• Aucun résultat trouvé

Alternative factorization of the reduced R matrix

From Remark4.17, one can use the Cartan involution and replace the first factorei⊗1 in the reducedRmatrix with the embedding by theFipaths. Then the embeddingιw⊗ι induces a very simple factorization of the reducedRmatrix, where

gb(ei )=gb(fi1,−) . . .gb(fini,−), gb(e+i )=gb(fini,+) . . .gb(fi1,+), and hence by Corollary9.6,

A

Fig. 51 The flipping of triangleμR2 of the basic quivers in typeG2, before changing the index back to standard form. The basic quivers are stacked according to Fig.42

Corollary 10.8 Under the embeddingιwι, the reduced R matrix factorizes as R=R4·R3·R2·R1,

and recall thatopmeans multiplying from the right.

The embeddingιwιcorresponds to a new quiverZg, which is another amalga-mation of the two quiversDg, where the nodes{fini}of the first quiver are glued to {fnii}of the second quiver instead (see Fig.52). Then one can describe for every type ofgthe mutation sequence giving the flip of triangulations onZgeasily:

q

A

B

C

Q D Q Q Q

A

D

C B

Q Q Q Q

Fig. 52 Half-Dehn twist of the quiverZg

Proposition 10.9 Let

PiQQ := PFQiPFQi

be the concatenation of the Fi-paths in the corresponding subquivers ofZg. Then the mutation sequence giving the flip of triangulation is

μR1 = {P1−→P2−→. . .PN},

where as before if imis the k-th appearance of the root index i from the right ofi, then Pm=PiQQ[k,ni].

Whenicorresponds to the Coxeter element of the Weyl group, w0 =wch/2, this coincides with the mutation sequence of the flip of triangulations (where two quivers mirrored to each other are glued) described in [35] in the classical type. Hence this construction generalizes those of [35], and at the same time provides a representation theoretic meaning of the sequences giving the flip of triangulations described there.

Although the description of the R matrix factorization is very nice, we see that after 4 flips it does not return to the original quiver, but rather a mirror image with all the arrows flipped. A full Dehn twist, however, return us to the original configuration.

If Conjecture8.5is true, which gives a quiver mutation equivalence betweenι and ιw (with Dynkin involution), this will relate such nice presentation of theR matrix factorization to the canonical one found in the main theorem.

11 Proof of Theorem9.5

LetRdenote the right hand side of (9.8). The strategy is to show thatKRalso gives the braiding relations (9.3) as well. First of all, we have

AdK(1⊗ei+eiKi)=Kiei +ei ⊗1, (11.1) AdK(fi⊗1+Kifi)=fiKi+1⊗fi, (11.2)

AdK(Ki)=KiKi. (11.3)

Hence in order to prove the braiding relations, it suffices to show

R(ei)=(1ei+eiKi), (11.4) R(fi)=(fi⊗1+Kifi), (11.5)

R(K i)=KiKi, (11.6)

where the last one is trivial. We begin with several Lemmas:

Lemma 11.1 For anysl2triple(e,f,K,K), and any self-adjoint element X , we have Adgb(eX)(f⊗1+KX)=f⊗1+KX. (11.7) Proof This is a well-known result by considering the formal power series expansion ofgb(recall that we restrict ourselves to the compact case, but it holds for the non-compact case as well). Recall

gb(u)=E x pq2

u qq1

=

n0

(−1)nq12n(n1)un (qnqn) . . . (qq1), and that we have

enffen=(qnqn)(qn1Kq1nK)en1. Hence we can work out

gb(eX)(f⊗1+KX)(f⊗1+KX)gb(eX)

=

n0

(−1)nq12n(n1)en

(qnqn) . . . (qq1)Xn

(f⊗1+KX)

(f⊗1+KX)

n0

(−1)nq12n(n1)en

(qnqn) . . . (qq1)Xn

=(f⊗1)

n0

(−1)nq12n(n1)en

(qnqn) . . . (qq1)Xn

q

Proof We observe that by Lemma5.2, Adg

wheneverYljcomes afterYik1and beforeYikin the decomposition (9.8).

Lemma 11.3 For the reduced wordi=(i1, . . . ,iN)∈R, if iN =i , then KR(ei)=op(ei)KR.

Proof Note that if iN = i, then X±N = Xf±ni i

,ei = Xfni

i + Xfni

i ,e0i and Ki =

Xfni

i ,e0i,fi−ni. We have

Xfni i

Xe0

i =qi2Xe0

iXfni i

Hence Adg

b(eiXN)(1⊗ei+eiKi)

= Adgb(eiX

f−ni i

)(1Xfni

i +1⊗Xfni

i ,e0i +eiKi)

=1⊗Xfni

i +(1Xfni

i ,e0i +eiKi)(1+qieiXf−ni

i

Xe0 i)1

=1⊗Xfni

i +1⊗Xfni

i ,e0i(1+qiiXfni

i )(1+qieiXfni

i

Xe0

i)1

=1⊗ei.

One then check directly that 1⊗ei commutes with all the factorsejXk±for every j,k, except the last termeiX+N, where we have the reverse of the above:

Adg

b(eiX+N)(1ei)=1⊗ei +eiKi,

and hence

KR(ei)=K(1⊗ei+eiKi)R=op(ei)KR

as required.

In general, we use the fact that the decomposition ofRis invariant under the change of wordsM. Letfi :=!fikdenote the representation offiusing the mutated cluster variables"Xi :=M(Xi)under the change of wordsM(cf. Sect.7)

Lemma 11.4 We have the following identities:

(1) For the change of wordsM:(. . .i j i. . .)←→(. . .j i j. . .)we have gb(e1f1k+1)gb(e2f2l)gb(e1f1k)=gb(e2f2l+1) gb(e1f1k)gb(e2f2l)

forv(i,k) < v(j,l) < v(i,k+1).

q

(2) For the change of wordsM : (. . .i j i j. . .) ←→ (. . .j i j i. . .)where i is short and j is long, we have

gbs(eifik+1)gb(ejfjl+1)gbs(eifik)gb(ejfjl)

=gb(ejfjl+1)gbs(eifik+1)gb(ejfjl)gbs(eifik) forv(j,l) < v(i,k) < v(j,l+1) < v(i,k+1).

Proof We will prove the+case, while the−case is similar.

Proof of (1)In the simply-laced case, recall that we have fik+1,+fik,+=q2fik,+fik+1,+, fik,+fjl,+=q1fjl,+fik,+. Hence

[ejfjl,+,eifik,+]

qq1 =ejeifjl,+fik,+eiejfik,+fjl,+

=ejei⊗ −q1ejei

qq1fjl,+fik,+

=ei jq1/2fjl,+fik,+

whereei j =Ti(ej)is given by the Lusztig’s isomorphism.

Hence using (A.9), we have

gb(eifik+1,+)gb(ejfjl,+)gb(eifik,+)

=gb(eifik+1,+)gb(eifik,+)gb(ei jq1/2fjl,+fik,+)gb(ejfjl,+)

=gb(ei(fik+1,++fik,+))gb(ei jq1/2fjl,+fik,+)gb(ejfjl,+).

Similarly, we have

gb(ejflj+1,+)gb(eifik,+)gb(ejflj,+)

=gb(eifik,+)gb(ei jq1/2flj+1,+fik,+)gb(ejflj+1,+)gb(ejflj,+)

=gb(eifik,+)gb(ei jq1/2flj+1,+fik,+)gb(ej(flj+1,++flj,+)).

If we write down the quantum cluster variables as

fik =X1, fik+1=X1,2, flj =X3, fik ="X1, fj

l ="X3, fj l+1

=X3,4,

then we have

"

X1=X1(1+q X2),

"

X3=X3(1+q X21)1,

"

X4=X21, and one can see that

fik+1,++fik,+=fik,+, fjl,+fik,+=flj+1,+fik,+,

fjl,+=flj+1,++flj,+

as required.

Proof of (2)We havefik,+fjl,+=q1fjl,+fik,+wheneverv(j,l) < v(i,k). Let v=eifik,+,

u =ejfjl,+, c

[2]qs

= [u, v]

qq1 =q1/2ejeiq1/2eiej

qq1q1/2fjl,+fik,+=eYq1/2fjl,+fik,+, d =qs1cvqsvc

qq1 = eYeieieY

qsqs1

q1fjl,+(fik,+)2=eXq1fjl,+(fik,+)2,

whereeX :=Ti(ej)andeY :=TiTj(ei)are given by the Lusztig’s isomorphism. We have

eYeX =qeXeY, eXei =qeieX, ejeY =qeYej, [ej,eX]

qq1 =e2Y,

and henceu,c,d, vsatisfies the condition for (A.10). Applying (A.10) repeatedly and rearranging, we have (we underline the terms to be transformed):

gbs(eifik+1,+)gb(ejfjl+1,+)gbs(eifik,+)gb(ejfjl,+)

=(A.10)gb(ejfjl+1,+)gbs(eYq−1/2fjl+1,+fik+1,+)gb(eXq−1fjl+1,+(fik+1,+)2)

×gbs(eifik+1,+)

gb(ejfjl,+)gbs(eYq−1/2fjl,+fik,+)gb(eXq−1fjl,+(fik,+)2)gbs(eifik,+)

=(A.10)gb(ejfjl+1,+)gbs(eYq1/2fjl+1,+fik+1,+)

q

×gb(eXq1fjl+1,+(fik+1,+)2)gb(ejfjl,+) gbs(eYq−1/2fjl,+fik+1,+)gb(eXq−1fjl,+(fik+1,+)2)

gbs(eifik+1,+)gbs(eYq1/2fjl,+fik,+)gb(eXq1fjl,+(fik,+)2)gbs(eifik,+)

=(A.7)gb(ejfjl+1,+)gbs(eYq−1/2fjl+1,+fik+1,+)gb(ejfjl,+)

×gb(e2Yfjl+1,+flj,+(fik+1,+)2)

gb(eXq−1fjl+1,+(fik+1,+)2)gbs(eYq−1/2fjl,+fik+1,+)gb(eXq−1fjl,+(fik+1,+)2) gbs(eYq1/2fjl,+fik,+)gbs(eXfjl,+fik,+fik+1,+)

gbs(eifik+1,+)gb(eXq−1fjl,+(fik,+)2)gbs(eifik,+)

=(A.8)gb(ej(fjl+1,++fjl,+))

gbs(eYq−1/2fjl+1,+fik+1,+)gb(e2Yfjl+1,+fjl,+(fik+1,+)2)gbs(eYq−1/2fjl,+fik+1,+) gbs(eYq1/2fjl,+fik,+)gb(eXq1fjl+1,+(fik+1,+)2)

gb(eXq−1fjl,+(fik+1,+)2)gbs(eXfjl,+fik,+fik+1,+)gb(eXq−1fjl,+(fik,+)2)

gbs(ei(fik+1,++fik,+))

=(A.12)gb(ej(flj+1,++fjl,+))

×gbs(eYq−1/2(fjl+1,++fjl,+)fik+1,+)gbs(eYq−1/2fjl,+fik,+)

gb(eXq−1fjl+1,+(fik+1,+)2)gb(eXq−1fjl,+(fik+1,++fik,+)2)gbs(ei(fik+1,++fik,+))

=(A.8)gb(ej(fjl+1,++fjl,+))gbs(eYq−1/2(fjl+1,++fjl,+)fik+1,++q−1/2fjl,+fik,+) gb(eXq−1fjl+1,+(fik+1,+)2+q−1fjl,+(fik+1,++fik,+)2)gbs(ei(fik+1,++fik,+)), where in the last line, we observe that the termsq2 commute, hence we can apply (A.12).

On the other hand, by applying (A.10) once, we have

gb(ejf2l+1,+)gbs(eif1k+1,+)gb(ejf2l,+)gbs(eif1k,+)

=gb(ej(f2l+1,++f2l,+))gbs(eYq1/2f2l,+f1k+1,+) gb(eXq1f2l,+(f1k+1,+)2)gbs(ei(f1k+1,++f1k,+)).

To compare, again we write out the quantum cluster variables as

fik,+=X1, fik+1,+=X1,2, fjl,+=X3, fjl+1,+=X3,4, fik,+=X1, fik+1,+=X1,2, flj,+=X3, flj+1,+=X3,4. Recall that we need to do mutation three times according to Sect.7.2, which gives at the end

X1=D21X1,2,4,

X2=X2,14D1, X3=D11X3D3, X4=D31X4, where

D1=(1+qsX2)(1+qs3X2)+q X22,4, D2=(1+qsX2+qsX2,4),

D3=(1+qsX2+qsX2,4)(1+qs3X2+qs3X2,4).

Now we can check directly that

fjl+1,++fjl,+=f2l+1,++f2l,+, fjl+1,++fjl,+)fik+1,++q1/2fjl,+fik,+=f2l,+f1k+1,+, fjl+1,+(fik+1,+)2+fjl,+(fik+1,++fik,+)2=f2l,+(f1k+1,+)2,

fik+1,++fik,+=f1k+1,++f1k,+

and this completes the proof.

Remark 11.5 In typeG2, using the mutation sequence that gives the half-Dehn twist from Sect.10.1.5, one can conjugate the representation of(e2)by (9.8) and check the braiding relation directly. Using the fact that the standard form of the universal R matrix is invariant under the change of words, we conclude that the analogue of Lemma11.4also holds in typeG2.

Proof of Theorem9.5 First it is obvious thatKandRcommute with both(Ki)and (Ki)by direct calculation.

As a consequence of Lemma11.2, we have

KR(fi)=K(fi⊗1+Kfi)R=op(fi)KR (11.9) as required.

As a consequence of Lemma11.4, we can choose freely the reduced wordiwith any choice of index on the right ofi, and by Lemma11.3, we obtain

KR(e i)=op(ei)KR

for every root indexi, thus completing the proof of the braiding relations.

Finally, recall that by the construction of the positive representationsPλ, one can choose appropriate discrete parametersλand restrict it to give any irreducible highest weight finite dimensional representations ofUq(g)[21]. ThenKRsatisfies the braiding (9.3) on every finite dimensional representations ofUq(g), and as a formal power series it has constant term equals 1, hence we conclude thatKRequals the universalRmatrix.

q

Acknowledgements I would like to thank Gus Schrader and Alexander Shapiro for stimulating discussions who inspired the constructions carried out in this work. I would also like to thank Masahito Yamazaki and Rei Inoue for valuable comments. This work is supported by JSPS KAKENHI Grant Numbers JP16K17571 and Top Global University Project, MEXT, Japan.

A Quantum dilogarithm identities

The compact quantum dilogarithm function is defined to be the infinite product q(x)=

r=0

(1+q2r+1x)1, (A.1)

which is well defined for 0 <q < 1. In the split real case, whereq = eπi b2 with 0 <b <1, the infinite product is not so well-behaved. To treat this case, the non-compact quantum dilogarithmgb(x)is composed of two commuting copies, associated to the so-calledFaddeev’s modular double, of the compact quantum dilogarithmq(x) [6,8]. It is a meromorphic function that can be represented as an integral expression:

gb(x):=exp 1

4

#

R+i0

xi bt

sinh(πbt)sinh(πb1t) dt

t

, (A.2)

such that by functional calculus, it is a unitary operator whenxis positive self-adjoint, and there is ab-duality:

gb(x)=gb1(xb12). (A.3) In this paper however, we are only interested in the formal algebraic calculation, hence one may consider only the compact part and think about the correspondence in terms of formal power series

gb(x)q(x)1= r=0

(1+q2r+1x)=E x pq2

u qq1

, (A.4)

where

E x pq(x):=

k0

xk

(k)q!, (A.5)

(k)q:= 1−qk

1−q . (A.6)

In particular, we can rewrite the identities of E x pq(x) derived in [31] for the quantum dilogarithm functiongb(x)that are needed in this paper. In particular, by

writing in this way, the argument ofgb(x)are all manifestly positive self-adjoint so that the identities are well-defined in the split real setting.

We will be interested in two types of identities: the pentagon equation (PE) and the quantum exponential relation (QE), together with their generalizations.

Simply-laced caseLetu, vbe self-adjoint variables. Ifuv=q2vu, then we have the pentagon equation and the quantum exponential relation:

(P E): gb(v)gb(u)=gb(u)gb(q1uv)gb(v), (A.7)

(Q E): gb(u+v)=gb(u)gb(v). (A.8)

Let againu, vbe self-adjoint and

c:= [u, v]

qq1, such that

uc=q2cu, cv=q2vc.

Then we have the generalized pentagon equation:

(P E): gb(v)gb(u)=gb(u)gb(c)gb(v). (A.9) in which (A.7) is a special case.

Doubly-laced caseIn the doubly-laced case we haveqs =q1/2. Letu, vbe self-adjoint variables, and let

c:= [u, v]

qsqs1

, d:= qs1cvqsvc qq1 , such that

uc=q2cu, cd =q2dc, dv=q2vd, q1udqdu qq1 = c2

[2]2qs

.

We have

(P E): gbs(v)gb(u)=gb(u)gbs

c [2]qs

gb(d)gbs(v), (A.10) (Q E): gbs(c+v)=gbs(c)gb([2]qsd)gbs(v). (A.11) In particular ifuv=q2vuand substituteuquv1/[2]qs, we have:

gbs(u+v)=gbs(u)gb(q1uv)gbs(v), (A.12)

q

gb((u+v)2)=gb(u2)gbs(q1/2uv)gb(v2). (A.13) These two relations are related by theb-duality (A.3).

Triply-laced caseFor completeness we also translate the typeG2identity of [31] to gb(x), which becomes more natural looking.

Letqs =q1/3, and letu, vbe self-adjoint. Define c:= qs1uvqsvu

qs2qs2

, d:= qs2cvqs2vc

qsqs1

, d:= qs2ucqs2cu

qsqs1

,

such that these relations are satisfied:

ud=q2du, dc=q2cd, cd=q2dc, dv=q2vd, c2= q1udqdu

qq1 , c2= q1dvqvd

qq1 , c3= q2ddq2dd qq1 . Then we have

(Q E): gbs(u+v)=gbs(u)gb(d)gbs(c)gb(d)gbs(v). (A.14) In particular ifuv=q2vu =qs6vu, we have

gbs(u+v)=gbs(u)gb(q2u2v)gbs(q1uv)gb(q2uv2)gbs(v), (A.15) gb((u+v)3)=gb(u3)gbs(q2u2v)gb(q3u3v3)gbs(q2uv2)gb(v3), (A.16) which are related by theb-duality (A.3).

On the other hand, lete1,e2be the generators ofUq(gG2)withe1long ande2short, and letζ1, ζ2be positive variables satisfyingζ1ζ2=q1ζ2ζ1. Let the non-simple root generators be

eW :=T1(e2)= [e2,e1]q3/2 s

qs3qs3

, eX :=T1T2(e1)= [eY,eW]q1/2

s

qsqs1

, eY :=T1T2T1(e2)= [e2,eW]q1/2

s

qs2qs2

, eZ :=T1T2T1T2(e1)= [e2,eY]q1/2

s

qsqs1

.

Then we have (PE):

gbs(e2ζ2)gb(e1ζ1)

=gb(e1ζ1)gbs(eWq1/2ζ1ζ2)gb(eXq3ζ12ζ23)gbs

(eY1ζ22)gb(eZq3/2ζ1ζ23)gbs(e2ζ2). (A.17)

References

1. Berenstein, A.: Group-like elements in quantum groups and Feigin’s conjecture.arXiv:q-alg/9605016 (1996)

2. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math.195(2), 405–455 (2005) 3. Bytsko, A.G., Teschner, J.: R-operator, co-product and Haar-measure for the modular double of

Uq(sl(2,R)). Commun. Math. Phys.240, 171–196 (2003)

4. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994) 5. Drinfeld, V.G.: Hopf algebras and the quantum Yang–Baxter equation. Dokl. Akad. Nauk SSSR283(5),

1060–1064 (1985)

6. Faddeev, L.D.: Modular double of quantum group.arXiv:math/9912078v1[math.QA] (1999) 7. Faddeev, L.D.: Discrete Heisenberg–Weyl group and modular group. Lett. Math. Phys.34, 249–254

(1995)

8. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A9, 427–434 (1994) 9. Fock, V., Goncharov, A.: ClusterX-varieties, amalgamation, and Poisson-Lie groups. In: Ginzburg,

V. (ed.) Algebraic Geometry and Number Theory, pp. 27–68. Birkhäuser, Boston (2006)

10. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math.

l’IHÉS103, 1–211 (2006)

11. Frenkel, I., Ip, I.: Positive representations of split real quantum groups and future perspectives. Int.

Math. Res. Not.2014(8), 2126–2164 (2014)

12. Gautam, S.: Cluster algebras and Grassmannians of typeG2. Algebras Represent. Theory13, 335–357 (2010)

13. Geiss, C., Leclerc, B., Schröer, J.: Cluster structures on quantum coordinate rings. Sel. Math.19(2), 337–397 (2013)

14. Gerasimov, A., Kharchev, S., Lebedev, D.: Representation theory and quantum integrability. Progr.

Math.237, 133–156 (2005)

15. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a class of representations of quantum groups.

Contemp. Math.391, 101–110 (2005)

16. Goodearl, K., Yakimov, M.: Quantum cluster algebras and quantum nilpotent algebras. Proc. Natl.

Acad. Sci.111(27), 9696–9703 (2014)

17. Hikami, K., Inoue, R.: Braiding operator via quantum cluster algebra. J. Phys. A Math. Theor.47(47), 474006 (2014)

18. Iohara, K., Malikov, F.: Rings of skew polynomials and Gelfand–Kirillov conjecture for quantum groups. Commun. Math. Phys.164(2), 217–237 (1994)

19. Ip, I.: Cluster realization of positive representations of split real quantum Borel subalgebra.

arXiv:1712.00013(2017)

20. Ip, I.: Positive representations and harmonic analysis of split real quantum groups. Ph.D. thesis, Yale University (2012)

21. Ip, I.: Positive representations of split real simply-laced quantum groups.arXiv:1203.2018(2012) 22. Ip, I.: Positive representations of split real non-simply-laced quantum groups. J. Algebra425(2015),

245–276 (2015)

23. Ip, I.: Positive representations of split real quantum groups: the universalRoperator. Int. Math. Res.

Not.2015(1), 240–287 (2015)

24. Ip, I.: Gauss–Lusztig decomposition ofG L+q(N,R)and representations byq-tori. J. Pure Appl. Alge-bra219(12), 5650–5672 (2015)

25. Ip, I.: Positive Casimir and central characters of split real quantum groups. Commun. Math. Phys.

344(3), 857–888 (2016)

q

26. Ip, I.: Positive representations, multiplier Hopf algebra, and continuous canonical basis, “String theory, integrable systems and representation theory”. RIMS Kokyuroku Bessatsu Ser. B62, 71–86 (2017) 27. Jimbo, M.: Aq-difference analogue ofU(g)and the Yang–Baxter equation. Lett. Math. Phys.10,

63–69 (1985)

28. Kashaev, R.: The quantum dilogarithm and Dehn twists in quantum Teichmüller theory. In: Kirillov, A.N., Liskova, N. (eds.) Physics and Combinatorics (2000, Nagoya), pp. 63–81. World Scientific Publishing, River Edge (2000)

29. Kashaev, R.: The Heisenberg double and the pentagon relation. Algebra i Anal.8(4), 63–74 (1996) 30. Kashaev, R.M., Volkov, A.Yu.: From the tetrahedron equation to universalR-matrices. Trans. A.M.S.

Ser. 2201, 79–90 (2000)

31. Khoroshkin, S.M., Tolstoy, V.N.: UniversalRmatrix for quantized (super) algebras. Commun. Math.

Phys.141, 599–617 (1991)

32. Kirillov, A., Reshetikhin, N.:q-Weyl group and a multiplicative formula for universal Rmatrices.

Commun. Math. Phys.134, 421–431 (1990)

33. Knutson, A., Tao, T.: The honeycomb model ofG Ln(C)tensor products I: proof of the saturation conjecture. J. Am. Math. Soc.12, 1055–1090 (1999)

34. Le, I.: An approach to cluster structures on moduli of local systems for general groups.

arXiv:1606.00961(2016)

35. Le, I.: Cluster structures on higher Teichmüller spaces for classical groups.arXiv:1603.03523(2016) 36. Levendorskii, S., Soibelman, Ya.: Some applications of the quantum Weyl groups. J. Geom. Phys.7(2),

241–254 (1990)

37. Levendorskii, S., Soibelman, Ya.: Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Commun. Math. Phys.139(1), 141–170 (1991)

38. Ponsot, B., Teschner, J.: Liouville bootstrap via harmonic analysis on a noncompact quantum group.

arXiv:hep-th/9911110(1999)

39. Ponsot, B., Teschner, J.: Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations ofUq(sl(2,R)). Commun. Math. Phys.224, 613–655 (2001)

40. Rupel, D.: The Feigin tetrahedron. Symmetry Integr. Geom. Methods Appl.11, 24–30 (2015) 41. Schrader, G., Shapiro, A.: A cluster realization of Uq(sln) from quantum character varieties.

arXiv:1607.00271(2016)

42. Schrader, G., Shapiro, A.: Continuous tensor categories from quantum groups I: algebraic aspects.

arXiv:1708.08107(2017)

43. Schrader, G., Shapiro, A.: Quantum groups, quantum tori, and the Grothendieck–Springer resolution.

Adv. Math.321, 431–474 (2017)

44. Suzuki, S.: The universal quantum invariant and colored ideal triangulations.arXiv:1612.08262(2016)

Documents relatifs