• Aucun résultat trouvé

L‟acquisition des génomes de l‟hôte et du symbiote ectomycorhizien a ouvert la voie à des études de post-génomiques plus ciblées, notamment l‟analyse des gènes fortement et

spécifiquement régulés pendant la symbiose et codant des petites protéines sécrétées

dénommées alors MiSSPs pour Mycorrhiza induced Small Secreted Proteins (Martin et al,

2008). Des études transcriptomiques utilisant des puces à ADN sur l‟interaction L. bicolor/P.

menziesii ont permis de mettre en évidence l‟existence de gènes spécifiquement exprimés par

L. bicolor pendant la symbiose avec P. menziesii et pas avec P. trichocarpa, ainsi qu‟un core

régulon de gènes de L. bicolor surexprimés aussi bien chez P. trichocarpa que P. menziesii,

(Plett et al, 2015). Parmi ce core régulon se trouve plusieurs protéines MiSSPs étudiées au

laboratoire, notamment MiSSP7, MiSSP8 et MiSSP17, laissant penser que leurs fonctions

sont impliquées dans des processus clés de mise en place de la symbiose plutôt que dans les

processus qui contrôlent la spécificité d‟hôte.

4. Références

Akum, F. N., Steinbrenner, J., Biedenkopf, D., Imani, J., and Kogel, K.-H. 2015. The

Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean

symbiosis. Front. Plant Sci. 6:1–12

Boch, J., and Bonas, U. 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and

function. Annu. Rev. Phytopathol. 48:419–36

Bogdanove, a. J., and Voytas, D. F. 2011. TAL Effectors: Customizable Proteins for DNA

Targeting. Science (80-. ). 333:1843–1846

Bozkurt, T. O., Schornack, S., Win, J., Shindo, T., Ilyas, M., Oliva, R., Cano, L. M., Jones, a.

M. E., Huitema, E., van der Hoorn, R. a. L., and Kamoun, S. 2011. Phytophthora

infestans effector AVRblb2 prevents secretion of a plant immune protease at the

haustorial interface. Proc. Natl. Acad. Sci. 108:20832–20837

van den Burg, H. a, Harrison, S. J., Joosten, M. H. a J., Vervoort, J., and de Wit, P. J. G. M.

2006. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant

chitinases accumulating during infection. Mol. Plant. Microbe. Interact. 19:1420–1430

Caillaud, M. C., Piquerez, S. J. M., Fabro, G., Steinbrenner, J., Ishaque, N., Beynon, J., and

Jones, J. D. G. 2012. Subcellular localization of the Hpa RxLR effector repertoire

identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant

susceptibility. Plant J. 69:252–265

Caillaud, M.-C., Wirthmueller, L., Sklenar, J., Findlay, K., Piquerez, S. J. M., Jones, A. M. E.,

Robatzek, S., Jones, J. D. G., and Faulkner, C. 2014. The Plasmodesmal Protein PDLP1

Localises to Haustoria-Associated Membranes during Downy Mildew Infection and

Regulates Callose Deposition. PLoS Pathog. 10:e1004496

Cui, F., Wu, S., Sun, W., Coaker, G., Kunkel, B., He, P., and Shan, L. 2013. The

Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via

stimulating Arabidopsis auxin/indole acetic acid protein turnover. Plant Physiol.

162:1018–29

Fesel, P. H., and Zuccaro, A. 2015. ??-glucan: Crucial component of the fungal cell wall and

elusive MAMP in plants. Fungal Genet. Biol.

Giraldo, M. C., and Valent, B. 2013. Filamentous plant pathogen effectors in action. Nat. Rev.

Microbiol. 11:800–14

de Jonge, R., van Esse, H. P., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., van der Krol,

S., Shibuya, N., Joosten, M. H. a J., and Thomma, B. P. H. J. 2010. Conserved fungal

LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 329:953–955

Kale, S. D., Gu, B., Capelluto, D. G. S., Dou, D., Feldman, E., Rumore, A., Arredondo, F. D.,

Hanlon, R., Fudal, I., Rouxel, T., Lawrence, C. B., Shan, W., and Tyler, B. M. 2010.

External Lipid PI3P Mediates Entry of Eukaryotic Pathogen Effectors into Plant and

Animal Host Cells. Cell. 142:284–295

Kaschani, F., Shabab, M., Bozkurt, T., Shindo, T., Schornack, S., Gu, C., Ilyas, M., Win, J.,

Kamoun, S., and van der Hoorn, R. A. L. 2010. An effector-targeted protease contributes

to defense against Phytophthora infestans and is under diversifying selection in natural

hosts. Plant Physiol. 154:1794–804

Kay, S., Hahn, S., Marois, E., Hause, G., and Bonas, U. 2007. A bacterial effector acts as a

plant transcription factor and induces a cell size regulator. Science. 318:648–651

Kazan, K., and Lyons, R. 2014. Intervention of Phytohormone Pathways by Pathogen

Effectors. Plant Cell. 26:2285–2309

Khang, C. H., Berruyer, R., Giraldo, M. C., Kankanala, P., Park, S.-Y., Czymmek, K., Kang,

S., and Valent, B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells

and their subsequent cell-to-cell movement. Plant Cell. 22:1388–1403

Kloppholz, S., Kuhn, H., and Requena, N. 2011. A Secreted Fungal Effector of Glomus

intraradices Promotes Symbiotic Biotrophy - Supp. nformations. Curr. Biol. 21:1204–

1209

Li, Y., Moore, R., Guinn, M., and Bleris, L. 2012. Transcription activator-like effector

hybrids for conditional control and rewiring of chromosomal transgene expression. Sci.

Rep. 2:897

Liu, W., Rudis, M. R., Peng, Y., Mazarei, M., Millwood, R. J., Yang, J. P., Xu, W., Chesnut,

J. D., and Stewart, C. N. 2014. Synthetic TAL effectors for targeted enhancement of

transgene expression in plants. Plant Biotechnol. J. 12:436–446

Malinovsky, F. G., Fangel, J. U., and Willats, W. G. T. 2014. The role of the cell wall in plant

immunity. Front. Plant Sci. 5:178

Manning, V. a, Hardison, L. K., and Ciuffetti, L. M. 2007. Ptr ToxA interacts with a

chloroplast-localized protein. Mol. Plant. Microbe. Interact. 20:168–177

Manning, V. A., Chu, A. L., Scofield, S. R., and Ciuffetti, L. M. 2010. Intracellular

expression of a host-selective toxin, ToxA, in diverse plants phenocopies silencing of a

ToxA-interacting protein, ToxABP1. New Phytol. 187:1034–1047

Marshall, R., Kombrink, A., Motteram, J., Loza-Reyes, E., Lucas, J., Hammond-Kosack, K.

E., Thomma, B. P. H. J., and Rudd, J. J. 2011. Analysis of two in planta expressed LysM

effector homologs from the fungus Mycosphaerella graminicola reveals novel functional

properties and varying contributions to virulence on wheat. Plant Physiol. 156:756–69

McLellan, H., Boevink, P. C., Armstrong, M. R., Pritchard, L., Gomez, S., Morales, J.,

Whisson, S. C., Beynon, J. L., and Birch, P. R. J. 2013. An RxLR Effector from

Phytophthora infestans Prevents Re-localisation of Two Plant NAC Transcription

Factors from the Endoplasmic Reticulum to the Nucleus. PLoS Pathog. 9

Mentlak, T. a., Kombrink, a., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., Terauchi, R.,

Nishizawa, Y., Shibuya, N., Thomma, B. P. H. J., and Talbot, N. J. 2012.

Effector-Mediated Suppression of Chitin-Triggered Immunity by Magnaporthe oryzae Is

Necessary for Rice Blast Disease. Plant Cell. 24:322–335

Monaghan, J., and Zipfel, C. 2012. Plant pattern recognition receptor complexes at the plasma

membrane. Curr. Opin. Plant Biol. 15:349–357

El Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez, M. C., Daayf, F.,

Vojnov, A., and Bouarab, K. 2011. Botrytis cinerea manipulates the antagonistic effects

between immune pathways to promote disease development in tomato. Plant Cell.

23:2405–2421

Petre, B., and Kamoun, S. 2014. How Do Filamentous Pathogens Deliver Effector Proteins

into Plant Cells? J.M. McDowell, ed. PLoS Biol. 12:e1001801

Petre, B., Lorrain, C., Saunders, D. G. O., Win, J., Sklenar, J., Duplessis, S., and Kamoun, S.

2015a. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts.

Cell. Microbiol.

Petre, B., Saunders, D. G. O., and Sklenar, J. 2015b. Candidate Effector Proteins of the Rust

Pathogen Melampsora larici-populina Target Diverse Plant Cell Compartments. Mol.

Plant-Microbe Interact. 28:689–700

Plett, J. M., Daguerre, Y., Wittulsky, S., Vayssières, A., Deveau, A., Melton, S. J., Kohler, A.,

Morrell-Falvey, J. L., Brun, A., Veneault-Fourrey, C., and Martin, F. 2014. Effector

MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein

and represses jasmonic acid (JA) responsive genes. Proc. Natl. Acad. Sci. U. S. A.

111:8299–304

Plett, J. M., Kemppainen, M., Kale, S. D., Kohler, A., Legué, V., Brun, A., Tyler, B. M.,

Pardo, A. G., and Martin, F. 2011. A secreted effector protein of laccaria bicolor is

required for symbiosis development. Curr. Biol. 21:1197–1203

Qiang, X., Weiss, M., Kogel, K. H., and Schäfer, P. 2012. Piriformospora indica-a mutualistic

basidiomycete with an exceptionally large plant host range. Mol. Plant Pathol. 13:508–

518

Qiao, Y., Shi, J., Zhai, Y., Hou, Y., and Ma, W. 2015. Phytophthora effector targets a novel

component of small RNA pathway in plants to promote infection. Proc. Natl. Acad. Sci.

U. S. A. 112:5850–5

Rafiqi, M., Jelonek, L., Akum, N. F., Zhang, F., and Kogel, K.-H. 2013. Effector candidates

in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. Front.

Plant Sci. 4:1–5

Ramirez-Garcés, D., Camborde, L., Pel, M. J. C., Jauneau, A., Martinez, Y., Néant, I.,

Leclerc, C., Moreau, M., Dumas, B., and Gaulin, E. 2015. CRN13 candidate effectors

from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger

host DNA damage response. New Phytol.

Rivas, S., and Genin, S. 2011. A Plethora of Virulence Strategies Hidden Behind Nuclear

Targeting of Microbial Effectors. Front. Plant Sci. 2:1–20

Rivas-San Vicente, M., and Plasencia, J. 2011a. Salicylic acid beyond defence: Its role in

plant growth and development. J. Exp. Bot. 62:3321–3338

Rivas-San Vicente, M., and Plasencia, J. 2011b. Salicylic acid beyond defence: Its role in

plant growth and development. J. Exp. Bot. 62:3321–3338

Rovenich, H., Boshoven, J. C., and Thomma, B. P. H. J. 2014. Filamentous pathogen effector

functions: Of pathogens, hosts and microbiomes. Curr. Opin. Plant Biol. 20:96–103

Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A., Hansen, G., Valkenburg, D. J.,

Thomma, B. P. H. J., and Mesters, J. R. 2013. Fungal effector Ecp6 outcompetes host

immune receptor for chitin binding through intrachain LysM dimerization. Elife. 2013

Schäfer, P., Pfiffi, S., Voll, L. M., Zajic, D., Chandler, P. M., Waller, F., Scholz, U.,

Pons-Kühnemann, J., Sonnewald, S., Sonnewald, U., and Kogel, K.-H. 2009. Phytohormones

in plant root-Piriformospora indica mutualism. Plant Signal. Behav. 4:669–71

Schornack, S., van Damme, M., Bozkurt, T. O., Cano, L. M., Smoker, M., Thines, M., Gaulin,

E., Kamoun, S., and Huitema, E. 2010. Ancient class of translocated oomycete effectors

targets the host nucleus. Proc. Natl. Acad. Sci. U. S. A. 107:17421–17426

Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y.,

Minami, E., Okada, K., Yamane, H., Kaku, H., and Shibuya, N. 2010. Two LysM

receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor

signaling in rice. Plant J. 64:204–214

Shinya, T., Motoyama, N., Ikeda, A., Wada, M., Kamiya, K., Hayafune, M., Kaku, H., and

Shibuya, N. 2012. Functional characterization of CEBiP and CERK1 homologs in

arabidopsis and rice reveals the presence of different chitin receptor systems in plants.

Plant Cell Physiol. 53:1696–1706

Song, J., Win, J., Tian, M., Schornack, S., Kaschani, F., Ilyas, M., van der Hoorn, R. a L., and

Kamoun, S. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant

pathogens target the tomato defense protease Rcr3. Proc. Natl. Acad. Sci. U. S. A.

106:1654–1659

Song, T., Ma, Z., Shen, D., Li, Q., Li, W., Su, L., Ye, T., Zhang, M., Wang, Y., and Dou, D.

2015. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by

Targeting their Promoters. PLoS Pathog. 11

Tian, M., Benedetti, B., and Kamoun, S. 2005. A Second Kazal-like protease inhibitor from

Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related

protease P69B of tomato. Plant Physiol. 138:1785–93

Tian, M., Huitema, E., Da Cunha, L., Torto-Alalibo, T., and Kamoun, S. 2004. A Kazal-like

extracellular serine protease inhibitor from Phytophthora infestans targets the tomato

pathogenesis-related protease P69B. J. Biol. Chem. 279:26370–26377

Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E., and Kamoun, S. 2007. A

Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic

protease. Plant Physiol. 143:364–77

Vargas, W. A., Sanz-Martín, J. M., Rech, G. E., Armijos-Jaramillo, V. D., Rivera, L. P.,

Echeverria, M. M., Díaz-Mínguez, J. M., Thon, M. R., and Sukno, S. A. 2015. A fungal

effector with host nuclear localization and DNA-binding properties is required for maize

anthracnose development. Mol. Plant. Microbe. Interact.

Wawra, S., Djamei, A., Albert, I., Nürnberger, T., Kahmann, R., and van West, P. 2013. In

Vitro Translocation Experiments with RxLR-Reporter Fusion Proteins of Avr1b from

Phytophthora sojae and AVR3a from Phytophthora infestans Fail to Demonstrate

Specific Autonomous Uptake in Plant and Animal Cells. Mol. Plant. Microbe. Interact.

26:528–36

Yan, S., and Dong, X. 2014. Perception of the plant immune signal salicylic acid. Curr. Opin.

Plant Biol. 20:64–68

Chapitre III

Analyse comparative de sécrétomes