• Aucun résultat trouvé

Lire la première partie de la thèse

N/A
N/A
Protected

Academic year: 2021

Partager "Lire la première partie de la thèse"

Copied!
82
0
0

Texte intégral

(1)
(2)

Contents

5.1 Introduction . . . 109

5.2 Impact of changing albedo . . . 110

5.2.1 Description of experiment . . . 110

5.2.2 Results of changing albedo on energy flux components . . . 111

5.3 Joint Assimilation of LAI, SSM and albedo . . . 120

5.3.1 Study station, model and observations . . . 120

5.3.2 Data Assimilation Scheme and Experiment setup . . . 120

5.3.3 Results . . . 123

5.4 Conclusion . . . 130

5.1

Introduction

Surface albedo is an important parameter of surface model influencing energy balance. The impact of chaning albedo on energy balance and hydrology components is worth to test. Mc-Cumber and Pielke (1981) performed sensitivity test (24-h simulations) in which soil albedo was free to vary as a function of surface moisture (Idso et al., 1975). Depending on the soil type, the authors reported a shift of the simulated surface temperature ranging between 1◦C and +2.5C. Cedilnik et al. (2012) found that change in surface albedo from climatology to daily analysed satellite products infers a modification of the surface temperature that can reach 1K in average over certain regions. The coupling bare soil albedo with soil moisture is tested using ORCHIDEE model (Gascoin et al., 2009a). It is demonstrates that implementing the effect of soil moisture on bare soil albedo importantly influences the surface fluxes at the monthly and annual scale. For example, the mean annual evaporation rate was increased by +12%. But even In the latest surface models, bare soil albedo dependence on soil moisture is not correctly accounted for. He-rein, thedependence function of bare soil albedo with soil wetness developed in previous chapter is considered to test the impact of changing soil albedo on energy components.

(3)

110 5. Implementation in SURFEX Hitherto, soil moisture and biomass/LAI assimilation has been achieved through a SEKF(Simple Ensemble Kalman Filter) scheme developed at Meteo-France with ISBA-A-gs land surface model (Barbu et al., 2011; Draper et al., 2011; Mahfouf et al., 2009; Rüdiger et al., 2010). It can be expected that adding albedo as an extra observation might better constrain model status. In fact since it represents a flux, surface albedo products have higher precision comparing with LAI and SSM whose variations have an impact on surface albedo measurements. However, up-to-date ISBA-A-gs merely offers an albedo climatology, whose temporal variation is only driven by LAI in the context of ECOCLIMAP (Masson et al., 2003). Hence, a prognostic albedo is urgently required to fill the cap to capture the signals observed by satellite.

To meet such above requirements, a 2-stream radiative transfer scheme is employed as ob-servation operator to build the bridge. Both Black Sky Albedo (BSA) and White Sky Albedo (WSA) can be simulated at VIS and NIR spectral range. They depend on (1) canopy structure parameter : Leaf Area Index (LAI), average leaf inclination angle (ALA) ; (2) leaf optical pro-perty : leaf reflectance (ρl), leaf transmittance (τl) ; (3) surface soil moisture (SSM) ; (4) solar zenith angle (SZA) (only for BSA).

The novel prognostic albedo is assessed through comparing with MODIS and SEVIRI albedo product over France from 2007 to 2010. A joint assimilation strategy based on SEKF is proposed by digesting satellite observed albedo, LAI, soil moisture products into ISBA-A-gs model.

5.2

Impact of changing albedo

5.2.1 Description of experiment

The objective of this experiment is to evaluate the impact of using alternative parameteriza-tion scheme of bare soil albedo in SURFEX with emphasis on soil moisture component. Through incorporating a ‘albedo-soil moisture’ dependence in SURFEX, it is expected to improve its modelling ability for energy balance. The relationship between surface albedo and moisture is represented by a set of three coefficients representing the best calibration between daily SEVIRI albedo product and in-situ soil moisture record at 12 SMOSMANIA stations. This relationship is extended to the whole France using the calibration from a representative station ’Condom’ as it appeared to be a solid relationship well representative of south-western France. It is clearly deemed not necessarily appropriate for certain regions of France but the idea is rather here to conduct impact studies rather than searching for an accurate time evolving surface albedo pixel-based. The skin surface moisture is used, which is defined over the depth of bare soil evaporation. In this respect, the impact of changing surface albedo on energy budget (net radiation, sensible heat, latent heat), surface moisture and surface temperature are evaluated via some delicated model simulations. ISBA-A-gs model is running at a 6 hour step from 2007/08/01 to 2010/07/31, driven by the French forcing dataset SAFRAN. It yields totally 8602 points over France Metro-politan at SIM (Safran-Isba-Modcou) grid, within which each point represents around a circle with 8km radius. The initial condition is generated for the simulation through a spin-up, which is conducted during one year previously to the study period (from 2006/08/01 to 2007/07/31) until

(4)

5.2.2 Results of changing albedo on energy flux components 5.2.2.1 Spatial distribution over France

– (a)

– (b)

Figure 5.1 – Impact assessement on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE over France. Scenario at 12 :00 UTC on Aug 1, 2007 is rendered as illustration.

(5)

112 5. Implementation in SURFEX

– (c)

– (d)

Impact assessement on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE over France. Scenario at 12 :00 UTC on Aug 1, 2007 is rendered as illustration.

Spatial distribution of the impact is rendered in Fig. 5.1 for a selected day Aug 1, 2007. Since it has a diurnal variation with a peak around local solar noon, a scenario at 12 :00 UTC is enhance the potential maximal influence. First, it can be observed some opposite tendencies between NEWS and REFE surface albedo values according roughly western and eastern part of France 5.1(a), highlighting sandy regions like the Landes forest near Atlantic ocean. Those geo-graphical patterns are highly correlated with soil moisture WG1 5.1(d), as expected. Difference in albedo can vary up to 0.1 in absolute value whereas 0.05 is more common. As a remind, the quantity 0.05 falls within the GCOS specification for surface albedo, meaning that the climate models are not to day ready to accept satellite albedo of such precision. No distinct patterns are noticeable for the net radiation (RN), latent heat flux (LE) and even the surface temperature, probably because WG1 values are not high enough. However, sparse distribution of deviations between -0.1 and 0.1 W/m2 for RN and LE reveal some impact with no systematic bias. Inter-estingly, the sensible heat flux (H) indicates marked spatial pattern negatively correlated with surface albedo. The explanation is that a wet surface albedo infers a cooling that changes the gradient of temperature between the surface and low atmosphere, which is however not so

(6)

noti-– (f)

Impact assessment on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE over France. Scenario at 12 :00 UTC on Aug 1, 2007 is rendered as illustration.

ceable on the temperature (TG1).

5.2.2.2 Seasonal and Daily Variation

There is a value to assess the temporal variations of the impact of changing surface albedo on both daily and seasonally basis. A point with index 0001 is illustrated as an exaple (Fig. 5.2). It can be noticed that the time evolving bare soil albedo is decreased by 0.03-0.04 in absolute value around the year compared to the climatology value used in REFE. The NEWS RN is above REFE RN along the whole year, yielding a positive bias around 10 W/m2. Moreover, H and LE show also the same trend that RN in respect to the use of NEWS or REFE scenario, but the difference is smaller compared to RN. However, the changing albedo has limited influence on surface moisture and surface temperature.

The temporal variation of the impact is can be evaluated daily and seasonally. A point with index 0001 is illustrated as an example (Fig. 5.2). It can be noticed that after changing, soil al-bedo is lower by 0.03-0.04 around the year than climatology value used in ‘REFE’. The ‘NEWS’

(7)

114 5. Implementation in SURFEX

– (a) – (b)

– (c) – (d)

– (e) – (f)

Figure 5.2 – Comparison of monthly average variations over France between the 2 scenarios (NEWS a REFE) regarding the impact on possible wet albedo on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE. Time series of one year at 12 :00 UTC from Aug 1, 2007 to Jul 31, 2008 is shown.

RN is obvious higher than ‘REFE’ along the whole year, yielding around 10 W/m2 difference. H and LE has the same trend causing higher values of ‘NEWS’ than ‘REFE’, while the difference is smaller comparing to RN. However, the changing albedo has limited influence on surface mois-ture and surface temperamois-ture.

Daily averaged variations of the different fields (Fig. 5.3) tell more compared to monthly ave-raged variations. As the remind, sensible heat (H) is caused by conduction and convection and with a warm surface and a cooler atmosphere, then the boundary layer heat will be conducted into the atmosphere. Thus, a slightly negative sensible heat as observed in the present situation would mean that it is being drawn from the surface to evaporate water, which appears here rather independent of the surface albedo (wet or dry) and of course more significant on TG1. But it is more usual to see positive sensible heat during the daytime as the surface warms the lower levels of the atmosphere. Interestingly, the major noticeable differences between NEWS

(8)

– (b)

– (c)

Figure5.3 – Same as Fig. 5.2 but showing daily average instead of monthly average.

and REFE H and LE values are when values reach a peak. In fact, the rate of heat penetration (e.g. into the soil) is dependent on the thermal diffusivity, which is a combination of two factors (thermal conductivity and heat capacity, i.e. heat it takes to increase the temperature of the

(9)

116 5. Implementation in SURFEX

– (d)

– (e)

– (f)

Same as Fig. 5.2 but showing daily average instead of monthly average.

substance). In fact, the lower the value of the thermal diffusivity the lower the temperature rise further into the substance. So heat does get 10x further into wet soil compared to dry soil which may explain the differences noticed here. Worth recalling it is only a case study here and a more

(10)
(11)

118 5. Implementation in SURFEX

– (a) – (b)

– (c) – (d)

– (e) – (f)

Figure5.4 – Diurnal variation of bare soil albedo impact on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE in 10 days since Aug 1,2009.

(12)

– (i) – (j)

Bare soil albedo impact on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE in 10 days since Aug 1,2009.

(13)

120 5. Implementation in SURFEX The same features noticed over France in average are observed here for the SMOSMANIA station of Condom (CDM). It can be noticed that a wet albedo yields a significant impact on RN, LE and H. The bias is positive with NEWS version of surface albedo for both RN and H. On the other hand, alternatively positive and negative bias are obtained for LE. Incidentally, a negative value of LE happening in mid-December indicate a net release of latent energy back into the environment because of the possible condensation or freezing of water. In general, it is observed here more signal for CDM station than over France. This is not surprising as the relationship between soil albedo and moisture was calibrated for CDM and it is thus a priori the more appropriate here.

5.3

Joint Assimilation of LAI, SSM and albedo

The objective of this study is two folded :

(1) to verify the addictive value and to what extent of albedo observation, it is required to im-prove assimilating the state variables LAI and SSM,

(2) to compare and evaluate the assimilation results using different combinations of observations.

5.3.1 Study station, model and observations

In this study, assimilation is performed at SMOSREX site, which is a long-term study station located near Toulouse, France. Within an 8-km circle around, the Plant Function Type (PFT) is dominated by grassland, with 33.25% SAND and 29.25% CLAY fraction according to HWSD. The station was initially designed for micro-wave validation of SMOS mission, therefore frequent in-situ soil moisture measurements are available from surface to root-zoon at 4 layers.

ISBA-A-gs land surface model with ’NIT’ (nitrogen) option for photosynthesis is used to evolve surface parameters. Such configuration in fact allows for having an interactive LAI through the constrain of the behaviour of stoma to assimilate CO2. The surface moisture is using a 3-L buck model, replying on a force restore equations to depict the evolution process. Detailed des-criptions can be found in Annexe C.

The present assimilation scenario considers three input variables of observation : LAI, surface soil moisture(SSM) and set of albedo products. BioPAR LAI dataset is a product generated from SPOT/VEGETATION of 1km spatial resolution each 10 days. ASCAT soil moisture product is distributed at 12.5km resampled resolution each day, representing the status of satellite pass around local time 09 :00H. SEVIRI sensor offers a daily surface albedo product on MSG geosta-tionary grid, which is a retrieval using cloudless high-quality slots each 30min.

5.3.2 Data Assimilation Scheme and Experiment setup

SEKF scheme is a popular technique used for surface application due to its feasibility for non-linear model and efficiency. In this study, the framework proposed by Mahfouf et al. (2009)

(14)

Figure 5.5 – Flow chart of ’propagation’ process during assimilation.

is adopted to sustain an assimilation of LAI, SSM and albedo products. The whole process for propagation and analysis is illustrated in a flow chart (Fig. 5.5). The notion and associated errors for state and observation variables are listed in table 5.2.

The first step is propagation of the state variables. It consists in an update of the state va-riables achived using land surface model ISBA-A-gs, that is integrated in the modelling platform SURFEX. The model is running offline at the SMOSMANIA grid point using SAFRAN as for-cing. Integration step is set to be 24 hours for simulation output, and the temporal node is set to be 06 :00 UTC. Initial conditions are obtained through one year spin-up for 2007/01/01. The updating process is represented by the following equation :

Xbt= M (Xbt−1) (5.1)

Here, M is the matrix standing for model propagation through SURFEX, which is capable to evolve state variable at temporal node (t − 1) : Xt−1

b to t : Xbt. It is a non-linear complicated model representing many interactive biophysical and hydrological processes. Since it is difficult

(15)

122 5. Implementation in SURFEX Table5.1 – List of observed variables and associated errors.

Obs Annotation Physical Meaning Range Sigma (Obs error)

LAI leaf area index ℜ[0.0, 10.0] 0.20

WG1 surface water content ℜ[0.0, 1.0] 0.04

DH_VI visible black sky albedo ℜ[0.0, 1.0] 0.05

DH_NI nir-infrared black sky albedo ℜ[0.0, 1.0] 0.05

DH_BB shortwave black sky albedo ℜ[0.0, 1.0] 0.05

BH_BB shortwave white sky albedo ℜ[0.0, 1.0] 0.05

to obtain an explicit expression for the adjoint model, TLM (Tangent Linear Model) is used for the sake of linearization. A perturbation is given for each state variable in order to generate ’perturbed’ simulation.

Xb = [LAI, SSM ]T (5.2)

In this experiment, only LAI and SSM are considered as state variables. The initial corres-ponding background error covariance B can be represented by a diagonal matrix, omitting the interactions between the two :

B =  0.22 0 0 0.042  (5.3) The second step is analysis. This process combines the observations and background in-formation, and derive an analysis solution for state variables using the background error and observation error matrix, which can be represented as follows :

Xat = Xbt+ K(y − H(Xbt)) (5.4)

where, y denotes observation, H is the observation operator, K represents the gain. Xt a and Xbt are analysed and background state variable vectors, respectively.

The observations y is defined in this experiment as :

y = [LAI, SSM, DH_V I, DH_N I, DH_BB, BH_BB]T (5.5)

(16)

K = BHT(HBHT + R)−1 (5.7) Here, R is the error covariance matrix for observations. It is set by experience as follow :

R =         0.22 0 0 0 0 0 0 0.042 0 0 0 0 0 0 0.052 0 0 0 0 0 0 0.052 0 0 0 0 0 0 0.052 0 0 0 0 0 0 0.052         (5.8)

Background error covariance can be evolved through :

Bt= M BtMT + Q (5.9)

Here, Q denotes the model representation error. Due to the difficulty to estimate, it is omitted in this study. M is the matrix corresponding to TLM for the model.

Various possible combinations of observations are tested for their efficiency to constrain state variables. This leads to 4 experiments as listed in table 5.2.

5.3.3 Results

Assimilated LAI is found to be between observation and simulation for all situations except Experiment 3 (fig. 5.6). Actually, this seems to indicate that knowledge of WG1 is mandatory to achieve a realistic simulation. Furthermore, now replacing LAI by WG1 (purpose of Experiment 2), which means no state variable LAI included, has poor effect as SIMU and ASSI LAI values are quite close. Hence, the error compared to OBS LAI is the largest. This just translates the fact that albedo is constraining state variable LAI not as well as LAI observation, as somewhat

(17)

124 5. Implementation in SURFEX Table5.2 – Presentation of the four experimental scenarios for assimilation.

VAR/EXP EXP1 EXP2 EXP3 EXP4

WG1 1 1 0 1 LAI 1 0 1 1 DH_VI 1 1 1 0 DH_NI 1 1 1 0 DH_BB 0 1 1 0 BH_BB 0 1 1 0

Note : 1 means that the type of observation is selected, while 0 denotes not.

0 180 360 540 720 900 1080 1260 1440 0 2 4 6 0 180 360 540 720 900 1080 1260 1440 Number of Days Since 2007/01/01 0 2 4 6 LAI 2007 2008 2009 2010 RMSE_SIMU=0.8878 RMSE_ASSI =0.5489 OBS:WG1+LAI+DH_VI+DH_NI SIMU ASSI OBS EXP1 @SMOSREX (Sum of 12 PATCH)

– (a) 0 180 360 540 720 900 1080 1260 1440 0 2 4 6 0 180 360 540 720 900 1080 1260 1440 Number of Days Since 2007/01/01 0 2 4 6 LAI 2007 2008 2009 2010 RMSE_SIMU=0.8878 RMSE_ASSI =0.7525 OBS:WG1+DH_VI+DH_NI+DH_BB+BH_BB SIMU ASSI OBS EXP2 @SMOSREX (Sum of 12 PATCH)

– (b) 0 180 360 540 720 900 1080 1260 1440 0 2 4 6 0 180 360 540 720 900 1080 1260 1440 Number of Days Since 2007/01/01 0 2 4 6 LAI 2007 2008 2009 2010 RMSE_SIMU=0.8878 RMSE_ASSI =0.6999 OBS:LAI+DH_VI+DH_NI+DH_BB+BH_BB SIMU ASSI OBS

EXP3 @SMOSREX (Sum of 12 PATCH)

– (c) 0 120 240 360 480 600 720 840 9601080120013201440 0 2 4 6 0 120 240 360 480 600 720 840 9601080120013201440 Number of Days Since 2007/01/01 0 2 4 6 LAI 2007 2008 2009 2010 RMSE_SIMU=0.8878 RMSE_ASSI =0.5068 OBS:LAI+WG1 SIMU ASSI OBS

EXP4 @SMOSREX (Sum of 12 PATCH)

– (d)

Figure 5.6 – Comparison between the 4 experiments for LAI assimilation.

expected. Worth recalling here that LAI and albedo are issued from different projects, which could have some effect in regard to their degree of consistency. But LAI BioPAr is likely the best offer in term of spatial resolution while the albedo time frequency from SEVIRI is well answering

(18)

– (a) – (b)

– (c) – (d)

Figure 5.7 – Same as Fig. 5.6 for SSM.

As for SSM (Fig. 5.7), the outcomes from visual inspection is less conspicuous than for LAI. The best result is nonetheless obtained fro Experiment 1 with albedo consideration in addition to the assimilation of reference classically implemented (Experiment 4 with SSM and LAI only). Using albedo values for diagnostic (Fig. 5.8), assimilation with scenario of Experiment 1 (al-bedo consideration) always provide best statistical results of comparison. Not surprisingly, this means with actual state variables (LAI SSM), the construction of a prognostic albedo is not relevant if it is accompanied by an assimilation scheme of the satellite observed surface albedo.

(19)

126 5. Implementation in SURFEX

– (a) – (b)

– (c) – (d)

Figure5.8 – Same as Fig. 5.6 for DH_VI.

This is proven to be valid here for all broadband spectral albedos.

At the end of this exercise, one key question is the best choice of the observations. Also what is the difference among various combinations of observations ? To answer these two questions, the RMSEs of each variable for the four experiments are listed in table 5.3 referring an open-loop simulation. Generally every assimilation leads to a lower rmse comparing to simulation, which confirms the benefit of integrating observations to constrain surface variables. Further, it can be found that Experiment 1 achieves lower rmse for most variables, which might indicate this combination is better than the others. Experiment 3 is losing constrain for albedo, which can be identified from Fig. 5.8, Fig. 5.9 , Fig. 5.10, Fig. 5.11 .

(20)

– (a) – (b)

– (c) – (d)

Figure5.9 – Same as Fig. 5.6 for DH_NI.

Table5.3 – Summary of RMSE results for the 4 experiments.

RMSE SIMU EXP1 EXP2 EXP3 EXP4

WG1 0.0514 0.0504 0.0506 0.0510 0.0507 LAI 0.8878 0.5489 0.7525 0.6999 0.5068 DH_VI 0.0187 0.0182 0.0207 0.0277 0.0209 DH_NI 0.0513 0.0385 0.0553 0.0827 0.0522 DH_BB 0.0307 0.0256 0.0322 0.0457 0.0312 BH_BB 0.0319 0.0359 0.0247 0.0373 0.0284

(21)

128 5. Implementation in SURFEX

– (a) – (b)

– (c) – (d)

(22)

– (a) – (b)

– (c) – (d)

(23)

130 5. Implementation in SURFEX

5.4

Conclusion

The relationship between soil albedo and soil moisture calibrated from in-situ measurements (Chapter 4) has been integrated into SURFEX. The impact of the change of the surface albedo parameterization for bare soil patch is tested using the forcing SAFRAN database. The energy fluxes (net radiation, sensible heat, latent heat) as well as surface temperature were simulated for two versions (REFE for dry soil albedo and NEWS for possible wet soil albedo) were compared over France and then SMOSREX station near Toulouse.

Daily variations of energy fluxes are examined at 12 :00H local time during one year 2007, which show a clear difference between REFE and NEWS. Diurnal variation is also examined for these energy components and surface temperature, which shows an enhanced difference around noon.

These results confirm the importance of accurate surface albedo description in surface model for a better determination of energy fluxes and surface temperature. The impact of integrating ‘surface albedo-moisture’ relationship will improve the water cycle. However, comparison of in-situ measurements should be more investigated to verify weather the time evoving surface albedo will provide the flux values more approaching the reality. Since the change of energy exchange, surface temperature and moisture have a feed-back effect to atmosphere, coupled surface and atmosphere model would give a more physical-correct simulation comparing to offline.

The advent of accurate albedo satellite datasets is in favor of an assimilation into surface model of this state variable provided it well combines the model and observations. Herein, a SEKF method is employed over one station SMOSREX at 8 km scale as proof of concept of assimilating SEVIRI spectral albedos into ISBA-A-gs model. LAI and SSM are treated as state variables in this case, while a Radiative Transfer Model (RTM) is applied to derive TOC albedo. It is found that the assimilation with state variables LAI and SSM only. More insight is needed but this first initiative offers interesting perspectives.

(24)

Albedo climatology used by ISBA-A-gs land surface model is assessed with daily MODIS and SEVIRI satellite products over France. Daily MODIS albedo is generated from MODIS 8 day BRDF/Albedo standard product and daily directional reflectance after a series of processing. The comparison of the three datasets at 8km spatial resolution and daily temporal scale reveals that : (1) daily MODIS is comparing favorablely with SEVIRI product althgh it is sometimes higher at winter and early spring period, (2) albedo climatology used by ISBA-A-gs model has distinct difference with both MODIS and SEVIRI daily albedo products. This conclusion encou-rages the improvement of albedo parameterization to generate a prognostic albedo in ISBA-A-gs. For parameterization in land surface models, soil and vegetation albedo are commonly reques-ted to be separareques-ted. To fulfill this requirement, two types of methods are explored to generate soil background albedo and vegetation albedo from satellite products : static method and dy-namic method. Two global soil background albedo datasets generated using the former method are compared : CNRM and SWANSEA. Spatial patterns are found to be consistent. A dynamic retrieval method is proposed using 2-stream model, soil background albedo and leaf single scat-tering reflectance are retrieved over France.

Daily SEVIRI albedo is found be be sensitive to in-situ surface moisture measurement, which might serve as proxy. Using the exponential function, this daily albedo is used to do parameteriza-tion with surface soil moisture at 12 SMOSMANIA staparameteriza-tions at south-western France. Regression show a promising fulfill of observation and exponential empirical model. Calibrated coefficients are further linked to soil texture.

Canopy vegetation albedo is linked with leaf chlorophyll content through calibration of PRO-SAIL model. It is found that in VIS domain, canopy albedo can be parameterized as a simple function depending merely on LAI and Cab. This parameterization adds the dynamic effect due to chlorophyll absorption, therefore is expected to better capture the temporal variation due to leaf color change, particularly during germate and senescence stage. Moreover, leaf chloro-phyll content is found to be closely related to leaf nitrogent content, which can be predicted by

(25)

132 6. Conclusion and Prospectives land surface model. If the relationship of canopy albedo and leaf nitrogent content can be establi-shed at ecosystem level, it is possible to evolve leaf chlorophyll content through model prediction. Finally, a prognostic total albedo based on surface soil moisture and leaf chlorophyll content is introduced. This parameterization scheme is verified using satellite products and in-situ mea-surements at Majadas station. The ’surface albedo-soil moisture’ relationship is calibrated with SEVIRI albedo product and in-situ soil moisture, which shows robust satisfication using expo-nential function. Vegetation canopy albedo is linked with Leaf Chlorophyll Content using MERIS albedo at 560nm and field measured Cab.

Following the confirmation at site-level validation, the impact of this new albedo scheme is evaluated in SURFEX over France running offline with SAFRAN as forcing. Through incor-poration on an ’albedo-soil moisture’ dependence in SURFEX, improvements are shown for its modeling ability for energy balance. The energy fluxes (net radiation, sensible heat, latent heat) and surface temperature simulated by the model through these two schemes are showing distinct seasonal and daily variation.

With the coming of the prognostic albedo in SURFEX, it is foreseen to assimilate satellite albedo products into land surface model as ISBA-A-gs. Soil moisture and biomass/LAI assimi-lation has been achieved through a Simple Extended Kalman Filter (SEKF) scheme developed at Meteo-France with ISBA-A-gs. Adding albedo as an extra observation might better constrain model status since albedo products commonly have higher precision comparing with LAI and SSM. Moreover, the inter-link of bare soil albedo with surface soil moisture, as well as the chlo-rophyll incorporation might add to the feedback existing between hydrology, energy transfer processes.

Improved observations are expected to be provided by next generation satellites of Sentinel family, which is desgined at ESA serving for Global Monitoring for Environment and Security (GMES) program. This constellation consists of a series of earth-observing satellites as a success of ERS-1, ERS-2 and Envisat, offering long term data rocords for climate studies. The high spatial resolution (10m scale) and adequate temporal resolution would benefit the sub-pixel parameteri-zation and improve the description of temporal variation in land surface model. Assimilation of such datasets would better constrain the relative state variables (e.g. albedo, LAI, soil moisture) and define its uncertainty. A prototype of this assimilation system is shown by Lewis et al. (2012). Analysed surface variables are important for Numerical Weather Prediction and climate stu-dies. Through coupling the land surface model and NWP model, the changement of near surface fields as 2m Humidity and 2m Wind Speed is worth to be examined. For climate model, surface albedo is an important variable for long-term engery balance. With the updated scheme, it is expected to alter energy flux estimation in climate models.

(26)

Dans cette étude, l’albédo climatologique utilisé dans le modèle de surface ISBA-A-gs a tout d’abord été évalué sur le domaine France au travers d’une comparaison avec les produits d’albédo journalier du satellite géostationnaire SEVIRI à 4km et du satellitaire polaire MODIS à 1km, ce dernier étant constitué à partir d’une méthode originale inhérente à ce travail. En effet, ils ont été réalisés à partir des albédos standard MODIS à 8 jours qui sont mis à disposition au même titre que le produit BRDF (Bidirectional Reflectance Distribution Function). La réactualisation quotidienne de ce produit albédo a été faite à partir de la radiométrie issue des passages d’orbite MODIS. La comparaison des 3 produits rééchantillonnés sur une grille de 8km - pour être com-patibles avec la finesse du modèle ISBA-A-gs, a permis d’en tirer les enseignements suivants : (1) l’albédo MODIS journalier se compare favorablement avec le produit SEVIRI bien qu’il se situe sensiblement au dessus durant les périodes hivernales et préprintanières, la raison étant due à une géométrie solaire différente ; (2) l’albédo climatologique utilisé ce jour dans le modèle ISBA-A-gs montre clairement des différences avec les 2 produits satellitaires. Cet état de fait plaide en faveur d’une amélioration de la paramétrisation de l’albédo de surface dans ISBA-A-gs afin d’obtenir un albédo pronostique plus proche des observations spatiales.

Pour la paramétrisation de l’albédo dans les modèles de surface, il est généralement requis que les albédos du sol nu et de la végétation soient séparés. Afin de répondre positivement à ce besoin, 2 méthodes ont été explorées afin de générer distinctement les albédos de sol nu et végétation à partir des observations spatiales : une méthode statique et une méthode dynamique. Pour le volet albédo statique, 2 jeux de données globaux ont été comparés, celui mis en œuvre dans cette étude et celui généré par l’université de SWANSEA. En règle générale, on retrouve les mêmes structures spatiales de façon consistante. Ensuite, pour le volet albédo dynamique, la méthode proposée repose sur un modèle physique du transfert radiatif à 2 flux, à partir duquel l’albédo du sol nu et l’albédo de simple diffusion des feuilles sont restitués sur le domaine France. Le produit albédo journalier de SEVIRI se trouve être sensible à l’état d’humidité superfi-cielle du sol nu, ce qui plaiderait en faveur de son utilisation comme proxy du contenu en eau. Il a ensuite été considéré une loi d’atténuation de type exponentielle pour l’albédo journalier en fonction de l’humidité du sol nu mesurée sur le réseau des 12 stations SMOSMANIA du

(27)

sud-134 7. Conclusion et Perspectives ouest de la France. Une méthode d’étalonnage mise en place montre que l’évolution de l’albédo de sol nu ainsi simulé est très bien corrélée avec celle des albédos satellitaires, dans la limite d’une végétation faiblement ou nullement couvrante. Il semble qu’il existe alors des perspectives de relier les coefficients liant albédo et humidité avec la texture du sol mais il n’a pas été possible d’aller plus loin dans cette étude car cela dépend de l’échelle du paysage.

Une fois réglée la loi d’évolution de l’albédo du sol nu, il a été développé un albédo de la vé-gétation dérivé de la chlorophylle via un étalonnage avec le modèle PROSAIL. On trouve pour le domaine visible que l’albédo du couvert végétal peut être paramétré à partir de fonctions simples dépendant du LAI et de la chlorophylle, ce qui a pu être validé dans cette étude à l’aide de vraies données. Cette paramétrisation ajoute un effet dynamique du à l‘absorption par la chlorophylle. Plus loin, il est attendu de mieux capturer ensuite la variation temporelle due au changement de couleur de la feuille, particulièrement durant la germination et la sénescence. Le contenu en chlorophylle des feuilles est étroitement relié au contenu en azote, ce qui peut être prédit dans une certaine mesure par les modèles de surface. De fait, si les relations entre albédo de la canopée et azote des feuilles peuvent être établies à l’échelle de l’écosystème, il paraît possible de prévoir et mieux contrôler l’évolution de l’albédo de la végétation au travers du contenu en chlorophylle, ce qui ouvre des perspectives nouvelles intéressantes.

Au final, un albédo pronostique fondé sur l’humidité superficielle du sol et la chlorophylle de la feuille est développé pour être testé. Dans un premier temps, la validation est réalisée à partir de données à la fois in situ et satellitaires du site de Majadas (Espagne) qui représente l’éco-système naturel ‘deseha’ de grande échelle. La relation albédo de surface est alors calibrée avec SEVIRI pour l’humidité, de façon cohérente avec les lois d’atténuation exponentielle trouvées pour les stations SMOSMANIA du sud de la France. Ici, les mesures en chlorophylle réalisées permettent d’aller plus loin puisque la relation étalonnée entre l’albédo et la chlorophylle avec PROSAIL est validée en pratique avec la radiométrie de MODIS prise à 560nm.

Faisant suite à la confirmation d’une validation in situ, l’impact d’un nouveau schéma d’al-bédo est évalué dans SURFEX sur la France à l’aide de simulations offline et du forçage SAFRAN. Au travers de l’incorporation d’un albédo sol nu dépendant de l’humidité dans SURFEX, des améliorations sont mises en évidence au regard de la capacité du modèle à reproduire correcte-ment le bilan d’énergie. Ces flux d’énergie (rayonnecorrecte-ment net, chaleurs sensible et latente) et de température de surface sont simulés par le modèle SURFEX au travers de 3 schémas qui exhibent distinctement les tendances journalières et saisonnières.

Avec la formulation d’un albédo pronostique dans SURFEX, il a ensuite été réalisé une étude préliminaire (un seul site pilote étudié) afin d’assimiler les produits satellitaires d’albédo dans le schéma de surface ISBA-A-gs. L’humidité de surface et les paramètres biomasse/LAI sont assimilés à l’aide d’un Simple Extended Kalman Filter (SEKF) déjà existant pour ISBA-A-gs. L’ajout du produit albédo de surface joue comme étant une observation additionnelle permettant d’ajouter une meilleure contrainte au modèle car l’albédo en tant que flux est généralement d’une meilleure précision comparée au LAI et à l’humidité SSM. En conséquence, le lien étroit entre albédo du sol nu et humidité d’une part, et chlorophylle et végétation d’autre part, renforce les

(28)

Au travers du couplage entre modèle de surface et modèle NWP, les changements opérés près de la surface des champs d’humidité et de la température à 2m nécessiteront une nouvelle analyse. Au regard des modèles de climat, l’albédo de la surface est donc une variable clé déterminante pour le bilan d’énergie sur le long terme. Avec un schéma de surface amélioré grâce à des infor-mations auxiliaires en plus grand nombre et de qualité croissante, il peut être raisonnablement espéré de progresser encore dans les prochaines années dans la connaissance et la détermination de l’estimation des flux d’énergie dans les modèles de climat.

(29)
(30)

AOD Aerosol Optical Depth

ARPEGE Action de Recherche Petite Echelle Grande Echelle

ATBD Algorithm Theoretical Basis Documents

AVHRR Advanced Very High Resolution Radiometer

BB Board Band

BHR Bi-Directional Reflectance

BOREAS Boreal Ecosystem Atmosphere Study

BRDF Bidirectional reflectance distribution function BRFs Bidirectional Reflectance Factors

BSA Black Sky Albedo

BSRN Boulder Science Resource Network

CCRS Canada Centre for Remote Sensing

CCSM3 Community Climate System Model Version 3

CDRs Climate Data Records

CEOS Global Earth Observing System

CERES Clouds and Earth’s Radiant Energy System

CGMS Coordination Group for Meteorological Satellites

CLC CORINE Land Cover

CLM Common Land Model

CMG Climate Modeling Grid

CNES Centre National d’Etude Spatiales

CNRM Centre National de Recherches Météorologiques

DART Discrete Anisotropic Radiative Transfer Model

(31)

138 7. Conclusion et Perspectives EALCO Ecological Assimilation of Land and Climate Observations

ECMWF European Centre For Medium-Range Weather Forecasting

ECVs Essential Climate Variables

ENVISAT European Environmental Satellite

EOS Earth Observing System

ERBE Earth Radiation Budget Experiment

ERS-1 European Remote Sensing Satellite 1 ERS-2 European Remote Sensing Satellite 2

ESA European Space Agency

ESM Earth System Model

FAO Food And Agriculture Organization

FIRS Fourier Transform Infrared Sounder

FPAR Fraction of Photosynthetically Active Radiation

GCOS Global Climate Observing System

GEO Geosynchronous Earth Orbit

GEWEX Global Energy And Water Cycle Experiment

GIEC Intergovernmental Panel on Climate

GLASS Global Land Atmosphere System Study

GMES Global Monitoring for Environment and Security

GMS Geostationary Meteorological Satellite

GO Geo-optical

HDF Hierarchical Data Format

IGBP International Geosphere-Biosphere Program

IGPO International GEWEX Program Office

IPCC Intergovernmental Panel On Climate Change

IRR Integrated Requirements Review

ISBA Interaction Sol-Biosphère-Atmosphère

ISG Integerized Sinusoidal Grid

ISIN Integerized SINusoidal

ISLSCP International Satellite Land Surface Climatology Project

JRC Joint Research Centre

JULES Joint UK Land Environment Simulator

KF Kalman Filter

LAI Leaf Area Index

(32)

MSG Meteosat Second Generation

NASA National Aeronautics and Space Administration

NB Narrow Band

NCAR National Center For Atmospheric Research

NDVI Normalized Difference Vegetation Index

NIR Near InfraRed

NOAA National Oceanic And Atmospheric Administration

NWP Numerical Weather Prediction

PAR photosynthetically Active Radiation

PARASOL Polarization Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar

PDF Probability Density Functions

PFT Plant Functional Type

PILPS Program For Intercomparison Of Land Surface Parameterization Schemes POLDER POLarization and Directionality of the Earth’s Reflectances

QA Quality Assurance

QC Quality Control

RAMI RAdiation transfer Model Intercomparison

RF Radiative Forcing

RMSE Root Mean Square Error

RT Radiative Transfer

SAFRAN Système d’Analyse Fournissant des Reseignements Atmosphérique a la Neige

SEKF Simple Extended Kalman Filter

SEVIRI Spinning Enhanced Visible and Infrared Imager SNORTEX Snow Reflectance Transition Experiment

(33)

140 Acronymes

SORCE Solar Radiation and Climate Experimen

SPOT Satellite Pour l’Observation de la Terre

SSM Surface Soil Moisture

SURFEX SURFace EXternalisée

SURFRAD SURFace RADiation Budget Network

SVAT Surface Vegetation- Atmosphere Transfer

SVC Spectra Vista Corporation

SW Short Wave

SZA Solar Zenith Angle

TOA Top of Atmosphere

TOC Top of Canopy

TSA Total Sky albedo

UNFCCC United Nations Framework Convention on Climate Change

UTM Universal Transverse Mercator

UVB UltraViolet B

VIS Visible

WCRP World Climate Research Program

WGS World Geodetic System

WMO World Meteorological Organization

WRCP World Climate Research Programme

(34)

Ångström, A. (1925). The albedo of various surfaces of ground. Geografiska Annaler, pages 323–342.

Asner, G. P. and Wessman, C. (1998). Variability in leaf and litter optical properties : Impli-cations for BRDF model inversions using AVHRR, MODIS, and MISR. Remote Sensing of Environment, 257(January 1997) :243–257.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., et al. (2001). Fluxnet : A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82(11) :2415–2434.

Barbu, A., Calvet, J.-C., Mahfouf, J.-F., Albergel, C., and Lafont, S. (2011). Assimilation of soil wetness index and leaf area index into the isba-a-gs land surface model : grassland case study. Biogeosciences Discussions, 8(1).

Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J., et al. (2009). Aerosol analysis and forecast in the european centre for medium-range weather forecasts integrated forecast system : 2. data assimilation. Journal of Geophysical Research : Atmospheres (1984–2012), 114(D13).

Betts, R. A. (2000). Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408(6809) :187–90.

Betts, R. A. and Ball, J. H. (1997). Albedo over the boreal forest. Journal of Geophysical Research, 102(96) :901–909.

Calvet, J.-C. and Noilhan, J. (2000). From Near-Surface to Root-Zone Soil Moisture Using Year-Round Data. Journal of Hydrometeorology, 1(5) :393–411.

Calvet, J.-C., Rivalland, V., Picon-Cochard, C., and Guehl, J.-M. (2004). Modelling forest transpiration and co< sub> 2</sub> fluxes—response to soil moisture stress. Agricultural and forest meteorology, 124(3) :143–156.

(35)

142 BIBLIOGRAPHIE Canisius, F. and Chen, J. M. (2007). Retrieving forest background reflectance in a boreal region from Multi-angle Imaging SpectroRadiometer (MISR) data. Remote Sensing of Environment, 107(1-2) :312–321.

Carrer, D., Roujean, J.-L., and Meurey, C. (2010). Comparing Operational MSG/SEVIRI Land Surface Albedo Products From Land SAF With Ground Measurements and MODIS. IEEE Transactions on Geoscience and Remote Sensing, 48(4) :1714–1728.

Cedilnik, J., Carrer, D., Mahfouf, J.-F., and Roujean, J.-L. (2012). Impact assessment of daily satellite-derived surface albedo in a limited-area nwp model. Journal of Applied Meteorology & Climatology, 51(10).

Cescatti, A., Marcolla, B., SanthanaVannan, S. K., Pan, J. Y., Román, M. O., Yang, X., Ciais, P., Cook, R. B., Law, B. E., Matteucci, G., Migliavacca, M., Moors, E., Richardson, A. D., Seufert, G., and Schaaf, C. B. (2012). Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sensing of Environment, 121 :323–334.

Champeaux, J.-L., Masson, V., and Chauvin, F. (2005). ECOCLIMAP : a global database of land surface parameters at 1 km resolution. Meteorological Applications, 12(1) :29–32.

Chandrasekhar, S. (1960). Radiative Transfer. Courier do edition.

Charney, J., Quirk, W. J., Chow, S.-H., and Kornfield, J. (1977). A comparative study of the effects of albedo change on drought in semi-arid regions. Journal of the Atmospheric Sciences, 34(9) :1366–1385.

Chen, M. and Deng, F. (2006). Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. Geoscience and Remote Sensing, IEEE Transactions on, 44(8) :2230–2238.

Chen, Y., Liang, S., Wang, J., Kim, H., and Martonchik, J. V. (2008). Validation of MISR land surface broadband albedo. International Journal of Remote Sensing, 29(23) :6971–6983. Cox, P., Betts, R., Bunton, C., Essery, R., Rowntree, P., and Smith, J. (1999). The impact of

new land surface physics on the gcm simulation of climate and climate sensitivity. Climate Dynamics, 15(3) :183–203.

Csiszar, I. and Gutman, G. (1999). Mapping global land surface albedo from noaa avhrr. Journal of Geophysical Research : Atmospheres (1984–2012), 104(D6) :6215–6228.

Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, a. S., Dirmeyer, P. a., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.-L. (2003). The Common Land Model. Bulletin of the American Meteorological Society, 84(8) :1013–1023. Deardorff, J. (1977). A parameterization of ground-surface moisture content for use in

(36)

and security (gmes) sentinel-3 mission. Remote Sensing of Environment, 120 :37–57.

Draper, C., Mahfouf, J.-F., Calvet, J.-C., Martin, E., and Wagner, W. (2011). Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model. Hydrology and Earth System Sciences Discussions, 8(3) :5427–5464.

Duke, C. and Guérif, M. (1998). Crop reflectance estimate errors from the SAIL model due to spatial and temporal variability of canopy and soil characteristics. Remote sensing of environment, 297(May) :286–297.

Faroux, S., Kaptué Tchuenté, A. T., Roujean, J.-l., Masson, V., Martin, E., and Le Moigne, P. (2013). ECOCLIMAP-II/Europe : a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geoscientific Model Development, 6(2) :563–582.

Fisher, J. B. (2009). Canopy nitrogen and albedo from remote sensing : what exactly are we seeing ? Proceedings of the National Academy of Sciences of the United States of America, 106(7) :E16 ; author reply E17.

Fletcher, C. G., Kushner, P. J., Hall, A., and Qu, X. (2009). Circulation responses to snow albedo feedback in climate change. Geophysical Research Letters, 36(9) :L09702.

Gao, F. (2003). Detecting vegetation structure using a kernel-based BRDF model. Remote Sensing of Environment, 86(2) :198–205.

Gao, F. (2005). MODIS bidirectional reflectance distribution function and albedo Climate Mo-deling Grid products and the variability of albedo for major global vegetation types. Journal of Geophysical Research, 110(D1) :1–13.

Gascoin, S., Ducharne, A., Ribstein, P., Lejeune, Y., and Wagnon, P. (2009a). Dependence of bare soil albedo on soil moisture on the moraine of the Zongo glacier (Bolivia) : Implications for land surface modeling. Journal of Geophysical Research, 114(D19) :D19102.

(37)

144 BIBLIOGRAPHIE Gascoin, S., Ducharne, A., Ribstein, P., Perroy, E., and Wagnon, P. (2009b). Sensitivity of bare soil albedo to surface soil moisture on the moraine of the Zongo glacier (Bolivia). Geophysical Research Letters, 36(2) :L02405.

Gastellu-Etchegorry, J.-P., Demarez, V., Pinel, V., and Zagolski, F. (1995). Modeling radiative transfer in heterogeneous 3d vegetation canopies. In Satellite Remote Sensing, pages 38–49. International Society for Optics and Photonics.

GCOS (2009). Progress report on the implementation of the global observing system for climate in support of the unfccc 2004-2008. Geophysical Research Letters.

Geiger, B., Carrer, D., Franchisteguy, L., Roujean, J.-L., and Meurey, C. (2008). Land surface albedo derived on a daily basis from meteosat second generation observations. Geoscience and Remote Sensing, IEEE Transactions on, 46(11) :3841–3856.

Govaerts, Y. (2002). Impact of fires on surface albedo dynamics over the African continent. Journal of Geophysical Research, 107(D22) :4629.

Govaerts, Y., Lattanzio, a., Taberner, M., and Pinty, B. (2008). Generating global surface albedo products from multiple geostationary satellites. Remote Sensing of Environment, 112(6) :2804– 2816.

Govaerts, Y. and Verstraete, M. M. (1998). Raytran : a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Transactions on Geoscience and Remote Sensing, 36(2) :493–505.

Guan, X., Huang, J., Guo, N., Bi, J., and Wang, G. (2009). Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the loess plateau. Advances in Atmospheric Sciences, 26 :692–700.

Hautecoeur, O. and Roujean, J.-L. (2007). Validation of polder surface albedo products based on a review of other satellites and climate databases. In Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, pages 2844–2847. IEEE.

Henderson-Sellers, A., Pitman, A., Love, P., Irannejad, P., and Chen, T. (1995). The project for intercomparison of land surface parameterization schemes (pilps) : Phases 2 and 3. Bulletin of the American Meteorological Society, 76(4) :489–503.

Henderson-Sellers, A. and Wilson, M. (1983). Surface albedo data for climatic modeling. Reviews of Geophysics, 21(8) :1743–1778.

Henderson-Sellers, A., Yang, Z., and Dickinson, R. (1993a). The project for intercomparison of land-surface parameterization schemes. Bulletin of the American Meteorological Society, 74(7) :1335–1349.

Henderson-Sellers, A., Yang, Z., and Dickinson, R. (1993b). The project for intercomparison of land-surface parameterization schemes. Bulletin of the American Meteorological Society, 74(7) :1335–1349.

(38)

IPCC (2007). Climate Change 2007-The Physical Science Basis. Technical report.

Jacobs, C., van den Hurk, B., and De Bruin, H. (1996). Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agricultural and Forest Meteorology, 80(2) :111–134.

Jin, Y. (2003). Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals : 1. Algorithm performance. Journal of Geophysical Research, 108(D5) :4158. Jin, Y. (2005). Fire-induced albedo change and its radiative forcing at the surface in northern

Australia. Geophysical Research Letters, 32(13) :L13401.

Jin, Y., Gao, F., Schaaf, C. B., Li, X., Strahler, A. H., Bruegge, C. J., and Martonchik, J. V. (2002). Improving modis surface brdf/albedo retrieval with misr multiangle observations. Geoscience and Remote Sensing, IEEE Transactions on, 40(7) :1593–1604.

Jin, Y., Randerson, J. T., Goulden, M. L., and Goetz, S. J. (2012). Post-fire changes in net shortwave radiation along a latitudinal gradient in boreal North America. Geophysical Research Letters, 39(13) :L13403.

Jonsson, P. and Eklundh, L. (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. Geoscience and Remote Sensing, IEEE Transactions on, 40(8) :1824– 1832.

Jönsson, P. and Eklundh, L. (2004). Timesat—a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8) :833–845.

Kaptué Tchuenté, A. T., Roujean, J.-L., Bégué, A., Los, S. O., Boone, A. a., Mahfouf, J.-F., Carrer, D., and Daouda, B. (2011). A New Characterization of the Land Surface Heterogeneity over Africa for Use in Land Surface Models. Journal of Hydrometeorology, 12(6) :1321–1336. Kaptué Tchuenté, A. T., Roujean, J.-L., and Faroux, S. (2010). ECOCLIMAP-II : An

ecosys-tem classification and land surface parameters database of Western Africa at 1km resolution for the African Monsoon Multidisciplinary Analysis (AMMA) project. Remote Sensing of Environment, 114(5) :961–976.

(39)

146 BIBLIOGRAPHIE Kiehl, J. and Trenberth, K. E. (1997). Earth’s annual global mean energy budget. Bulletin of

the American Meteorological Society, 78(2) :197–208.

Knorr, W. (1997). Satellite remote sensing and modelling of the global co2 exchange of land vegetation : a synthesis study. Max-Planck-Institut für Meteorologie, Examensarbeit, (49). Kopp, G., Lawrence, G., and Rottman, G. (2005). The total irradiance monitor (tim) : science

results. In The Solar Radiation and Climate Experiment (SORCE), pages 129–139. Springer. Lawrence, P. J. and Chase, T. N. (2007). Representing a new MODIS consistent land surface in

the Community Land Model (CLM 3.0). Journal of Geophysical Research, 112(G1).

Lewis, P. and Barnsley, M. (1994). Influence of the sky radiance distribution on various formula-tions of the earth surface albedo. In 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, ISPRS, pages 707–715.

Lewis, P., Gómez-Dans, J., Kaminski, T., Settle, J., Quaife, T., Gobron, N., Styles, J., and Berger, M. (2012). An Earth Observation Land Data Assimilation System (EO-LDAS). Remote Sensing of Environment, 120 :219–235.

Li, X. and Strahler, A. (1996). A knowledge-based inversion of physical brdf model and three examples. In Geoscience and Remote Sensing Symposium, 1996. IGARSS’96.’Remote Sensing for a Sustainable Future.’, International, volume 4, pages 2173–2176. IEEE.

Liang, S. (2001). Narrowband to broadband conversions of land surface albedo i : Algorithms. Remote Sensing of Environment, 76(2) :213–238.

Liang, X.-Z. (2005). Development of land surface albedo parameterization based on Mode-rate Resolution Imaging Spectroradiometer (MODIS) data. Journal of Geophysical Research, 110(D11) :1–22.

Liou, K.-N., Fu, Q., and Ackerman, T. P. (1988). A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. Journal of the atmospheric sciences, 45(13) :1940–1948.

Liu, J., Chen, J. M., Cihlar, J., and Chen, W. (2002). Net primary productivity mapped for Canada at 1-km resolution. Global Ecology and Biogeography, 11(2) :115–129.

Lobell, D. B. and Asner, G. P. (2002). Moisture Effects on Soil Reflectance. Soil Science Society of America Journal, 66(3) :722.

Lofgren, B. M. (1995). Surface albedo-climate feedback simulated using two-way coupling. Jour-nal of climate, 8(10) :2543–2562.

Lu, X., Liu, R., Liu, J., and Liang, S. (2007). Removal of noise by wavelet method to generate high quality temporal data of terrestrial modis products. Photogrammetric Engineering and Remote Sensing, 73(10) :1129.

(40)

database of land surface parameters at 1-km resolution in meteorological and climate models. Journal of climate, 16(9).

McCumber, M. C. and Pielke, R. A. (1981). Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model : 1. soil layer. Journal of Geophysical Research : Oceans (1978–2012), 86(C10) :9929–9938.

Meador, W. and Weaver, W. (1980). Two-stream approximations to radiative transfer in plane-tary atmospheres : A unified description of existing methods and a new improvement. Journal of the atmospheric sciences, 37.

Morcrette, J.-J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars, A., Benedetti, A., Bonet, A., Kaiser, J., Razinger, M., et al. (2009). Aerosol analysis and forecast in the european centre for medium-range weather forecasts integrated forecast system : Forward modeling. Journal of Geophysical Research : Atmospheres (1984–2012), 114(D6).

Muller, J.-P., Lewis, P., Fischer, J., North, P., and Framer, U. (2011). The esa globalbedo project for mapping the earth’s land surface albedo for 15 years from european sensors. In Geophysical Research Abstracts, volume 13, page 10969.

Myneni, R. and Ross, J. (1991). Photon-Vegetation interactions : applications in optical remote sensing and plant ecology. Springer-Verlag.

Ni-Meister, W., Yang, W., and Kiang, N. Y. (2010). A clumped-foliage canopy radiative transfer model for a global dynamic terrestrial ecosystem model. i : Theory. Agricultural and forest meteorology, 150(7) :881–894.

Noilhan, J. and Planton, S. (1989). A simple parameterization of land surface processes for meteorological models. Monthly Weather Review, 117(3) :536–549.

North, P. (1996). Three-dimensional forest light interaction model using a monte carlo method. Geoscience and Remote Sensing, IEEE Transactions on, 34(4) :946–956.

Oleson, K. W. (2003). Assessment of global climate model land surface albedo using MODIS data. Geophysical Research Letters, 30(8) :1443.

(41)

148 BIBLIOGRAPHIE Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J., Levis, S., Swenson, S. C., Thornton, E., Feddema, J., et al. (2010). Technical description of version 4.0 of the community land model (clm).

Ollinger, S., Richardson, A., Martin, M., Hollinger, D., Frolking, S., Reich, P., Plourde, L., Katul, G., Munger, J., Oren, R., et al. (2008). Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests : Functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences, 105(49) :19336–19341.

Pinty, B. (2004). Radiation Transfer Model Intercomparison (RAMI) exercise : Results from the second phase. Journal of Geophysical Research, 109(D6) :D06210.

Pinty, B., Clerici, M., Andredakis, I., Kaminski, T., Taberner, M., Verstraete, M. M., Gobron, N., Plummer, S., and Widlowski, J.-l. (2011a). Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP) : 2. Fractions of transmitted and absorbed fluxes in the vegetation and soil layers. Journal of Geophysical Research, 116(D9) :D09106.

Pinty, B., Gobron, N., Widlowski, J.-l., Gerstl, S. A. W., Verstraete, M. M., Antunes, M., Bacour, C., Gascon, F., Gastellu-Etchegorry, J.-P., Goel, N., Jacquemoud, S., North, P. R. J., Qin, W., and Thompson, R. (2001). Radiation transfer model intercomparison ( RAMI ) exercise. Journal of Geophysical Research, 106(Dll).

Pinty, B., Jung, M., Kaminski, T., Lavergne, T., Mund, M., Plummer, S., Thomas, E., and Wid-lowski, J.-l. (2011b). Evaluation of the JRC-TIP 0.01 products over a mid-latitude deciduous forest site. Remote Sensing of Environment, 115(12) :3567–3581.

Pinty, B., Lavergne, T., Dickinson, R. E., Widlowski, J.-l., Gobron, N., and Verstraete, M. M. (2006). Simplifying the interaction of land surfaces with radiation for relating remote sensing products to climate models. Journal of Geophysical Research, 111(D2) :D02116.

Pinty, B., Lavergne, T., Voß beck, M., Kaminski, T., Aussedat, O., Giering, R., Gobron, N., Taberner, M., Verstraete, M. M., and Widlowski, J.-l. (2007). Retrieving surface parame-ters for climate models from Moderate Resolution Imaging Spectroradiometer (MODIS)-Multiangle Imaging Spectroradiometer (MISR) albedo products. Journal of Geophysical Re-search, 112(D10) :D10116.

Pinty, B., Widlowski, J.-l., Verstraete, M. M., Andredakis, I., Arino, O., Clerici, M., Kaminski, T., and Taberner, M. (2011c). Snowy backgrounds enhance the absorption of visible light in forest canopies. Geophysical Research Letters, 38(6) :L06404.

Pirazzini, R. (2004). Surface albedo measurements over Antarctic sites in summer. Journal of Geophysical Research, 109(D20) :D20118.

Pirazzini, R., Vihma, T., Granskog, M. a., and Cheng, B. (2006). Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period. Annals of Glaciology, 44(1) :7– 14.

(42)

Quaife, T. and Lewis, P. (2010). Temporal constraints on linear brdf model parameters. Geos-cience and Remote Sensing, IEEE Transactions on, 48(5) :2445–2450.

Rechid, D., Raddatz, T. J., and Jacob, D. (2008). Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theoretical and Applied Climatology, 95(3-4) :245–255.

Román, M. O., Schaaf, C. B., Lewis, P., Gao, F., Anderson, G. P., Privette, J. L., Strahler, A. H., Woodcock, C. E., and Barnsley, M. (2010). Assessing the coupling between surface albedo derived from modis and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sensing of Environment, 114(4) :738–760.

Ross, J. (1981). The Radiation Regime and Architecture of Plant Stands : Includes index. Sprin-ger.

Roujean, J.-L., Leroy, M., and Deschamps, P.-Y. (1992). A bidirectional reflectance model of the earth’s surface for the correction of remote sensing data. Journal of Geophysical Research : Atmospheres (1984–2012), 97(D18) :20455–20468.

Roujean, J.-L., Manninen, T., Kontu, A., Peltoniemi, J., Hautecoeur, O., Riihela, A., Lahtinen, P., Siljamo, N., Lotjonen, M., Suokanerva, H., et al. (2009). Snortex (snow reflectance transition experiment) : Remote sensing measurement of the dynamic properties of the boreal snow-forest in support to climate and weather forecast : report of iop-2008. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009, volume 2, pages II–859. IEEE. Roxy, M. S., Sumithranand, V. B., and Renuka, G. (2010). Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala. Journal of Earth System Science, 119(4) :507–517. Roy, D., Boschetti, L., Justice, C., and Ju, J. (2008). The collection 5 MODIS burned area

product — Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment, 112(9) :3690–3707.

(43)

150 BIBLIOGRAPHIE Roy, D., Jin, Y., Lewis, P., and Justice, C. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using modis time series data. Remote sensing of environment, 97(2) :137–162.

Rüdiger, C., Western, A. W., Walker, J. P., Smith, A. B., Kalma, J. D., and Willgoose, G. R. (2010). Towards a general equation for frequency domain reflectometers. Journal of Hydrology, 383(3-4) :319–329.

Rutan, D., Rose, F., Roman, M., ManaloSmith, N., Schaaf, C. B., and Charlock, T. (2009). Development and assessment of broadband surface albedo from Clouds and the Earth’s Radiant Energy System Clouds and Radiation Swath data product. Journal of Geophysical Research, 114(D8) :D08125.

Samain, O., Kergoat, L., Hiernaux, P., Guichard, F., Mougin, E., Timouk, F., and Lavenu, F. (2008). Analysis of the in situ and MODIS albedo variability at multiple timescales in the Sahel. Journal of Geophysical Research, 113(D14) :D14119.

Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M. I., Roberts, G., Dunderdale, M., Doll, C., D’Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D. P. (2002). First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83(1-2) :135–148.

Schaepman-Strub, G., Schaepman, M., Painter, T., Dangel, S., and Martonchik, J. (2006). Re-flectance quantities in optical remote sensing—definitions and case studies. Remote sensing of environment, 103(1) :27–42.

Sellers, P. (1985). Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 6(8) :1335–1372.

Sellers, P., Dickinson, R. E., Randall, D., Betts, A., Hall, F. G., Berry, J., Collatz, G. J., Denning, A., Mooney, H., Nobre, C., Sato, N., Field, C., and Sellers, a. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science, 275(5299) :502– 9.

Shuai, Y., Masek, J. G., Gao, F., and Schaaf, C. B. (2011). An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sensing of Environment, 115(9) :2204–2216.

Stocker, T. F., Dahe, Q., and Plattner, G.-K. (2013). Climate change 2013 : The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers (IPCC, 2013).

Strugnell, N. C., Lucht, W., and Schaaf, C. B. (2001). A global albedo data set derived from AVHRR data for use in climate simulations Reflectance to Albedo Transformation. Geophysical Research Letters, 28(1) :191–194.

(44)

Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance mode-ling : the SAIL model. Remote sensing of environment.

Vermote, E. F., El Saleous, N. Z., and Justice, C. O. (2002). Atmospheric correction of modis data in the visible to middle infrared : first results. Remote Sensing of Environment, 83(1) :97–111. Vermote, E. F. and Kotchenova, S. (2008). Atmospheric correction for the monitoring of land

surfaces. Journal of Geophysical Research : Atmospheres (1984–2012), 113(D23).

Viterbo, P. and Betts, R. A. (1999). Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. Journal of Geophysical Research, 104.

Wang, S., Grant, R. F., Verseghy, D. L., and Andrew Black, T. (2002). Modelling carbon-coupled energy and water dynamics of a boreal aspen forest in a general circulation model land surface scheme. International Journal of Climatology, 22(10) :1249–1265.

Wang, Z., Zeng, X., and Barlage, M. (2007). Moderate resolution imaging spectroradiometer bidirectional reflectance distribution function–based albedo parameterization for weather and climate models. Journal of Geophysical Research : Atmospheres (1984–2012), 112(D2). Wei, X., Hahmann, A. N., Dickinson, R. E., Yang, Z.-L., Zeng, X., Schaudt, K. J., Schaaf,

C. B., and Strugnell, N. (2001). Comparison of albedos computed by land surface models and evaluation against remotely sensed data. Journal of Geophysical Research : Atmospheres (1984–2012), 106(D18) :20687–20702.

Widlowski, J.-l., Pinty, B., Clerici, M., Dai, Y., De Kauwe, M., de Ridder, K., Kallel, A., Kobaya-shi, H., Lavergne, T., Ni-Meister, W., Olchev, a., Quaife, T., Wang, S., Yang, W., Yang, Y., and Yuan, H. (2011). RAMI4PILPS : An intercomparison of formulations for the partitioning of solar radiation in land surface models. Journal of Geophysical Research, 116(G2) :G02019. Widlowski, J.-l., Taberner, M., Pinty, B., Bruniquel-Pinel, V., Disney, M. I., Fernandes, R., Gastellu-Etchegorry, J.-P., Gobron, N., Kuusk, A., Lavergne, T., Leblanc, S. G., Lewis, P., Martin, E., Mõttus, M., North, P. R. J., Qin, W., Robustelli, M., Rochdi, N., Ruiloba, R., Soler, C., Thompson, R., Verhoef, W., Verstraete, M. M., and Xie, D. (2007). Third Radiation

(45)

152 BIBLIOGRAPHIE Transfer Model Intercomparison (RAMI) exercise : Documenting progress in canopy reflectance models. Journal of Geophysical Research, 112(D9) :D09111.

Wielicki, B., Barkstrom, B., Baum, B., Charlock, T., Green, R., Kratz, D., Lee, R., Minnis, P., Smith, G., Young, D., Cess, R., Coakley, J., Crommelynck, D., Donner, L., Kandel, R., King, M. D., a.J. Miller, Ramanathan, V., Randall, D., Stowe, L., and Welch, R. (1998). Clouds and the Earth’s Radiant Energy System (CERES) : algorithm overview. IEEE Transactions on Geoscience and Remote Sensing, 36(4) :1127–1141.

Wild, M., Grieser, J., and Schär, C. (2008). Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophysical Research Letters, 35(17).

Wild, M., Ohmura, A., Gilgen, H., and Rosenfeld, D. (2004). On the consistency of trends in ra-diation and temperature records and implications for the global hydrological cycle. Geophysical Research Letters, 31(11).

Wilson, M.F. and Henderson-sellers, A. (1985). A global archive of land cover and soils data for use in general circulation climate models. Journal of climate, pages 119–143.

Xiao, J. and Moody, A. (2005). A comparison of methods for estimating fractional green ve-getation cover within a desert-to-upland transition zone in central new mexico, usa. Remote Sensing of Environment, 98(2) :237–250.

Xue, Y. (1996). The impact of desertification in the mongolian and the inner mongolian grassland on the regional climate. Journal of Climate, 9(9) :2173–2189.

Xue, Y. and Shukla, J. (1993). The influence of land surface properties on Sahel climate. Part 1 : desertification. Journal of climate.

Yang, W., Ni-Meister, W., Kiang, N. Y., Moorcroft, P. R., Strahler, A. H., and Oliphant, A. (2010). A clumped-foliage canopy radiative transfer model for a Global Dynamic Terrestrial Ecosystem Model II : Comparison to measurements. Agricultural and Forest Meteorology, 150(7-8) :895–907.

Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W. (2011). Reprocessing the modis leaf area index products for land surface and climate modelling. Remote Sensing of Environment, 115(5) :1171–1187.

Zhang, X. and Goldberg, M. D. (2011). Monitoring fall foliage coloration dynamics using time-series satellite data. Remote Sensing of Environment, 115(2) :382–391.

Zhou, L. (2003). Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. Journal of Geo-physical Research, 108(D15).

(46)
(47)
(48)

moisture : Calibration and validation

over southwestern France

(49)

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

Figure

Figure 5.1 – Impact assessement on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE over France
Figure 5.2 – Comparison of monthly average variations over France between the 2 scenarios (NEWS a REFE) regarding the impact on possible wet albedo on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE
Figure 5.3 – Same as Fig. 5.2 but showing daily average instead of monthly average.
Figure 5.4 – Diurnal variation of bare soil albedo impact on (a)TALB, (b)WG1, (c)TG1, (d)RN, (e)H, (f)LE in 10 days since Aug 1,2009.
+7

Références

Documents relatifs

The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (av- erage over the whole glacier surface) observed with MODIS during the ablation season..

The objective of this study is to propose a similar approach to validate the MODIS albedo product from the use of high spatial and temporal resolution data

Validation of MODIS albedo product with higher spatial resolution estimates from FORMOSAT-2.. Maria Mira Sarrio, Frédéric Baret, Marie Weiss, Dominique Courault, Olivier Hagolle,

Actual albedo MODIS was estimated from directional hemispherical albedo (black-sky albedo) and bi-hemispherical albedo (white-sky albedo), both included into the 1-km spatial

However, in the Short-Wave Infrared (SWIR, 1200 to 2500 nm), bare soil reflectance is significantly higher than grass canopy reflectance. The relation between albedo and

Because of differing definitions, the MODIS fine- mode weighting products retrieved from both land and ocean algorithms separately were not easily compared with AERONET retrievals

We produced the global daily surface net-radiation at 5 km by combining 11 variables from six different MODIS land and atmosphere products with a radiative transfer model and

In this study, our objective is to assess the quality and reliability of the MODIS LCP in estimating and locating crop areas in Sub-Saharan Africa in terms of (i) cropland acreage