• Aucun résultat trouvé

FIRST PASSAGE TIME DISTRIBUTION FOR DELAYED LASER THRESHOLD INSTABILITY

N/A
N/A
Protected

Academic year: 2021

Partager "FIRST PASSAGE TIME DISTRIBUTION FOR DELAYED LASER THRESHOLD INSTABILITY"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00227652

https://hal.archives-ouvertes.fr/jpa-00227652

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FIRST PASSAGE TIME DISTRIBUTION FOR DELAYED LASER THRESHOLD INSTABILITY

M. San Miguel, M. Torrent

To cite this version:

M. San Miguel, M. Torrent. FIRST PASSAGE TIME DISTRIBUTION FOR DELAYED LASER THRESHOLD INSTABILITY. Journal de Physique Colloques, 1988, 49 (C2), pp.C2-149-C2-151.

�10.1051/jphyscol:1988235�. �jpa-00227652�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, Suppl6ment au n06, Tome 49, juin 1988

FIRST PASSAGE TIME DISTRIBUTION FOR DELAYED LASER THRESHOLD INSTABILITY

M. SAN MIGUEL and M.C. TORRENT'

Departament d e Fisica, Universitat Illes Balears,

S P - 0 7 0 7 1

Palma de Mallorca, Spain

' ~ e p a r t a m e n t d'Estructura i Constituents de la Materia, Universitat d e Barcelona, Diagonal

647, S P - 0 8 0 2 8

Barcelona, Spain

A b s t r a c t - The d e l a y i c h a r a c t e r i z e d by a c a l c o r r e s p o n d i n g t o slow

n t h e t h r e s h o l d i n s t a b i l i t y induced by a sweep o f c a v i t y l o s s e s i s . c u l a t i o n o f a f i r s t p a s s a g e t i m e d i s t r i b u t i o n . Two d i f f e r e n t c a s e s

and f a s t sweeping r a t e s a r e c o n s i d e r e d .

1

-

INTRODUCTION

The d e l a y i n t h e o b s e r v a t i o n o f a b i f u r c a t i o n induced by a sweep o f t h e c o n t r o l p a r a m e t e r h a s been s t u d i e d i n a v a r i e t y o f o p t i c a l i n s t a b i l i t e s a s r e c e n t l y r e v i e w / I / . Experimental r e s u l t s a r e a v a i l a b l e f o r t h e t h r e s h o l d o f a n Argon l a s e r /2/ and f o r s e v e r a l s y s t e m s d i s p l a y i n g O p t i c a l B i s t a - b i l i t y /3/. Most t h e o r e t i c a l s t u d i e s g i v e a d e t e r m i n i s t i c d e s c r i p t i o n o f t h e problem ( f o r a n ex- c e p t i o n s e e / 4 / ) . We a d d r e s s h e r e t h i s problem t h r o u g h a s t o c h a s t i c dynamics c h a r a c t e r i z a t i o n . The b a s i c i d e a b e h i n d t h i s a n a l y s i s is t h a t t h e d e l a y is due t o a dynamical s t a b i l i z a t i o n , t h e s t a b i - l i t y b e i n d a s s o c i a t e d w i t h t h e l i f e t i m e o f a s t a t e and t h u s i s d e t e r m i n e d by f l u c t u a t i o n s . The l i f e t i m e i s d e f i n e d a s a Mean F i r s t P a s s a g e Time (MFPT) t o r e a c h a c e r t a i n t h r e s h o l d o b s e r v a b l e v a l u e . We w i l l c a l c u l a t e t h e d i s t r i b u t i o n o f t h e s e F i r s t P a s s a g e Times (FPT). Connection w i t h t h e e x p e r i m e n t i s made i d e n t i f y i n g t h e MFPT w i t h t h e t i m e a t which t h e i n s t a b i l i t y is o b s e r v e d . Such i d e n t i f i c a t i o n g i v e s a n o p e r a t i o n a l d e f i n i t i o n o f t h e dynamical b i f u r c a t i o n p o i n t and t h e o b s e r v e d d e l a y .

The c a l c u l a t i o n o f t h e FPT d i s t r i b u t i o n i s d i f f e r e n t when t h e r e l a x a t i o n i s from a n u n s t a b l e s t a t e o r a s t a t e o f m a r g i n a l s t a b i l i t y a s i n o p t i c a l b i s t a b i l i t y /3/. Our r e s u l t s below r e f e r t o t h e r e l a x a t i o n from a n u n s t a b l e s t a t e and s h o u l d b e compared w i t h c o r r e s p o n d i n g n u m e r i c a l r e s u l t s / 5 / , a n a l o g i c s i m u l a t i o n s /6/ o r e x p e r i m e n t s /2/. To d e s c r i b e t h e l a s e r t h r e s h o l d i n s t a b i l i t y we c o n s i - d e r t h e u s u a l model f o r a s i n g l e mode i n t h e good c a v i t y l i m i t

E i s t h e e l e c t r i c f i e l d complex a m p l i t u d e and a=P-l( where

r

and

X

a r e , r e s p e c t i v e l y , t h e g a i n and l o s s p a r a m e t e r s . The complex random term

$

( t ) = fl ( t ) + i f 2 ( t ) model s p o n t a n e o u s e m i s s i o n f l u c - t u a t i o n s o f s t r e n g t h € . We a r e i n t e r e s t e d i n t h e s i t u a t i o n i n which t h e l a s e r i s c o n t i n u o u s l y d r i v e n from below t o above t h r e s h o l d a t a c e r t a i n sweeping r a t e N . We c o n s i d e r two c a s e s . I n a f i r s t c a s e o f i n t e r e s t t o s t u d y slow v a r i a t i o n s o f a we assume

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1988235

(3)

C2-150 JOURNAL

DE

PHYSIQUE

v a l i d f o r a l l t > O . A s e c o n d c a s e o f i n t e r e s t is t o s t u d y f a s t v a r i a t i o n s o f a when s w i t c h i n g on t h e l a s e r . I n t h i s c a s e , ( 2 ) i s v a l i d f o r 'I < t i t and a ( t ) = a f o r a l l t > t l . I n any o f t h e two

1

c a s e s , v a r i a t i o n s o f a c a n be induced by t i m e d e p e n d e n t c a v i K y i c s s e s , a s i n t h e s e t - u p o f Ref.

2 .

The p a s s a g e t i m e d i s t r i b u t i o n t o l e a v e t h e i n s t a b i l i t y i s e s s e n t i a l l y d e t e r m i n e d by l i n e a r dyna- m i c s / 7 / . The l i n e a r e q u a t i o n f o r t h e l a s e r i n t e n s i t y f o l l o w i n g from (1) c a n b e s o l v e d a s

2 2 2

where h =hl+h2, and

The key i d e a o f t h e c a l c u l a t i o n i s t o i n v e r t ( 3 ) t o have t a s a f u n c t i o n o f I . Time t i s t h e n ex- p r e s s e d a s a s t o c h a s t i c q u a n t i t y t o r e a c h a v a l u e I . Taking G a u s s i a n a v e r a g e s o v e r t h e d i s t r i b u - t i o n o f h i i t i s t h e n p o s s i b l e t o c a l c u l a t e t h e moments o f t h e p a s s a g e t i m e d i s t r i b u t i o n . R e s u l t s a r e g i v e n below a n d d e t a i l s w i l l be p u b l i s h e d e l s e w h e r e .

2 - SLOW SWEEPING CASE!

The s l o w sweeping case! c o r r e s p o n d s t o t h e f i r s t o n e mentioned above. The c a l c u l a t i o n c a n b e c a r r i e d o u t i n t h e l i m i t &'

<<

\I;;T < < a . The f i r s t i n e q u a l i t y r e p r e s e n t s t h e s m a l l n o i s e l i m i t and t h e s e c o n d one c o r r e s p o n d s t o s l o w s w e e p i n g . We o b t a i n

la01

1

(

(h;(-J/2 +

$

T-1/2

( t )

- -

= - l o g ---

o( E

2

E

-1

where T = l o g ( I / < h ( a ) > ) is a l a r g e q u a n t i t y d i v e r g i n g a s l o g

,

I i s t h e t h r e s h o l d o b s e r v a b l e v a l u e o f I , and

y

t h e digamma f u n c t i o n . S i n c e l a o

1

/ u( i s t h e t i m e ? s u c h t h a t a ( ? ) = 0 , t h e r i g h t hand s i d e o f ( 5 ) give:; t h e postponement o f d e l a y f o r t h e o b s e r v a t i o n o f t h e i n s t a b i l i t y . I t i s c l e a r i n t h i s s t o c h a s t ; i c framework t h a t s u c h d e l a y i s a q u a n t i t y d e t e r m i n e d by t h e n o i s e i n t e n s i t y

5 .

The dependences on

1

o f t h e MFPT < t > and i t s v a r i a n c e <( A t ) 2

>

g i v e n by ( 5 ) and ( 6 ) a r e e s s e n t i a l l y d i f f e r e n t from t h e o n e s found i n s t a n d a r d c a l c u l a t i o n s o f t r a n s i e n t l a s e r s t a t i s t i c s c o r r e s p o n d i n g t o d - 3 w

.

The dynamical b i f u r c a t i o n p o i n t c a n now b e d e f i n e d by t h e mean v a l u e o f a ( t ) needed t o r e a c h a n o b s e r v a b l e v a l u e I . Fyom ( 5 ) , t h i s g i v e s

The &'I2 dependence o f ( 7 ) c o i n c i d e s w i t h t h e o n e f o u n d by S c h a r p f e t a l . / 2 / . However, t h e i d e n - t i f i c a t i o n o f o u r MFP'Y w i t h t h e t i m e o f maximum r a t e o f g r o w t h o f t h e o u t p u t i n t e n s i t y m o n i t o r e d i n R e f . 2 is n o t compLetely o b v i o u s . T h a t t i m e c o u l d b e beyond t h e l i n e a r r e g i m e a n a l y z e d h e r e , a n d a more s t r i n g e n t t e s t o f t h e r e s u l t s ( 5 ) and ( 6 ) would b e g i v e n by a measurement of t h e va- r i a n c e o f a ( t ) , which from ( 6 ) g i v e s

(4)

In any case, and in spite of the slightly different definitions of models and delays, our results (5)-(8) give a g o o d description of the main findings of earlier numerical studies /5/ and analogic simulations /6/.

3 - FAST SWEEPING CASE

The calculations can be carried out here for

i

<i a

$ E .

The first inequality is again a small noise intensity condition while the second one implies fast sweeping. This case includes the limit

J( - m

.

We obtain

1 I (a+ja~l )2 1 c t > = - log ---- +

2 - --y(1)

2a < h ~ ) > 2a3. 2a

A meaningful delay in this case is with respect to instantaneous limitu ->- :

where

C

t>inst is the value of L t> for o( ->a

,

and

<

h 2 are, respectively,

<

hw)>calcu- 2 lated in the limit ?( -& and for the present case. The first term in the right hand side of (11) is the corresponding delay obtained in a deterministic framework. The second term is the con- tribution of fluctuations which in the range of parameters considered is a negative quantity in- dependent of E

.

Financial support from Direcci6n General de Investigaci6n Cientifica y Tecnica (Spain), project PB 86-0534, is acknowledged. Stimulating discussions with P. Mandel are also acknowledged.

REFERENCES

/1/ MANDEL, P., in Instabilites and chaos in Quantum Optics, Eds. N. Abraham and E. Arimondo (Plenum Press, to be published).

/2/ SCHARPF, W., SQUICCIARINI, M., BROMLEY, D., GREEN, C., IREDUCCE, J.R., and NARDUCCI, L.M., Opt. Commun.

63

(1987) 344.

/3/ ARIhIONDO, E., DANGOISSE, D., GABBANINI, C., MENCHI, E., and PAPOFF, F., J. Opt. Soc. Am.

B4 (1987) 842.

-

t.lITSDIKE, F., DESERNO, R., LANGE, W., and MLYNEK, J., Phys. Rev. A33 (1986) 3219. - /4/ BROECK, C. VAN DEN, and MANDEL, P., Phys. Lett.

A122

(1987) 36.

/5/ BROGGI, G., COLOMBO, A., LUGIATO, L., and MANDEL, P., Phys. Rev. A33 (1986) 3635.

/6/ MANNELLA, R., MOSS, F., and MCCLINTOCK, P.V., Phys. Rev.

A35

(198r2560.

/7/ DE PASQUALE, F., SANCHO, J-lil., SAN MIGUEL, M., and TARTAGLIA, P., Phys. Rev. Lett.

2

(1986)

2473.

Références

Documents relatifs

It is based on an iterative algorithm and leads to an efficient approximation of Brownian hitting times for curved boundaries, and, by extension, can deal with diffusion

in a duopoly market, as interconnection fees a increase, it becomes easier for the operators to collude, except for the two private operators case where the critical threshold

The Planck length (the length scale on which quantum fluctuations of the metric of the spacetime are expected to be of order unity) and the Planck time (the time scale on which

Dependence of the relative rms fluctuations of the threshold voltage &amp;V~/ (V~) on specimens length... II 8 JOURNAL DE PHYSIQUE

Under modulation of the pump power, the laser intensity exhibits a hysteresis behavior in the vicinity of the threshold.. The temporal width of this hysteresis is measured as a

Keywords Extracellular vesicle production Membrane protein expression Membrane protein-ligand interaction Cell-surface receptor Electron microscopy Immunization Highlights

Under the assumption of dominance of the fittest phenotype, and mutation rate satis- fying (1.10), we consider the model described in Section 1.1 starting at the time of the

although this technique reduces magnetic field requirements relative to ordinary mode fundamental heating, the gyrotron frequency requirement is not decreased.