le test d’activité est réalisé.

Culture cellulaire

Les cellules BEAS-2B (ATCC CRL-9609) sont cultivées dans du DMEM 10% SVF (Sérum de Vœu Fœtal). Les cellules Calu1 (ATCC HTB-54), cellules de carcinome épidermoïde de grade III sont cultivées dans du Mc Coy’s 5a (Gibco) avec 1.5 mM de glutamine et 10% de SVF. Les cellules H1703 (ATCC CRL-5889), H520 (ATCC HTP-182), toutes 2 issues de carcinome épidermoïde et les cellules H2935 (ATCC CRL-5908), H23 (CRL-5800), H1975 (ATCC CRL-5908), H4006 (ATCC CRL-2871), H827 (ATCC CRL-2868), toutes isssues d’adénocarcinomes, sont cultivées dans du milieu Roswell Park Memorial Institute’s (RPMI-1640) (Lonza) complémenté avec 10% SVF.

Morphologie cellulaire en matrice tri-dimensionnelle

Les cellules contrôles, transfectées ou traitées pendant 1 h avec les inhibiteurs sont reprises dans du collagène I (BD bioscience) dilué à 1.6 mg.mL-1 dans du EMEM (Eagle’s Minimal Essential Medium 2X (lonza) à une concentration de 4.104 cellules.mL-1, les inhibiteurs sont maintenus dans la suspension. Des gouttes de 30 µL sont déposées sur des boites de cultures qui sont ensuite mises à l’envers pendant 1 h. Les boites sont ensuite remises à l’endroit et du milieu de culture complet est ajouté, les inhibiteurs sont également maintenus dans le milieu de culture. 6 h après, les cellules sont rincées au PBS et fixées avec du formaldéhyde 3.7%, perméabilisées au Triton X100 1% et l’actine est marquée avec de la phalloïdine-Alexa594 (Belletti et al., 2010). Les cellules sont ensuite observées au microscope bi-photonique 7MP de Zeiss à l’objectif 20X (Plateforme TRI d’imagerie cellulaire, IFR150, Purpan). 100 cellules sont comptées par goutte et la moyenne est réalisée sur 3 gouttes. La taille des prolongements cellulaires est mesurée avec le logiciel NIS-elementAR de Nikon.

Zymographie

Les cellules sont privées de sérum pendant 24 h puis le surnageant de culture est récupéré. 60 µL de surnageant additionné de bleu de dépôt sont déposés sur un gel SDS- PAGE 10% d’acrylamide contenant 0.3% de gélatine. Après electrophhorèse des protéines, le gel est rincé dans du tampon (Tris 50 mM, pH7.4, Triton X100 20%) puis dans du tampon Tris 50 mM pH7.4. Il est ensuite incubé sur la nuit à 37°C dans le tampon Tris 50 mM, pH7.4, NaCl2 0.2 M, Triton X100 1%, CaCl2 5 mM et azide de sodium 0.02%. La coloration des

protéines se fait en incubant le gel dans du bleu de Coomassie 0.5% (Bleu 0.5%, méthanol 50%, acide acétique 10%) pendant 24 h.

Analyse des intégrines par cytométrie de flux

Les cellules sont décollées avec du PBS-EDTA (4 mM) et récupérées dans du DMEM additionné de 10% SVF. Elles sont resuspendues à une concentration de 106 cellules.mL-1 dans du tampon FACS (PBS, BSA 0.5%, SVF 4%) les cellules sont reprises dans du tampon de saturation (PBS, BSA 2%, SVF 1%) à une concentration de 240 000 dans 50 µL. Elles sont ensuite incubées avec la solution d’anticorps primaire dilué au 1/200ème dans le tampon FACS puis dans la solution d’anticorps secondaire couplé au FITC. Les cellules sont ensuite fixées dans du formaldéhyde 3.7% et reprises dans 500 µL de PBS. L’expression des intégrines à la surface des cellules est analysée par cytométrie de flux (FACSCalibur, Becton-Dickinson). L’unité utilisée pour interpréter les résultats est l’Indice de Fluorescence (ISF)

ISF = [(Val. Moy. Exp.)-(Val. Moy. Iso.)] / (Val. Moy. Iso.)

Val. Moy. Exp. = Valeur moyenne expérimentale Val. Moy. Iso. = Valeur moyenne de control isotypique

Anticorps Fournisseurs β1 Chemicon International (1 mg.mL-1) αVβ3 Chemicon International (1 mg.mL-1) α3β1 Chemicon International (1 mg.mL-1) α4β1 Chemicon International (1 mg.mL-1) α5β1 Chemicon International (1 mg.mL-1) α6β1 Chemicon International (1 mg.mL-1) Ig Contrôle Dako Cytomation (100 mg.mL-1) AC secondaire Dako Cytomation (1 g.mL-1)

BIBLIOGRAPHIE

Abraham, M.T., Kuriakose, M.A., Sacks, P.G., Yee, H., Chiriboga, L., Bearer, E.L., and Delacure, M.D. (2001). Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope 111, 1285-1289.

Adamson, P., Marshall, C.J., Hall, A., and Tilbrook, P.A. (1992a). Post-translational modifications of p21rho proteins. J Biol Chem 267, 20033-20038.

Adamson, P., Paterson, H.F., and Hall, A. (1992b). Intracellular localization of the P21rho proteins. J Cell Biol 119, 617-627.

Ader, I., Delmas, C., Bonnet, J., Rochaix, P., Favre, G., Toulas, C., and Cohen-Jonathan-Moyal, E. (2003). Inhibition of Rho pathways induces radiosensitization and oxygenation in human glioblastoma xenografts. Oncogene 22, 8861-8869.

Ader, I., Toulas, C., Dalenc, F., Delmas, C., Bonnet, J., Cohen-Jonathan, E., and Favre, G. (2002). RhoB controls the 24 kDa FGF-2-induced radioresistance in HeLa cells by preventing post-mitotic cell death. Oncogene 21, 5998-6006.

Adini, I., Rabinovitz, I., Sun, J.F., Prendergast, G.C., and Benjamin, L.E. (2003). RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev 17, 2721-2732.

Adjei, A.A. (2008). K-ras as a target for lung cancer therapy. J Thorac Oncol 3, S160-163.

Adnane, J., Bizouarn, F.A., Qian, Y., Hamilton, A.D., and Sebti, S.M. (1998). p21(WAF1/CIP1) is upregulated by the geranylgeranyltransferase I inhibitor GGTI-298 through a transforming growth factor beta- and Sp1-responsive element: involvement of the small GTPase rhoA. Mol Cell Biol 18, 6962-6970.

Adnane, J., Muro-Cacho, C., Mathews, L., Sebti, S.M., and Munoz-Antonia, T. (2002a). Suppression of rho B expression in invasive carcinoma from head and neck cancer patients. Clin Cancer Res 8, 2225- 2232.

Adnane, J., Seijo, E., Chen, Z., Bizouarn, F., Leal, M., Sebti, S.M., and Munoz-Antonia, T. (2002b). RhoB, not RhoA, represses the transcription of the transforming growth factor beta type II receptor by a mechanism involving activator protein 1. J Biol Chem 277, 8500-8507.

Adra, C.N., Manor, D., Ko, J.L., Zhu, S., Horiuchi, T., Van Aelst, L., Cerione, R.A., and Lim, B. (1997). RhoGDIgamma: a GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc Natl Acad Sci U S A 94, 4279-4284.

Agiostratidou, G., Hulit, J., Phillips, G.R., and Hazan, R.B. (2007). Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. J Mammary Gland Biol Neoplasia 12, 127-133.

Aguirre-Ghiso, J.A., Ossowski, L., and Rosenbaum, S.K. (2004). Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64, 7336-7345.

Alessi, D.R., and Cohen, P. (1998). Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8, 55-62.

Allal, C., Pradines, A., Hamilton, A.D., Sebti, S.M., and Favre, G. (2002). Farnesylated RhoB prevents cell cycle arrest and actin cytoskeleton disruption caused by the geranylgeranyltransferase I inhibitor GGTI-298. Cell Cycle 1, 430-437.

Almog, N., Ma, L., Raychowdhury, R., Schwager, C., Erber, R., Short, S., Hlatky, L., Vajkoczy, P., Huber, P.E., Folkman, J., et al. (2009). Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69, 836-844.

Arboleda, M.J., Lyons, J.F., Kabbinavar, F.F., Bray, M.R., Snow, B.E., Ayala, R., Danino, M., Karlan, B.Y., and Slamon, D.J. (2003). Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 63, 196-206.

Archer, S.Y., and Hodin, R.A. (1999). Histone acetylation and cancer. Curr Opin Genet Dev 9, 171-174. Armstrong, S.A., Hannah, V.C., Goldstein, J.L., and Brown, M.S. (1995). CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. J Biol Chem 270, 7864-7868. Arthur, W.T., Ellerbroek, S.M., Der, C.J., Burridge, K., and Wennerberg, K. (2002). XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J Biol Chem 277, 42964-42972.

Artym, V.V., Matsumoto, K., Mueller, S.C., and Yamada, K.M. (2010). Dynamic membrane remodeling at invadopodia differentiates invadopodia from podosomes. Eur J Cell Biol.

Artym, V.V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K.M., and Mueller, S.C. (2006). Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 66, 3034-3043.

Ayala, I., Baldassarre, M., Caldieri, G., and Buccione, R. (2006). Invadopodia: a guided tour. Eur J Cell Biol 85, 159-164.

Aznar, S., and Lacal, J.C. (2001). Rho signals to cell growth and apoptosis. Cancer Lett 165, 1-10. Balbin, M., Fueyo, A., Tester, A.M., Pendas, A.M., Pitiot, A.S., Astudillo, A., Overall, C.M., Shapiro, S.D., and Lopez-Otin, C. (2003). Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35, 252-257.

Baldwin, R.M., Garratt-Lalonde, M., Parolin, D.A., Krzyzanowski, P.M., Andrade, M.A., and Lorimer, I.A. (2006). Protection of glioblastoma cells from cisplatin cytotoxicity via protein kinase Ciota- mediated attenuation of p38 MAP kinase signaling. Oncogene 25, 2909-2919.

Baldwin, R.M., Parolin, D.A., and Lorimer, I.A. (2008). Regulation of glioblastoma cell invasion by PKC iota and RhoB. Oncogene 27, 3587-3595.

Baranwal, S., and Alahari, S.K. (2010). miRNA control of tumor cell invasion and metastasis. Int J Cancer 126, 1283-1290.

Barber, M.A., and Welch, H.C. (2006). PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer 93, E44-52.

Barnes, E.A., Kenerson, H.L., Jiang, X., and Yeung, R.S. (2010). Tuberin Regulates E-Cadherin Localization. Implications in Epithelial-Mesenchymal Transition. Am J Pathol.

Baron, R., Fourcade, E., Lajoie-Mazenc, I., Allal, C., Couderc, B., Barbaras, R., Favre, G., Faye, J.C., and Pradines, A. (2000). RhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody. Proc Natl Acad Sci U S A 97, 11626- 11631.

Barr, L.F., Campbell, S.E., Bochner, B.S., and Dang, C.V. (1998). Association of the decreased expression of alpha3beta1 integrin with the altered cell: environmental interactions and enhanced soft agar cloning ability of c-myc-overexpressing small cell lung cancer cells. Cancer Res 58, 5537- 5545.

Baylin, S.B. (2002). Mechanisms underlying epigenetically mediated gene silencing in cancer. Semin Cancer Biol 12, 331-337.

Bektic, J., Pfeil, K., Berger, A.P., Ramoner, R., Pelzer, A., Schafer, G., Kofler, K., Bartsch, G., and Klocker, H. (2005). Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis. Prostate 64, 332-340.

Belinsky, S.A. (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4, 707-717.

Belletti, B., Pellizzari, I., Berton, S., Fabris, L., Wolf, K., Lovat, F., Schiappacassi, M., D'Andrea, S., Nicoloso, M.S., Lovisa, S., et al. (2010). p27kip1 controls cell morphology and motility by regulating microtubule-dependent lipid raft recycling. Mol Cell Biol 30, 2229-2240.

Berghmans, T., Mascaux, C., Martin, B., Ninane, V., and Sculier, J.P. (2005). Prognostic role of p53 in stage III non-small cell lung cancer. Anticancer Res 25, 2385-2389.

Bergot, E., Levallet, G., and Zalcman, G. (2008). [Stage IV NSCLC. Biological treatments of lung cancer in 2008... and in the near future]. Rev Mal Respir 25, 3S119-126.

Besse, B., Ropert, S., and Soria, J.C. (2007). Targeted therapies in lung cancer. Ann Oncol 18 Suppl 9, ix135-142.

Besson, A., Gurian-West, M., Chen, X., Kelly-Spratt, K.S., Kemp, C.J., and Roberts, J.M. (2006). A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes Dev 20, 47-64.

Bijman, M.N., van Berkel, M.P., van Nieuw Amerongen, G.P., and Boven, E. (2008). Interference with actin dynamics is superior to disturbance of microtubule function in the inhibition of human ovarian cancer cell motility. Biochem Pharmacol 76, 707-716.

Bilodeau, D., Lamy, S., Desrosiers, R.R., Gingras, D., and Beliveau, R. (1999). Regulation of Rho protein binding to membranes by rhoGDI: inhibition of releasing activity by physiological ionic conditions. Biochem Cell Biol 77, 59-69.

Biname, F., Pawlak, G., Roux, P., and Hibner, U. (2010). What makes cells move: requirements and obstacles for spontaneous cell motility. Mol Biosyst 6, 648-661.

Bingle, L., Brown, N.J., and Lewis, C.E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196, 254-265.

Birchmeier, W. (2005). Cell adhesion and signal transduction in cancer. Conference on cadherins, catenins and cancer. EMBO Rep 6, 413-417.

Bjorklund, M., and Koivunen, E. (2005). Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755, 37-69.

Blackhall, F.H., and Shepherd, F.A. (2007). Small cell lung cancer and targeted therapies. Curr Opin Oncol 19, 103-108.

Boissonnas, A., Fetler, L., Zeelenberg, I.S., Hugues, S., and Amigorena, S. (2007). In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204, 345-356.

Bos, J.L. (1989). ras oncogenes in human cancer: a review. Cancer Res 49, 4682-4689.

Bos, J.L., Rehmann, H., and Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877.

Boureux, A., Vignal, E., Faure, S., and Fort, P. (2007). Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24, 203-216.

Bourne, H.R., Sanders, D.A., and McCormick, F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132.

Bourne, H.R., Sanders, D.A., and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117-127.

Bousquet, E., Mazieres, J., Privat, M., Rizzati, V., Casanova, A., Ledoux, A., Mery, E., Couderc, B., Favre, G., and Pradines, A. (2009). Loss of RhoB expression promotes migration and invasion of human bronchial cells via activation of AKT1. Cancer Res 69, 6092-6099.

Braga, V.M., Machesky, L.M., Hall, A., and Hotchin, N.A. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137, 1421-1431. Brambilla, E., and Brambilla, C. (1997). p53 and lung cancer. Pathol Biol (Paris) 45, 852-863.

Brambilla, E., Moro, D., Gazzeri, S., and Brambilla, C. (1999). Alterations of expression of Rb, p16(INK4A) and cyclin D1 in non-small cell lung carcinoma and their clinical significance. J Pathol 188, 351-360.

Brautigan, D.L. (1995). Flicking the switches: phosphorylation of serine/threonine protein phosphatases. Semin Cancer Biol 6, 211-217.

Brazil, D.P., Yang, Z.Z., and Hemmings, B.A. (2004). Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29, 233-242.

Bristow, J.M., Sellers, M.H., Majumdar, D., Anderson, B., Hu, L., and Webb, D.J. (2009). The Rho- family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. J Cell Sci 122, 4535-4546.

Brooks, S.A., Lomax-Browne, H.J., Carter, T.M., Kinch, C.E., and Hall, D.M. (2010). Molecular interactions in cancer cell metastasis. Acta Histochem 112, 3-25.

Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., Sultmann, H., and Lyko, F. (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67, 1419-1423.

Bruewer, M., Hopkins, A.M., Hobert, M.E., Nusrat, A., and Madara, J.L. (2004). RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am J Physiol Cell Physiol 287, C327-335.

Brugnera, E., Haney, L., Grimsley, C., Lu, M., Walk, S.F., Tosello-Trampont, A.C., Macara, I.G., Madhani, H., Fink, G.R., and Ravichandran, K.S. (2002). Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4, 574-582.

Brunet, N., Morin, A., and Olofsson, B. (2002). RhoGDI-3 regulates RhoG and targets this protein to the Golgi complex through its unique N-terminal domain. Traffic 3, 342-357.

Buccione, R., Caldieri, G., and Ayala, I. (2009). Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 28, 137-149.

Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99, 15524-15529.

Cameron, M.D., Schmidt, E.E., Kerkvliet, N., Nadkarni, K.V., Morris, V.L., Groom, A.C., Chambers, A.F., and MacDonald, I.C. (2000). Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60, 2541-2546.

Canguilhem, B., Pradines, A., Baudouin, C., Boby, C., Lajoie-Mazenc, I., Charveron, M., and Favre, G. (2005). RhoB protects human keratinocytes from UVB-induced apoptosis through epidermal growth factor receptor signaling. J Biol Chem 280, 43257-43263.

Carragher, N.O., Walker, S.M., Scott Carragher, L.A., Harris, F., Sawyer, T.K., Brunton, V.G., Ozanne, B.W., and Frame, M.C. (2006). Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 25, 5726-5740. Cavallaro, U., and Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4, 118-132.

Chaigne-Delalande, B., Anies, G., Kramer, I., and Genot, E. (2008). Nonadherent cells switch to a Rac- mediated, SHIP regulated, Akt activation mode for survival. Oncogene 27, 1876-1885.

Chambers, A.F., Groom, A.C., and MacDonald, I.C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2, 563-572.

Chambers, A.F., Schmidt, E.E., MacDonald, I.C., Morris, V.L., and Groom, A.C. (1992). Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84, 797-803.

Chen, W.T. (1989). Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J Exp Zool 251, 167-185.

Chen, Y., Yang, Z., Meng, M., Zhao, Y., Dong, N., Yan, H., Liu, L., Ding, M., Peng, H.B., and Shao, F. (2009a). Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 35, 841-855.

Chen, Y.J., Wei, Y.Y., Chen, H.T., Fong, Y.C., Hsu, C.J., Tsai, C.H., Hsu, H.C., Liu, S.H., and Tang, C.H. (2009b). Osteopontin increases migration and MMP-9 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Physiol 221, 98-108. Chen, Y.X., Li, Z.B., Diao, F., Cao, D.M., Fu, C.C., and Lu, J. (2006). Up-regulation of RhoB by glucocorticoids and its effects on the cell proliferation and NF-kappaB transcriptional activity. J Steroid Biochem Mol Biol 101, 179-187.

Chen, Z., Sun, J., Pradines, A., Favre, G., Adnane, J., and Sebti, S.M. (2000). Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J Biol Chem 275, 17974-17978.

Cheng, C.W., Yu, J.C., Wang, H.W., Huang, C.S., Shieh, J.C., Fu, Y.P., Chang, C.W., Wu, P.E., and Shen, C.Y. (2010). The clinical implications of MMP-11 and CK-20 expression in human breast cancer. Clin Chim Acta 411, 234-241.

Cheng, G.Z., Chan, J., Wang, Q., Zhang, W., Sun, C.D., and Wang, L.H. (2007). Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67, 1979-1987.

Cheng, G.Z., Zhang, W., and Wang, L.H. (2008). Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res 68, 957-960.

Chidgey, M., and Dawson, C. (2007). Desmosomes: a role in cancer? Br J Cancer 96, 1783-1787. Chin, Y.R., and Toker, A. (2009). Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal 21, 470-476.

Chin, Y.R., and Toker, A. (2010). The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol Cell 38, 333-344.

Ching, Y.P., Wong, C.M., Chan, S.F., Leung, T.H., Ng, D.C., Jin, D.Y., and Ng, I.O. (2003). Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J Biol Chem 278, 10824-10830.

Cho, H., Mu, J., Kim, J.K., Thorvaldsen, J.L., Chu, Q., Crenshaw, E.B., 3rd, Kaestner, K.H., Bartolomei, M.S., Shulman, G.I., and Birnbaum, M.J. (2001a). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728-1731.

Cho, H., Thorvaldsen, J.L., Chu, Q., Feng, F., and Birnbaum, M.J. (2001b). Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276, 38349-38352.

Christofori, G. (2006). New signals from the invasive front. Nature 441, 444-450.

Cimbora-Zovko, T., Fritz, G., Mikac, N., and Osmak, M. (2010). Downregulation of RhoB GTPase confers resistance to cisplatin in human laryngeal carcinoma cells. Cancer Lett.

Coleman, M.L., Marshall, C.J., and Olson, M.F. (2004). RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 5, 355-366.

Coleman, M.L., and Olson, M.F. (2002). Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9, 493-504.

Come, C., Magnino, F., Bibeau, F., De Santa Barbara, P., Becker, K.F., Theillet, C., and Savagner, P. (2006). Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 12, 5395-5402.

Condeelis, J.S., Wyckoff, J., and Segall, J.E. (2000). Imaging of cancer invasion and metastasis using green fluorescent protein. Eur J Cancer 36, 1671-1680.

Conn, E.M., Madsen, M.A., Cravatt, B.F., Ruf, W., Deryugina, E.I., and Quigley, J.P. (2008). Cell surface proteomics identifies molecules functionally linked to tumor cell intravasation. J Biol Chem 283, 26518-26527.

Connolly, E.C., Van Doorslaer, K., Rogler, L.E., and Rogler, C.E. (2010). Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res 8, 691-700.

Couderc, B., Pradines, A., Rafii, A., Golzio, M., Deviers, A., Allal, C., Berg, D., Penary, M., Teissie, J., and Favre, G. (2008). In vivo restoration of RhoB expression leads to ovarian tumor regression. Cancer Gene Ther 15, 456-464.

Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867.

Cristiano, B.E., Chan, J.C., Hannan, K.M., Lundie, N.A., Marmy-Conus, N.J., Campbell, I.G., Phillips, W.A., Robbie, M., Hannan, R.D., and Pearson, R.B. (2006). A specific role for AKT3 in the genesis of ovarian cancer through modulation of G(2)-M phase transition. Cancer Res 66, 11718-11725.

Cuiyan, Z., Jie, H., Fang, Z., Kezhi, Z., Junting, W., Susheng, S., Xiaoli, F., Ning, L., Xinhua, M., Zhaoli, C., et al. (2007). Overexpression of RhoE in Non-small Cell Lung Cancer (NSCLC) is associated with smoking and correlates with DNA copy number changes. Cancer Biol Ther 6, 335-342.

Dacic, S., Kelly, L., Shuai, Y., and Nikiforova, M.N. (2010). miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol.

Dahabreh, I.J., Linardou, H., Siannis, F., Kosmidis, P., Bafaloukos, D., and Murray, S. (2010). Somatic EGFR mutation and gene copy gain as predictive biomarkers for response to tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 16, 291-303.

Dammann, R., Li, C., Yoon, J.H., Chin, P.L., Bates, S., and Pfeifer, G.P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25, 315-319.

Danley, D.E., Chuang, T.H., and Bokoch, G.M. (1996). Defective Rho GTPase regulation by IL-1 beta- converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor. J Immunol 157, 500-503.

Daubon, T., Chasseriau, J., Ali, A.E., Rivet, J., Kitzis, A., Constantin, B., and Bourmeyster, N. (2008). Differential motility of p190bcr-abl- and p210bcr-abl-expressing cells: respective roles of Vav and Bcr- Abl GEFs. Oncogene 27, 2673-2685.

Davies, M.A., Stemke-Hale, K., Tellez, C., Calderone, T.L., Deng, W., Prieto, V.G., Lazar, A.J., Gershenwald, J.E., and Mills, G.B. (2008). A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 99, 1265-1268.

de Cremoux, P., Gauville, C., Closson, V., Linares, G., Calvo, F., Tavitian, A., and Olofsson, B. (1994). EGF modulation of the ras-related rhoB gene expression in human breast-cancer cell lines. Int J Cancer 59, 408-415.

De Wever, O., Nguyen, Q.D., Van Hoorde, L., Bracke, M., Bruyneel, E., Gespach, C., and Mareel, M. (2004). Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18, 1016-1018.

Del Re, D.P., Miyamoto, S., and Brown, J.H. (2007). RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem 282, 8069-8078. Delarue, F.L., Adnane, J., Joshi, B., Blaskovich, M.A., Wang, D.A., Hawker, J., Bizouarn, F., Ohkanda, J., Zhu, K., Hamilton, A.D., et al. (2007). Farnesyltransferase and geranylgeranyltransferase I inhibitors upregulate RhoB expression by HDAC1 dissociation, HAT association and histone acetylation of the