• Aucun résultat trouvé

1 I% WI S~C x I i- 1 x exp ( -aiN1 see X> AERONOMIC PROBLEMS OF MOLECULAR OXYGEN PHOTODISSOCIATION-VI. PHOTODISSOCIATION FREQUENCY AND T~NSMI~ANCE IN THE SPECTRAL RANGE OF THE SCHUMANN-RUNGE BANDS

N/A
N/A
Protected

Academic year: 2021

Partager "1 I% WI S~C x I i- 1 x exp ( -aiN1 see X> AERONOMIC PROBLEMS OF MOLECULAR OXYGEN PHOTODISSOCIATION-VI. PHOTODISSOCIATION FREQUENCY AND T~NSMI~ANCE IN THE SPECTRAL RANGE OF THE SCHUMANN-RUNGE BANDS"

Copied!
33
0
0

Texte intégral

(1)

Planer. Space Sci., Vol. 31, No. 4, pp. 459491, 1989 OQ32-0633/89 $3.@2+0.00

Printed in Great Britain. Pergamon Press

plc

AERONOMIC PROBLEMS OF MOLECULAR OXYGEN PHOTODISSOCIATION-VI. PHOTODISSOCIATION

FREQUENCY AND T~NSMI~ANCE IN THE SPECTRAL RANGE OF THE SCHUMANN-RUNGE

BANDS

MARCEL NICOLIW and ROBERT KJINNES

Aeronomy Institute, 3 avenue Circulaire, B-l 180 Brussels, Belgium (Received 1.5 December 1988)

Abatmct-The relative p~ot~ss~ation frequency and direct transmittance of OZ can be derived from parametric formulae for 500 cm-’ intervals in the 175-202 nm spectral region that corresponds to the domain of the bands of the Schumann-Runge system. The parameterization is obtained by comparison of detailed calculations (0.1 cm-’ intervals from 115 to 15 km) from Nicolet et al. 11987. Aeron. Actu A. No.

318,340 pp. ; 1989, &rt% Space Sci. 37,427) with formmae that depend on the solar zenith angle and the Oz column abundances. The overall si~la~ty between the results of the detailed calculations and of the parameterization that incorporates the requisite constants implies that this new set of practical transmission functions and relative photodissociation rates for 0, is appropriate for atmospheric modeling in the

1. INTRODUCTION

The photodissociation frequency of O2 in the Schu- mann-Runge band region and, therefore, the photo- dissociation rate with its associated production of oxygen atoms, cannot be determined without direct introduction of the cross-section for the underlying continuum. Two different calculations are needed to arrive at a correct detonation of the O2 photo- dissociation frequency and of the O2 transmittance in the spectral region of the Schumann-Runge bands.

The Or transmittance for a specific spectral domain, here 500 cm-‘, is

Tr(0,) = i exp { -

(ai+ ac)N1 set x>

i- 1

(1)

where cri is the Schwab-Runge band cross-section calculated for each 0.1 cm-’ intervai ; it is a function of the temperature and of the total number of O2 molecules, N; N, is the number of O2 molecules (CZII-~) for a vertical column and set x_ taking account of the effect of the solar zenith angle x. cr, is the underlying continuum cross-section and may be taken, to a good approximation, as constant over a 500 cm-’ interval.

Thus, (1) can be written

Tr(Or) = exp { -a,N, set x> ,ir exp { - oJV, set x).

_

0

*Also, Communications and Space Sciences Laboratory, Penn State University, University Park, PA 16802, U.S.A.

The photodissociation frequency (s-l) under the same conditions, i.e. without including any effect from the absorptions by molecular scattering and by ozone is (qm = 1, num~r of photons cmm2 SC’),

J(O3 = f (a,+e,)exp (-(ol+flC)NI se%} (3)

i= I

and becomes

J(0,) = i a,exp{-cr,N,secx}+a, i

[ i= I i- 1

x exp ( -aiN1 see X> 1 I% WI S~C x (4) where the last term is the 0s transmittance of the

~derl~ng continue for a vertical column. For- mulae (2) and (4) show that the transmittance can be computed with and without the introduction of the underlying continuum, and that the photodissociation always requires the introduction of the continuum.

With the introduction of the atmospheric trans- mittance the photodissociation frequency would be, instead of (4),

J(OJ = e&X N) Tr(O3 (5)

where an(T, N) should be an equivalent photo-

dissociation cross-section function of the temperature

T and of the total number of absorbing OZ molecules

N. After a detailed analysis of the numerical results

based on formula (5), it was deduced that the accuracy

was not satisfactory when compared with the values

459

(2)

460 M. NICOLET and R. KIZNNB

deduced directly from (4). The results of the com- sphere when all the aeronomic parameters are con- parison will not be reproduced here. sidered along with their intimate interactions.

2. COMPARISONS OF SYNTHETIC AND EXPERIMENTAL CROSS-SECTIONS

3. CONCLUSIONS AND GENERAL CONSIDERATIONS ON THE RESULTS

The experimental and theoretical data have been described by Nicolet et al. (1987, 1988, 1989) and are used in the determination of the photodissociation frequency and of the transmittance of OZ.

A general view of the spectrum of the Schumann- Runge bands from (CO) to (19-O) is given for wave- number intervals of 50 cm-’ (corresponding to the averaged cross-section of 500 calculated values) in Figs la, 2a, 3a and 4a and in Figs lb, 2b, 3b and 4b at 300 and 190 K, respectively. The calculated cross- section varies from less than 10pz3 cm* to more than lO_” cm*. A 50 cm-’ interval corresponds to 0.175 &- 0.025 nm in the spectral region 200-175 nm.

When all direct photodissociations processes are considered (see Nicolet and Kennes, 1986 ; Nicolet et al., 1987 ; Nicolet and Kennes, 1988a ; Nicolet et al., 1988 ; Nicolet and Kennes, 1988b ; Nicolet, 1989 ; Nicolet et al., 1989 and this paper) it is possible to formulate a few conclusions on the production rate of oxygen atoms (Table 2).

Other examples are presented in Figs 5a and b and in Figs 6a and b at 300 and 190 K, respectively, for spectral intervals of 20 cm-’ (mean of 200 values in about 0.08 nm) and of 1 cm-’ (mean of 10 values in about 0.004 run), in the spectral region of the 330 to 6-O bands.

Upon adoption of the solar irradiances deduced from Spacelab 2 observations (SUSIM), it can be said that the O2 photodissociation frequency is of the order of lo-* s-’ near the mesopause with a mean con- tribution effect from the Herzberg region (J. > 202 mn) of the order of only 5%. However, near 60- 65 km where N(0,) reaches 2 x 102r cmw2, the ratio

J(02hdw2>,0,,, >

50%. For the standard atmo-

sphere the results are reproduced in Table 3.

As an example, the line positions used in the cal- culations for the 52,50&52,000 cm-’ interval associ- ated mainly with the 5-O band are presented in Tables la and b, and Fig. 7 illustrates the differences at 300 and at 79 K between the cross-sections of the 5-O band up to P15-R17 obtained with a resolution of 0.1 cm’. The final comparison between the theoretical and experimental cross-sections at 300 K with the corresponding identification of the various rotational lines is depicted in Figs 8a and b between 52,500 and 52,000 cm-‘. The corresponding Figs 9a and b show that differences of f 20 or f 10% in the cross-section of the Herzberg continuum are practically negligible.

However, the presence or the absence of an underlying continuum cannot be neglected, as is clearly indicated in Figs 10a and b and Figs 1 la and b for temperatures between 300 and 190 K, respectively ; the effect is especially important in the spectral region of the 7-l band and of the rotational lines of the highest levels of the 5-O band at 190 K.

4. PARAMETERIZATION OF THE PHOTODISSOCIATlON FREQUENCY AND OF THR TRANSMITTANCE IN THE SPECTRAL RANGE OF THE SCHUMANN-RUNGE BANDS

Detailed calculations based on the Tchebychev approximation method were made to provide the possibility of determining the O2 photodissociation frequency and the atmospheric transmittance by simple formulas. A final application was made with a formula of the following type :

Finally, two figures (Figs 12a and b) represent the variation of the rotational structure in the 52,50&

52,000 cm-’ region associated with the variation of the temperature : 300,270,230 and 190 K. They dem- onstrate that it is possible to apply the O2 absorption cross-sections in the region of the Schumann-Runge bands to the calculation of the transmission of the solar spectral irradiance in the mesosphere and strato-

In J/J, (or In r) (or In q/qm)

=ao+a,sec~+a2(sec~)2+a,(sec~)3

+[b0+b,secX+b2(sec~)2+bj(sec~)3]1nN(0,) +[~~+c,sec~+c~(sec~)*+c,(sec~)~][lnN(O~)]*

+[d,+d,sec~+d2(sec~)2+d3(sec~)3][lnN(02)]3.

This practical formula was applied to the 500 cm-’

intervals from 57,000-56,500 cn-’ to 50,00@-49,500 cm-’ that correspond to the 16-o to 19-O bands, and mainly to the 1-O band, respectively.

The application was used to determine

(1) (2) (3)

the photodissociation frequency : J/J, = e-’

by In

~~0

the transmittance : q/q_ = e-‘sRs~ by In rSRBbs with continuum

the transmittance : q/qm = e-‘m by In 7SRB,

without continuum.

(3)

-21 300K lNlERVAL=50M’

O-O

1-o 2-o

0 49500 50000

WAVENUllBER 50500

461

100

FIG.

la. ~TBIJcruRE OF

TIiB

O2

ABso~pno~ BBTWEIM

49,000 AND 51,ooo cm-‘; 50 cm-’ INTERVALS AND T= 300K.

_. ...co.. .., _._ ,.__ ._--_._,d’ _-- .! .2-Q’I __ ,.

FIG. lb. As IN FIG. la, BUT T = 190 K.

(4)

3OOK INTERVAL =WCM-'

3-Q 4-o 5-O

462

-2

-2

3

-2

- 2:

5

_I

_I&““” _I&,“”

WAVENUMBER

FIG. 2a. As IN FIG. la,

BETWJEN

51,000 AND 53,000 cm-‘.

190 K INTERVAL = !I4 CM”

3-O 4-o 5-o

I

/ i r/ i

1

1

r

_I

i30 00

--

0 51500 52000 52500

WAVENUMOER

FIG. 2b. As

IN

FIG. lb,

BETWEEN

51,000 AND 53,000 m-l.

(5)

463

iko 7-o 9-o

r

>?

1 r

IO 53500 54000 54500 00

URVENUMBER 51

FIG. 3a. As IN FIGS la AND 2a, BETWEEN 53,000 AND 55,000 cm-‘.

190 K INTERVAL = 50 CM-’

7-o

o-o

iid

i I

r I-

J-1

.

0 53500 54000 54500 5

URVENUtlBER

FIG. 3b. As IN FIGS lb AND 2b, BETWEEN 53,000 AND 55400 cm-‘.

(6)

464

300K INTERVAL = 50 CM-’

ll-0

0 55500 56000 56500 57000

UAVENUIIBER

FIG. 4a.

As

IN FIGS

la-3a,

BETWEEN 55,000 AND

57,000 cm-‘.

11-o -, c-0 IS-0 14-O 15-o 19.

1 r

10 55500 56000 56500 5

WAVENUMBER

100

FIG.

4b. As

IN FIGS

lb-3b,

BETWEEN

55,000

AND

57,000 cm-‘.

(7)

5 000

E 100

WAV NUMBER

FIG.

Sa. STRUCTURE OF THE 9

ABSORPTION BJXWEEN

51,ooo AND 53,oao cm-‘; 20 cm-’ INmRvm AND T=3OOK.

See Fig. 2a.

-21

-2

i5 F ii h-2:

8

3

-2

-2

190 K INlERVAL=2OcH”

FIG. 5b. As IN

FXG.

58,

BUT 2’ =I I!%)

K.

See Fig. 2b.

(8)

466

3001: INTERVAL = 1 CM-’

3-o 4-u

51000 51500 5 E 000 52500 53000

URV NUMBER

FIG. 6a. STRUCTURE OF THE 0, ABSORPTION BETWEEN

51,000

AND

53,000 cm-‘; 1 cn-’

INTERVALS AND

T=300K.

See Figs 2a and 5a.

-19

-30

$31 :

E

&

q-23

-23

-34 5:

190 K INTERVM = 1 CM-’

3-o 4-o

1 51500 52000 52500

WRVENUMEER

FIG.

6b. As

IN FIG. 6a, BUT T = 190 K.

See

Figs 2b and 5b.

00

(9)

467

FIG. I. COMPARISON OF THE -ON CROSS-SBCTION AT 300 AND 79 K, RESPEcTlYELY.

SO band between 52,600 and 52,350 cm-‘.

Table 4 provides all the coefficients a,, . . . , d3 for the 15 intervals of 500 cm-’ between 57,000 and 49,500 cm-’ for an equivalent optical depth with the reduction factor J(N,x)/J, that corresponds to the O2 photodissociation frequency (SK’) at zero optical depth from numerical data given in Table 2. For each 500 cn-’ interval, the various limits for the appli- cation of the formula are determined : the minimum altitude, the maximum number of the O2 column (NC x cn-‘) the upper limit for the equivalent optical depth that corresponds to a reduction factor of at least lo-‘, and the maximum difference between the values obtained by direct calculation and by use of the parametric formula.

For the same spectral intervals, Table 5 also pro- vides the coefficients uO, . . . , d3 for the O2 trans- mittance with their various limits for the application of the formula. Such values of transmittance given by rsneu,+Ej correspond to the combined absorption of the Schumann-Runge bands and their underlying continua. However, the optical depth without under- lying continuum, ln rsRBb, has also been determined ;

Comparison between the numerical results deduced from Tables 5 and 6 opens the possibility of deter- mining the relative effects of the Schumann-Runge bands and of the underlying continuum on the atmo- spheric transmittance of Oz.

Tables 7a and b make clear in two examples, for almost equivalent total numbers of oxygen molecules, N(0,) (err?), the importance of the various terms adopted in the parameterixation of the photo- dissociation frequency and of the transmittance in the various 500 cm-’ intervals from 57,000-56,500 cm-’

to 50,00049,500 cm-‘. In Table 7a the values obtained from detailed calculation and then from numerical application of the formula are compared for the transmission factors with their equivalent optical depths

7

and In

7

used for the parameterixation.

In Table 7b, all terms based on uO, . . . , d3 are given (+ %) for the examples adopted in Table 7a, and differences occurring in the relative importance of the

16 terms are pointed out.

Thus, it is possible to determine the aeronomic par-

ameters of the Schumann-Runge bands of O2 with

the various parameters a,,+& are given in Table 6. good accuracy.

(10)

M. NICOLET and R. KENNES

CWSS-SECllOl

6-Q

BAND- 10.S~7.4~ 1d7

CONTINUUM-7 23x 1 C&tn’ * L.Wr Pcnil

(52250 cnil,

io ,asoo saaso sa4oo 12450

300 K

URVEMJRBER

I

100

FIG. 8a. EXPERIMENTAL AND THEORETICAL ABSORPTION CROSS-SECTIONS AT 300 K, BETWEEN 52,500 AND 52,250 cm-‘.

5-Obandand8-lband.

I

f

J- 20,

CROSS-SECTIO(

---

LABO~TORY _-+ CJ&CU&yq - ;

I I ; 5-O BAND

1 P2SR27 P23R25 )ml22

7-l BAND ;

‘I 8-l BAN

IO saom ,a,00

,ar 50 52200

300

K URVENUflBER

F1o.8b.

ASIN

FIG.~~,BETWZEN 52,250 AND 52,000~~~‘.

5-Obandand7-I band.

(11)

Aeronomic problems of oxygen photodissociation-VI 469

!

‘O SO0 K

59300 sass0 UIIVENIHER ‘zqoo 51450 5 00

FIG. 9a. As IN FIG. 8a, WITH VARLUION OF f 10 AND f20% OF THE cxmrmum ABSDRPTION;NOWFfKT.

’ SO0 K

92050 9*loo

WllVE_ER

99tm 91900 91900 I

FIG. 9b. As IN FIG. 8b AND EQUIWLENT TCI FIG. 8a; VERY SMALL EFFECT.

(12)

410 M. NICDLET and R. KENNES

FIG. 10a. As IN FIG. Sa, WITH AND WITHOUT ~~TINUUM, NEGLIGIBLE EFFIXT AT 300 K.

FIG. lob. As IN FIG. 10a; EQUIVALENT TO FIG. 1Oa;

EFFECT OF UNDBRLYING ~~NTMJUM BETWEEN

CERTAIN

ROTATIONALLINES,EVENAT

300K.

(13)

Aeronomic problems of oxygen photodksociatiom--VI 471

-201

! I I I

I

lid50 51300

190

K lZJl0

WIM_ER

92400 VNlO sasoo

FIG. 1 la. As IN FIG. lOa, AT 190 K ; SMALL RFPECT OF THE UNDERLYING CONTINUUM.

Yinl

ma

ulTnwT CmTINnm -21

_____.__ _._.--.-- ---. --- -- --- --- - -- -- ---

,100o %?O¶O

190

K 52100 WIM_ER 11150 5zzoo 52f10

FIG. 1 lb. As IN FIG. lob, AT 190 K, STRONG FPIWT OF THE UNDERLYING cmmmuu~.

(14)

412 M. NIC~LET

and R. KENNES

FIG. 12a. As IN

FIG.

8a: VARIATION OF THE ABSORPTION CROSS-SECTIONS FOR TEMPERATURES FROM

300 M

190 K, BETWEEN

52,500

AND

52,250 Cm-‘.

b

,)20,0 52100

DO-270-230-190 K

UAVENIMBER 52150 x?m-J

FIG. 12b. As IN FIG. 12a; BETWEEN

52,250

AND

52,000 cm-‘.

(15)

Aeronomic problems of oxygen photodkxiation-VI 413

IDENTIFICATION OF 0, SCHUWW-RWGE ROl~lIONlM LINES 52250 - 52500 cm-’

5t;sO

x brnd Y A bond

52266.9 1919.26 5-O Pl9 52416.4 1907.80 5-O RJS

52267.0 1913.26 5-O Pl9 52416.9 1907.78 5-O RJS

52267.4 1318.24 5-O Pl9 52432.5 1907.21 9-1 R23

52269. 4 1313. 16 5-O R21

52269. 6 JSJS. 16 5-O R21

52270.2 1319.14 5-o R21

52284. 5 1912.61 8-l R21

52284. 9 1312.60 6-l R21

52285.5 1312.58 8-l R21

52290. 9 1912. 38 8-l PJS

52291.1 1312.S7 8-l Pl9

524SJ.2 1907. 19 9-l R29

52455.8 1307. 17 9-l R23

52442.4 1906.85 8-l Rl5

52442. 7 1306.84 8-l R15

5244% 1 1906.83 8-l RI5

52446. 7 1306. 70 8-l PJJ

52446.8 1906.63 8-l Pl3 52447.1 1306.68 8-l PJJ

52291.5 1312.36 8-1 Pl9 52447.8 1306. 66 9-l P27

52500 52448.2 1906. 64 9-l P27

52321. 7 1911.25 5-O P17 52448.6 1906.63 9-l P27

52521. 7 1911.25 5-O P17 52450

52522.2 1311.24 5-O P17 52452. S 1906. 49 5-O PI 1

52824. 0 1311. 17 5-O Rl9 52452.4 1908. 49 5-O PI 1

52324.1 1911.16 5-O Rl9 52452. 7 1306. 48 5-O PI 1

52824. 7 1311. 14 5-O Rl9 52454. 1 1906. IS 5-O RI.9

52843.2 1910. 47 8-l Rl9 52454. 1 1906. 43 5-O RJS

5284% 5 1910. 46 8-l Rl9 52454.6 1906. 41 5-O RI3

52J44.0 1910. 44 8-l Rl9 52455.7 1906. 57 6-O P29

52548.8 1310.26 8-l P17 52455.9 1306. 36 6-O P29

52549.0 1910.26 8-l P17 52456.4 1906. a5 6-O P29

52343. 4 1310. 24 8-l P17 52483.0 1905.38 8-l R1.l

52J50 52485. J 1905.37 8-l RI3

52557.1 1909. 96 3-l P29 52488.6 1905.Sb 8-l RI9

52557.6 1909.94 9-l P29 52484. 7 1305.s2 5-o P 3

52358.0 1¶09.9S 9-l P29 52484.8 1305.32 5-o P 9

52370.8 1909. 46 5-O Pl5 52485.1 1905.30 5-O P 9

52970. 9 1909. 46 5-O P15 52486.2 1905.26 5-O Rll 52371. 3

52573. 0

5237% 1

52373.6 52895.8 52898. 1 52836.5 52400 52400. 7 52400.3 52401.2 52414. 4 52414. 4 52414. 8 52416. S

1909.44 5-o Pl5 52486.2 1305.26 5-O Rll

lSOS.Jb 5-O R17 52486.6 1305.25 8-l Pll

1903. S8 5-O R17 52486.6 1305.25 5-O Rll

1909.36 5-O R17 52486.8 1305.24 8-1 Pll

1908.55 8-l R17 52487.1 1305.23 8-1 PI1

1308.54 8-l R17

1908. 52 8-l R17

1308. S7 8-l PI5

1308. 37 8-l P15

1308.J5 8-l P15

1907.87 5-O PJJ

1307.87 5-O PJJ

1307.86 5-o PJJ

1307.80 5-O RJB

(16)

M. NKXXET and R. KENNES

TABLE lb

IDEWTIFICATlON OF 0, SClWMW4-RlNOL ROTATIOHNM

LINES 52000 - 52250 cm-'

52k 52000.8 52021.2 52OH.S 52021. 7 52022.2 52022.2 52022.6 52046.6 52048.6 52049.2 52049.5 52049.6 52049.9 52050 52068.9 52069.1 52069.6 52070.5 52070.5 52070.9 52071.1 52071. 1 52071.5 52071. 7 52072.0 52072.5 52072. 6 52073. 1 52073.6 52081.2 52001.6 52082.1 52086.5 52086.5 52066.9 52066.9 52066.9 52067.4 52096. 7 52096. 7 52096.6 52097.1 52099.5 52100 52101.0 52101.1

A band 1923.07 6-1 P27 1922.29 7-1 RI1

1922.23 7-f Rff

1922.27 7-l R11 1922.26 7-l P 9 1922.26 7-l P 9 1922.24 7-1 P 9

1921.28 7-l R 9

1921.27 7-l R 3

1921.26 7-l R 9

1921.25 7-l P 7

1921.25 7-l

P

7

1321.23 7-l P 7

1920. 52 5-O P25

1920.55 5-O P25

1920.51 5-o P25

1920.47 7-l R 7

1920. 47 7-l R 7

1920. 46 7-1 R 7

1920.45 7-I P 5

1920. 45 7-l P 5

1920.44 7-l P 5

1920. 49 5-O R27

1920. 42 5-O R27

1920. 40 8-1 R27

1920.39 5-O R27

1920. 38 8-l R27

1920.35 8-l R27

1920. 08 8-f P25

1920. 07 8-1 P25

1920.05 8-1 P25

1919.88 7-1 R 5

1919.88 7-l R 5

1919.87 7-l P 3

1919.87 7-l P 3

1919. 87 7-l R 5

1919. 85 7-l P 3

1919.51 7-l R 9

1919. 51 7-1 R 3

1919.51 7-l P 1

1919. 49 7-l R 3

1919.40 7-f 0 1

1919.35 7-f R 1

1919.35 7-l R 1

” A

band

52140.5 52140.6 5214f.2 52145.S 52143. 5 52144.3 52149.2 52149. 7 52150 52150.4 52157.1 52157.4 52157.9 52200 52206.5 52206.6 52207. 1 52209.1 52209.4 52210.0 52219.9 52220. 4 52221.0 52227.0 52227.3 52227. 7

1917.89 5-o P23

1917.69 5-o P23

1917.87 5-O P23

1917.79 5-O R25

1917. 78 5-O R25

1917. 76 5-O R25

1917.57 8-f R25

1917.55 8-l R25

I91 7.53 8-l R25

1917.29 8-t P2S

1917. 27 8-1 P23

1.917. 26 8-t P23

1915.47 5-o P21

1915.47 5-o P21

1915.45 5-o P2f

1915.37 5-O R23

1915.87 5-O R23

1915.34 5-O R23

1914.98 8-l R23

1914. 96 8-1 R23

1914.34 8-t R2S

1914. 72 8-l P2f

1914. 71 8-l P2l

1914. 69 8-f P21

(17)

Aeronomic problems of oxygen photodissociation-VI 475

TABLE 2.

hSORPTlON CROSS-SECTIONS (Cd) AT ZERO OPTICAL DEF-TII FOR THE o2

SCHUMANN-RUNGE

BAND INTERVALS (500 Cm-‘) AND POX THE HERZBEXG CONTINUUM,

ACCX~DING TO

N~com et al. (1989) Wavenumber

interval (cm-‘)

Cross-section s-R_*

(c+)

Temperature range

He&erg continuum

(cm’) 49,5w5o,ooo 1.05+0.07x 1o-23

5o,ooo-50,500 1.34+0.15x 1o-2’

50,500-5 1,000 4.22 f 0.25 x lo-=

51,000-51,500 1.55f0.05 x 10-22 5 1,500-52,000 4.83 kO.07 x lo-‘*

52,00&52,500 6.33kO.33 x lo-”

52,500-53,000 1.3450.07 x 10-2’

53,00&53,500 3.06kO.15 x lo-”

53,500-54,000 7.04_+0.40 x 1o-2’

54,000-54,500 1.34*0.07x 1o-2o 54,500-55,000 2.92kO.10 x 1o-2o 55,00&55,500 4.63 +0.03 x 1O-2o 55,500-56,000 6.24kO.25 x lo-”

56,000-56,500 1.12*0.02x lo-l9 56,500-57,000 1.65kO.01 x lo-l9

170dTb270 2OOGTg270

170 < T d 270 17O<T<270 210dT<270 210<T<270 210dTC270 180dTb270 180<T<270 180<T<270 170dTd290 180<T<270 180 d T Q 250 180 d T < 230 170 < T c 250

7.4 x 1o-u 7.5 x 1o-ti 7.5 x 1o-w 7.5 x lo-”

7.4 x 1o-24 7.2 x lo-=

7.0 x lo-=

6.7 x lo-”

6.4 x lo-”

6.0 x IO-%

5.6 x 1O-x

TABLE 3. 4

PI-IOTODISSOCIA TION FREQUENCY FOR A SOLAR ZENITH ANGLE OP 60”

Altitude N(G)

oan) e-3 JW

(s-‘) %

Herzberg 85

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10

3.56 x lOI 1.11 x 1o-8 5

9.28 x lOI 5.54 x 1o-9 10

2.24 x lp 3.31 x 1o-9 17

5.00 x 1020 2.09 x 1o-9 28

1.04x 102’ 1.43 x 1o-9 40

2.02 x loz’ 1.05 x 1o-9 54

3.86 x 102’ 8.23 x lo-” 65

7.22 x 102’ 6.50 x lo-” 74

1.35 x 1022 4.42 x lo-” 80

2.58 x lO= 2.26 x lo-” 80

5.18 x lO= 5.87 x IO-” 78

1.08 x 1ti3 1.49 x lo-” 74

2.28 x lO= 1.08 x lo-‘* 70

4.96 x 1023 1.57 x 10-l’ 70

1.08 x lO=’ 2.21 x lo-” 76

2.36 x lp 1.67 x lo-” 90

(18)

416 M. NICOUZT and R. KWNES

TABLE 4.

EQUIVALENT omc~~ DEPTH (so) FOR THE REDUCXTON FACTOR J(N,x)/J, CORRESPONDING TO THE

0,

PHOTO- DIS?OCL4TIONFREQLENCY(~)FOR~ cm-'lNTF.RVALS

1n 57000 - 56500 om-'

'9

(L L 75 km! W 12 x 10" OOI-~; '9 S 8; Dlf S 51)

l

0 - - 2.599300 x 103 b. - + 1.741902 x lo2 o. - - 3.897073 QO - . 2.913743 x 10 -2

l

1 - l 2.655023 x lo3 Dl - - 1.802813 x lo2 0, - l 4.077368 dl - - 3.071576 x lO-2 a2 - - 1.266375 x lo3 a2 - + 8.569908 x IO' 02 - - 1.931968 62 - . 1.450698 I 10-2 83 - l 1.773584 x 102 b3 - - 1.197953 x 10' O3 - + 2.695691.x 10 -1 43 - - 2.020902 x 10 -3

56500 - 560D0 0-l (L 2 65 Ia; Y 6 7.5 x 10" am-2s $6 '3; Dif L 5s) .O - - 9.514357 x 102 b. - l 6.235309 x 10'

lo2

OO - - 1.366381 lo-'

d0 l . 1.002556 I 10 -2

.I - - 1.135892 'I 6.548604 - - 1.235963 k - + 7.593053 x 1o-4

a2 - - 2.767569 x 10'

b, - + 01 Q,

b2 - l 2.118148 - - 5.249648 1. lO-2 d2 -4

o2 - . 4.265425 x 10

a3 - l 1.274037 x 10' b 3 - - 8.705251 x 10-l o3 - . 1.976787 k lO-2 4 - - 1.492192 * lo-4

56000 - 55500 00-l (t L 60 km; II 1 2.5 x 10" am-?8 1, S 9; Dif L 59)

8O - - 3.642895 k 102 b0 - + 2.343907 I 10' o. - - 5.072168 x 10 -1 e0 - . 3.704249 x lO'3 Y - - 1.297202 x 10' Bl - l 8.426122 x 10' Ol - - 1.822141

1D2 x 10' 10-l

a, - + 1.311646 x lo-' .2 - l 5.684750 x b2 - - 3.704713 02 - + 8.038520 x d2 - - 5.807468 x lO-3 .3 - - 7.540241 x 10' b3 - + 4.920337 O3 - - 1.069057 x 10 -1 O3 - . 7.734156 x 10 -4

m-1

1n Tt (Oontinwa)

55500 - 55000 (z L 55 koi W S 2 x 10210a-2: 1-S 8: Dif S 5 5)

l

0 - - 1.237226 x lo3 b. - l 7.913107 x 10' 00 - - 1.690634 40 - l 1.207925 x lo-'

l

1 - . 4.266927 x lo2 b, - - 2.769459 x lo1 01 - l 5.992954 x 10-l 41 - - 4.323512 x lO-3 82 - - 2.614080 x lo2 b2 - l 1.686899 x 10' c2 - - 3.627784 x 10-l d2 - l 2.599991 I( 10-3

+ 4.228534 lo1 b 3 - - 2.728290 O3 - l 5.065426 10 -2

d 3 4.201589 10 -4

l

3 - x x - - x

55000 - 54500 ca-' (2 L 50 km; N I5 x 1021 ca-'i 1. S 8; Dlf I 51)

80 - - 1.032701 x 103 b. - l 6.488547 x lo1 cO - - 1.361884 40 - + 9.562723 x 10 -3 .l - l 2.864989 x lo2 01 - - 1.789081 x 101 cl - l 3.724736 x IO-' 41 - - 2.585671 x lO-3 p2 - - 1.569776 x lo2 b2 - l 9.810541 O2 - - 2.043335 x 10-l 42 - l 1.418441 x 10 -3 a3 - + 2.462586 x 10' b3 - - 1.544991 c3 - + 3.230393 I( lo-' *3 - - 2.251124 x lO-4

54500 - 54000 cm-' (2 L 50 km; N S 7.5 x 10" 011-~; t, L 7.51 Dlf S 7.5 2) .O - - 1.087474 x 103 b0 - + 6.747286 x 10' - 1.399023

lo2 10'

OD -

-1

40 - 9.706777 I 10 -3 Y - l 6.073534 x 01 - - 3.763451 x Ol - . 7.771822 x 10 41 - - 5.349041 x 10-3

l

3 - - 3.760677 x lo2 b2 - + 2.335690 x 10' O2 - - 4.831703 x 10-l 42 - . 3.329411 x 10 -3 .3 - l 5.739547 x 10' 0 3 - - 3.570293 O3 - l 7.396226 x 10 -2 *3 - - 5.102941 I lo-4

(19)

Aeronomic problems of oxygen photodissociation-VI

In "p (continued)

54000 - 53500 cm-' (z 5 45 km; N <, 7.5 Y 102' cmm2; 'I? < 7: Dir <, 7.5 I)

‘0 = - 1.632616 x lo3 b. - + 1.019881 x lo2 =0 = - 2.127676 d0 = + 1.483371 x 10-2 ', = + 5.931252 x lo2 bl = - 3.719961 x to' cl = + 7.780204 x IO -1

dl = - 5.426164 x lO-3 a2 = - 2.310579 x 102

b2 = + 1.440162 x 10' C2 = - 2.992668 x lo-' d2 = + 2.073311 x 10

-3

=3 = +

2.457513 x 10' b3 = - 1.525605 c3 = + 3.157678 x 10-2 d3 = - 2.179103 x 10 -4

53500 - 53000 cm-l (2 L 35 km; N 5 5 x lO22 cmm21 rep d 8; Dlf 6 10 I)

a0 = +

6.609790

x 10~

"1 = - 1.199910 x 103 a2 = + 3.416500 x lo2

= - 4.201220 x 10' b0

bl = + 7.429151 x lo1

= - 2.123104 x 10'

co = + a.824878 x 10-l Cl = - 1.530417 c2 - + 4.388857 x 10-l

= - 6.120329 x IO-~

d0

dl = l 1.049059 x 10 -2

= - 3.018357 x 10~~

a3 = - 3.021659 x 10'

D2 d2

b3 = + 1.892274 c3 = - 3.939891 x 10~~ d3 = + 2.727834 x 10 -4

53000 - 52500 cm-' (z L 35 km; N S 5 x 1O22 cme2; rip d 7; Dif 5 10 2)

a0 = +

3.572609

x lo2

a1 = - 9.750822 x lo2 a2 = l 3.073666 x lo2 a3 = - 3.277112 x 10'

b0 = - 2.330176 x 10' co = + 4.984390 x lo 1

d0 = - 3.495637 x IO-~

b, = + 6.005544 x 10'

01 = - 1.230972

= - 1.890982 x 10' = + 3.872599 x 10-l

d, = + a.397393 x 10m3

D2 d2 = - 2.639991 x 10-~

+-2 -4 b 3 = + 2.014140

c3 = - 4.121550 x 1O-2 d3 = + 2.807962 x 10

In T? (continued)

52500 - 52000 a~-' (z 2 25 km; N I2 x lO23 ~a-~; tI 6 9; Dlf S 7.5 $)

m0 = - 3.014297 b0 = - a.248373 x 10-l o. = + 3.337596 x lD-2 d0 = - 2.981130 x IO-~

ml = - 1.206385 x lo2 b, = l 7.590959 x 10 -1 1.123481 x 10~~

4.376900 b2 = + 2.089978 x 10 -1

0, = - 1.597914 dl = +

m2 = - C2 = - 2.572183 x 10~~ d2 = l 3.335859 x 10 -6

'3 = l 1.246409 b3 = - 7.030542 x 10 -2 c3 = + 1.246057 x lO-3 d 3 =- 6.832791 x 10-6

52000 - 51500 cm-l (a L? 25 km; N 6 2 x lO23 ~rn-~; TV S a; Dif S 7.5 I)

aO = - 1.430552 x lo3 b. = l 8.192095 x 10' =0 = - 1.566536 d0 = + 1.001490 x 10 -2 ', = + 7.436258 x 102 bl = - 4.333269 x 10~ c1 - + a.409682 x 10-l dl = - 5.435765 x lO-3 '2 - - 1.525438 x lo2 b2 = + 8.933776 o2 = - 1.742635 x 10-l d2 - 4

1.132201 x lo -3

a3 =

b =

3 e3 = d3

51500 - 51000 cm-' (2 Z 20 km; N I5 x 1O23 o.-~; \ 6 9; DiC 67.5 I)

a0 - - 4.220338 x lo2

= - 1.445513 x 103 a1

l

2 = + 6.93D887 x lo2

= - 9.035258 x 10' m3

b. = + 2.289616 x 10' CO = - 4.172309 x to-' bl = + 8.469511 x 10'

=1 = - 1.653274 b2 = - 4.046925 x IO' =2 = + 7.872306 x 10-l O3 = + 5.271651 o3 = - 1.024676 x 10-l

do = + 2.566495 x lO-3 dl = + 1.075184 x 10 -2 d2 = - 5.101953 x lO-3 d3 = + 6.635307 x 10 -4

(20)

478

M. NIC~LET

and R. KeNNEs

In qq (oontioued)

51000 - 50500 ca-' (z L 15 km; N 5 7.5 x 1O23 ~rn-~: 'q S 9; Dlf 5 7.5 $1

a0 - - 3.866259 x lo3 b0 - + 2.222383 x lo2 =0 - - 4.262894 d0 - + 2.729168 x lO-2 81 - l 2.342869 x 103 b, - - 1.352420 x lo2 cl - + 2.600128 dl - - 1.664979 x lO-2 a2 - - 6.612285 x lo2 b2 - + 3.841536 x 10' c2 - - 7.432431 x 10-l d2 - + 4.788924 x lo -3

*3 - + 6.641651 x 10' b 3 - - 3.881261 c3 - l 7.552242 x 10 -2 d3 - - 4.893218 x 10 -4

50500 - 50000 CIB-' (n L 15 km; N S 7.5 x lO23 ~a-~; q+ 6 I; Dif S 5 2)

a0 - - 1.190686 x lo3

b0 - + 6.825466 x 10' - + 3.342954 x 102 - - 1.895472 x 10'

OO - - 1.315837 d0 - + a.528854 x lo -3

a1 bl El - + 3.578694 x 10-l dl - - 2.249793 x lO-3

a2 - - 8.410679 x 102

b2 - + 4.523051 x 10'

c2 - - 8.447909 x 10-l -1

d2 - + 5.258491 x 10e3 a3 - + 1.912777 x 102 b

3 - - 1.072756 x 10'

c3 - + 2.005172 x 10

d3 - - 1.249155 Y lO-3

5oooo - 495oO am-1 (2 L 15 km; N s 7.5 x lO23 Cmm2; tv s 8; Dif I5 I)

.O - + 4.777535 I lo2 b0 - - 2.477171 x 10' - + 4.100240 x 10 -1

CO - - 2.125721 x lO-3

Y - - 4.739592 x lo3 - l 2.639995 x lo2

d0

- - 4.899641 -2

a2 - l 2.535504 x lo3

bl

- - 1.418042 x lo2

cl d, - + 3.029842 x 10

b2 O2 - + 2.642615 d2 - - 1.640950 x lO-2

a3 - - 3.613387 x lo2

O3 - + 2.024602 x lo'

c3 - - 3.779983 x lo-' d3 - l 2.351591 x lO-3

TABLE 5. OPTICALDEPTH ~~~~~~~ CORRESPONDINGTOTHETRANSMI~~CEOFo2RELATEDTOTHEABSORPnONASSOCIATED

~ITH~ROTATIONALLINESOFTHE SCHUMANN-RUNGEBANDSANDTIBIRUNDERLYINGCONTINUUM

'" 'SRB(b*c)

57000 - 56500 cm-' (2 L 70 km) i N S 3 x 102' c.-~ : 7SRB S a ; Dif 5 52)

aO I - 5.677451 x 10' - - 1.542575 x lo3

b. - + 4.023481 - + 1.000228 x lo2

CO - - 1.082140 x 10-l do - + 1.047532 x lO-3 a1

a2. + 9.107228 x 10~

bl - - 2.158563 - + 1.550289 x 10 -2

b2 - - 5.955032 x 10'

cl dl

. - 1.448050 x lo2

c2 - + 1.296826 - - 2.078151 x 10-l

d2 - - 9.405240 x lO-3 b3 - + 9.504656

c3 d3 - + 1.513569 x 10 -3

'3

56500 - 560OOcm-' (2 L 60 km ; N 5 2 x 10" cmm2

; ~~~~ 5

9

;

Dir 6 5s)

aO . - 7.029478 x lo2 ', - l 2.373070 x lo2

b0 - + 4.527896 x 10' . - 1.494671 x 10'

cO - - 9.837196 x 10-l do - + 7.213790 Y 10 -3 - l 3.142520 x 10-l - - 2.207088 x 10~~

a2 - - 1.577500 x 102

bl cl

b2 - + 1.009023 x 10' c2 - - 2.150946 x lo-' dl

d2 - + 1.528517 x lo -3 a3 - l 2.352943 x 10' b

3 . - 1.514461

c3 - + 3.247858 x 10~~

d3 . - 2.321164 x lO-5

56000 - 55500 cm-' (I L 50 km ; N 5 4 Y 102' cmm2 ; 7SRB S 9

;

Dif S 52)

a, - - 5.256423 x lo2 b. - + 3.327881 x 10' co - - 7.145414 x 10-l do - l 5.205542 x 10 -3 ri; . + 7.691021 Y lo2

a2 . - 4.376229 x lo2

=3 . + 6.324255 x 10'

bl - - 4.050722 x 10'

=1 - + 1.018562 dl - - 7.122706 x lO-3 . + 2.775216 Y 10' - - 5.858552 x lo-'

b2 c2 d2 - l 4.117691 x lO-3

b3 - - 4.011222

c3 - + 8.469823 x 10-2

d3 - - 5.954719 x 10-4

(21)

Aeronomic problems of oxygen photodissociation-VI 479

In ~~~(b+~) (continued)

55500 - 55000 cm-' (z L 50 km

; I S

7.5 x lo*' om-*

: vSRB S 8 I

Dlf S 51)

a0 - 1.513649 x IO* b0 - - 1.136678 x IO' 00 = + 2.656287 x 10 -1 40 = - 1.960843 x 10'3 al = - 4.451820 x lo* b, = + 2.943279 x 10' Ol = - 6.468379 x IO-' 4, = + 4.724945 x 1O-3 a2 = + 1.563519 x lo* b2 = - 1.019193 x 10' 02 = + 2.214479 x 10-I 42 = - 1.603107 x to -3 a3 = - 2.016080 x 10' b3 = + 1.299175 c3 = - 2.794919 I( 10-2 43 = + 2.006206 x 10 -4

55000 - 54500 cm-' (2 L 45 km ; N S 1 x lo** cm-*

; ~~~

I8

;

Dif I 2%)

pO = + 1.091262 x IO* - 8.108510 1.847644 x IO-' 1.312435 x 1O-3

*I = - 3.676559 Y IO*

b0 =

10'

OO = + 40 = -

b, = l 2.420565 x Ol = - 5.292890 x IO-' 41 = + 3.844314 I: 1O-3 82 = + 6.483679 x 10' b2 = - 4.438580 o* = l 1.004OTT x 10-l 42 = - 7.513844 x 1O-4 a3 = - 2.071426 b 3 = + 1.736988 x lo-' o3 = - 4.530374 x 10-3 d3 = l 3.769981 x 1O-5

54500 - 54000 om-' (z 2 40 km ; N S 2.5 x 1O22 an-*

; 7SRB S

8

;

Dif L 35)

a0 = + 3.694147 x IO* b0 = - 2.389680 x IO' OD = + 5.043392 -1

x 10 40 = - 3.4l4075 x 10-3 a1 = - 4.385371 x IO* b, = + 2.697252 x IO' 0, = - 5.542959 x 10-l 4, = + 3.804916 x IO-~

a2 = + 2.161684 x lo* b2 = - 1.312210 x 10' o2 = + 2.659376 x IO-' 42 = - 1.199240 x 10-3 '3 = - 3.651598 x IO' b3 = + 2.215929 O3 = - 4.486555 x 10 -2 d3 = + 3.030657 x 10 -4

In ~~~(b+~) (conthud)

54000 - 53500 cm-' (2 2 35 km i N S 2.5 x IO** om-*

; tsRB S

8

;

Dlf L 59)

.O = + 5.693931 x lo* - 3.649096 x 10' 7.677198 x lo-' 5.305310 x 10-3

Al = - 6.277182 x lo*

b0 = co = + d0 = -

a2 = + 3.832032 x IO*

bl = + 3.854031 x 10' 10'

0, = - 7.902507 x 10-l 4, = + 5.410173 x 10'3 02 = - 2.331004 x 02 = + 4.754281 x 10 -1 d2 = - 3.225998 x IO-~

l

3 = - 6.433339 x IO' b3 = l 3.923910 O3 = - 7.979622 x 10 -2

43 = + 5.410026 x 10 -4

53500 - 53000 om-' (E L 30 km ; N S 1 x lO23 cm-*

i 79RB 5 8 i

Dif I 55

‘0 = - 4.142061 x lo* b0 = l 2.366384 x 10' OO = - 4.595400 x IO" do = + 3.041165 x 10 -3 a1 = - 6.649624 x lo* 0, = + 4.031858 x 10' Ol = - 8.130492 x lo-' 4, = + 5.454250 x 10 -3 '2 = + 2.848387 x ID* b2 = - 1.741799 x 10' o2 = + 3.537976 x 10-l 42 = - 2.388030 x 10'3 a3 = - 2.921080 x IO' b3 = + 1.814843 O3 = - 3.737692 x lo-* 43 - + 2.553641 x 10 -4

53000 - 52500 cm-' (2 L 25 km ; N S 2.5 x lO23 01'~

8 ‘sRB L 8 ;

Dif L 51)

*o = + 1.733730 x 103 DO = - 9.922330 x IO' o. = l 1.883033 40 = - 1.184142 x 10 -2

a1 - - 3.916607 x lo3 bl = + 2.251326 x lo* 01 = - 4.312744 4, = + 2.153334 x lo-*

'2 - + 1.488181 x IO3 b2 - - 8.545866 x IO' o2 = + 1.634815 42 = - 1.042243 x IO-*

a3 = - 1.690488 x IO* O3 = + 9.618694 O3 - - 1.846197 x IO-' d3 = l 1.174409 x 10-3

(22)

M. Nrcom and R. KENNES

-'

52500 - 52000 cm (z 2 20 km ; N 5 4 x 10z3 cms2

; rSRB L

9 ; Oif L 5%)

*0 . - 2.240335 x lo3 b0 . l 1.308706 x 10' cO . - 2.556440 d0 . + 1.670035 x 10 -2 al = + 1.594133 x 103 bl . - 9.461007 x 10' cl . l 1.067507 dl . - 1.226721 x lo-' a2 . - 7.612868 x 10' b2 - + 4.503031 x 10' c2 = - 8.064307 x 10-l d2 = + 5.801601 x lo -3 '3 - + 1.168341 x 10' b. 3 - 6.900356 c3 . l 1.356423 x 10-l d3 = - 0.075040 x 10-4

52000 - 51500 cm-' (z 2 20 km ; N S 5 x 10z3 o.-~

; 7SRB S

8 i Dif 6 2.52)

'0 = - 1.353959 x 103 b0 = + 7.878909 x 10' CO = - 1.535936 -2

do - + 1.003217 x lo-' '1 . l 6.048852 bl . - 1.121316 cl = + 3.6O2221 x lo dl . - 3.205156 x lO-4

a2 . - 1.272266 x lo2 = l 7.450374 . 1.456247 x 10-l

b2 c2 - d2 . + 9.469016 Y 10 -4

a3 . + 3.067257 x 10' b 3 . - 1.769713 c3 . + 3.402297 x lO-2 d3 = - 2.179414 x 10 -4 -

51500 - 51000 cm-' (z L 15 km : N S 7.5 x 10z3 CIII-~

i rsRB I

9

;

Dif S 2.52)

a0 . - 9.229843 x 10' b0 . + 5.318720 x 10' cO . - 1.032775 d0 . + 6.755804 x 10 -3

*1 . l 3.111203 x 10' bl = - 1.848330 cl

=

l 3.705178 x 10-2 - 2.495782 x 10-4 a2 . - 4.503448 x 10' b2 = + 2.419667 c2 . - 4.348U91 x 10-2

dl .

d2 . + 2.614217 x 10 -4 a3 . + 9.410113 a 3 = - 5.038890 x 10-l c3 = + 9.004122 x 10 -3 d 3 = - 5.369612 x lO-5

51000 - 50500 cm-' (z L 15 km ; N S 7.5 x 10z3 CM-~

; 7SRB S

9

;

Dlf 5 2.52)

=0 . - 7.142070 x 10' b0 . + 4.050765 x 10' cO . - 7.802260 P 10 -1 d0 = + 5.099030 x 10-3 8, . l 1.339472 x 10' b, . - 0.005738 c1 . + 1.592838 x 10-l dl . - 1.054600 x 10 -3 '2 = - 1.922391 x 102

b2 = + 1.103898 x 10'

=2 . - 2.112382 x 10-l

d2 . + 1.346930 x 1O-3 a3 = l 3.903214 x 10' b3 . - 2.237085 c3 = + 4.271748 x 10-2 d 3 . - 2.717605 x 1O-4

50500 - SOD00 m-' (z L 15 km ; N i 1 x 10z4 m-'

4 tSRB S

9

;

Dif S 2.52)

*0 . - 1.354127 x lo3 . + 1.418853 x lo3

b. = + 7.552211 x 10'

= - 8.011893 x 10'

cO . - 1.420512

d0 = + 9.011688 x 10 -3

Y bl Cl = + 1.508299

dl . - 9.466235 x lO-3 a2 . - 6.556115 x 10' b2 . l 3.693544 x lo' =2 = - 6.936703 x 10-l

. + 8.473063 x 10' o3 = l 0.956634 x lo-2

d2 . + 4.342776 x lO-3

a3 b =

3 - 4.771368 d

3 . - 5.604537 x lo-'

50000 - 49500 cm-' (z 2 15 km i N L 1 x 10 24 cm-2

; ~~~~ 5

9

i

Dif L 0.51)

l

0 = - 3.885481 x 102 a, = + 2.194520 x lo2 a2 . - 8.320608 x 10' a3 = + 7.197340

b0 . l 2.116285 x 10' CO = - 4.009890 x 10-l d0 . + 2.641052 x lO-3 b, . - 1.328896 x 10' 01 = l 2.667435 x 10-l dl = - 1.775911 x 10 -3 b2 . + 5.052619 C2 = - 1.016341 x IO-' d2 = + 6.777711 x 10 -4 b . - 3 4.532467 x 10-l o3 = l 9.394015 x 10-3 d 3 . - 6.423345 x 1O-5

(23)

Aeronomic problems of oxygen photodissociation-VI 481

TALU 6.

OPTICAL DEPTH rsRBb COlUtE3PONDlNG TU THJJ TRANSMIITANCE OF o2 RELATEI TO THE ABSORPTION ASSOCIATED WITH THE ROTATION LINW OF THE

SCHUMANN-RIJNGE BANDS BUT WITHOUT THE UNDERLYING cmmuu~

I” 'SNSb

57000 - 56500 aa-' (z 2 65 km1 N S 7.5 x 10" ~III-~; t s 8; dlf s 21) -....

10 - - 4.765373 x lo2 b0 - l 3.007256 x 10' a0 n - 6.415873 --=i--- x 10 do = + 4.639339 x .-=T- 10 Y - - 2.185491 x 10~ b, . + 1.447762 x 10' 0, - - 36195355 x 10" d, - + 2.349749 x ld3 a2 = + 7.725891 x IO' b2 = - 5.108604 o2 - l 1.125623 x 10-l d2 - - 6.263548 x 10"

'3 = - 9.585645 b3 - + 6.329458 x 10-I O3 = - 1.392559 x 10-2 d3 - l 1.020838 x 10 -4

56500 - 56000 es-' (i 2 55 km; N S 2.5 x 10" OE-~$ 1 S 91 dtf S 1.51)

-..."

aO n - 1.480071 x 102 b. = + 8.366320 o. = - 1.660802 x 10-l d0 = + 1.159537 x Id3 '1 - - 3.228105 x lo2 b, - + 2.172604 x 10' o, - - 4.856765 x 10"

lo'

d, = . 3.605622 x 1O-3 a2 - + 8.196895 x b2 - - 5.585825 o2 - l 1.26490 x lo-' d2 l - 9.473543 x lo-' '3 - - 9.148820 b3 = l 6.227918 x 10" o3 - - 1.406539 x 162 d3 - l 1.054236 x 10 -4

-~~.-...w...M.

56000 - 55500 am-' (z 2 50 kmi N S 5 x 102' o.-‘8 1 S 9; dlf S 45)

'0 - - 1.177132 x lo3 b. - + 7.472188 x 10' a0 - - 1.591780 d0 s'--u7r- - + 1.138306 x lo I1 - + 1.540400 x 103 bl = - 9.818995 x lo' 0, - + 2.084493 dl = - 1.473895 x rd2

l

2 . - 6.903485 x lo2 b2 n + 5.416978 x 10'

a2 - - 9.411011 x 10"

l

3 = + 8.694671 x IO'

d2 = + 6.677640 x 1O'3 b3 n - 5.573158 O3 = * 1.189621 x lo" d 3 - - 8.456493 x lo-'

55500 - 55000 am-'

In rwb (continued)

(a 2 45 km; N S 7.5 x 102' am-28 T S 81 dlf. S 51) .. = + 2.643531 x 10 2

b0 = - 1.660525 x 10' o. = + 3.390146 x lo- 1 a, = - 3.390744 x 102 b, = + 2.038277 x 10' = - 4.106919 x 10"

d0 = - 2.237537 x lO-3 -3

= + 3.588229 x 10'

a1

a2 b2 = - 1.763041

= - 2.049257 x 10-l

o2 = l 2.814642 x lO-2

d, = + 2.773228 x 10 d2 = - I.448584 x 10"

a3 = + 2.267497

b3 o3 = + 5.399946 x lO-3

d3 = - 4.4l5489 x lo-'

55000 - 54500 a-' (Z 2 45 km: N S 1 x lO22 ~III-~Z r S 8; dir. S 2%) a0 = + 1.811937 x lo2

= - 4.922739 x lo2 Y

a2 = + 1.330347 x lo2

= - 1.379337 x 10' '3

b0 = - 1.261006 x 10' b, = + 3.196948 x 10' b2 = - 8.685634 b3 = + 9.035590 x 10-l

a0 = + 2.784380 x 10 -1

= - 6.903920 x lo-' a1

10 -1 a2 = + 1.885009 x a3 = - 1.966656 x lO-2

d0 = - 1.96l896 x lO-3 d, = + 4.957777 x lO-3

= - 1.360005 x 10'3 d2

d3 = l 1.422542 x 10 -4

54500 - 54000 Cal-' (z 2 35 kmi N S 2.5 x lO22 a21 1 S 8, dif. S 45)

l

0 = - 6.757764 x lo2 b. = + 4.128405 x 10'

a0 = - 8.483824 r lo-' a, = + 8.699923 x lo2 b, = - 5.462827 x 10'

do = l 5.869175 x ld3

= - 3.774244 x IO2 b2 = + 2.380272 x 10'

a, = + 1.139265

a2 a2 - - 4.986839 x lo-’

d, = - 7.893820 x lO-3 d2 = + 3."71618 x 10 -3 x3 = + 5.02U470 x 10' b

3 = - 3.166560

O3 = + 6.631875 x lO-2 d3 - - 4.616835 x 10"

(24)

482 M. NICCNET and R. KENNES

h (00ntinuea)

54000 - 53500 (P-l (z

zSRBb

4 35 lo; N S 2.5 x 10 22 o.-~z T s I; air I 4s)

l

0 - l 4.093557 x 102 102

b0 - - 3.032855 x 10' x lo- 1 - - 4.1225oo x 10-3

Y - - 3.930009 x bl - l 2.172470 x 10'

co - + 6.173270 a0

Cl - - 3.981420 x 10-l a1 - . 2.423969 x 10 -3 a2 - + 2.691657 x lo2 b2 - - 1.514039 x 10' o2 - . 2.830358 x 10-l a2 - - 1.757998 x 10-3

l

3 - - 4.038315 x 10' b3 - l 2.769397 c3 - - 5.274846 x 1O-2 a3 - + 3.342914 x 10~'

53500 - 53000 cm-'

( z 2

25 km1 N S 2 x 1O23 ~ll-~s z S 9; Olf. L 5%)

00 - - 2.585329 x lo2 b0 - . 1.410357 x 101 00 - - 2.638341 x 10-l a0 - l 1.705537 II 10 -3 01 - - 8.865887 x lo2 bl - + 5.377095 x 10' 01 . - 1.084966 a1 - + 7.284720 x 10 -3 t2 - + 3.872125 x lo2 b2 - - 2.363421 x 10' O2 - l 4.794904 x 10 -1 a2 - - 3.234420 x 1O-3 '3 - - 4.323445 x 10' b 3 - l 2.666883 c3 - - 5.461523 x lO-2 a3 - + 3.715083 x 10 -4

53ooo - 52500 cm-' (z 4 20 la; W L 2.5 x 1O23 om-'s v S 71 Olf. 6 50

.O - - 3.662143 x lo3 b0 - l 2.131356 x 10' 00 - - 4.141335 a0 - l 2.686850 x lo- 2

? - + 3.641633 x lo3 103

bl - - 2.114422 x lo2 o, - + 4.090896 9.679716 x 10'

a1 - - 2.637339 x 10 -2

82 - - 1.676820 x b2 - l O2 - - 1.862317 a2 - + 1.194129 x iom2

.3 . . 2.333455 x lo2 "3 - - 1.342686 x 10' O3 - . 2.575O82 x 10-l 0 3 - - 1.646051 x lO-3

52500 - 52000 om-'

( E 2

15 km; W S 8 x 1O23 m-2r r 6 9; all. S 3s)

l

0 - - 1.225175 x lo3 b. - l 7.143814 x lo1 00 - - 1.395783 a0 - + 9.138289 x 10 -3 .1 - l 9.160648 10' b, - - 7.169679 - + 1.734122 10 -1

x c, x

10'

a1 - - 1.327475 x 10-3

=2 - - 2.343339 x b2 - l 1.913029 02 - - 4.731600 x lo-2 a2 - l 3.688818 x 10 -4 a3 - - 2.65OO32 b3 - . 9.126765 I( 1O-2 O3 - - 5.956445 x lo-q a 3 - - 3.430417 x 1oe6

52000 - 51500 m-1

( z L

10 km: N s 2 x to24 08-2 r s 8; atr. s 5%)

00 . - 1.613720 x 10' b. - . 9.330159 x 10' 00 - - 1.802718 a0 - + 1.164180 x lo-' 01 - - 2.709569 x lo2 b, - . 1.383166 x 10' 01 - - 2.243221 x 10-l a, - + 1.183002 x 10 -3 a2 - + 3.264097 x lo2

lo1

b2 - - 1.785118 x 101 o2 - l 3.250219 x 10 -1

a2 - - 1.970140 x 10-3 '3 - - 5.651630 I b3 - l 3.128143 O3 - - 5.768276 x 1O-2 a3 - + 3.543688 x 10 -4

51500 - 51000 la-' (2 2 10 IP: II s 4 I( 10~' fmw2: r s 8; air. s 2s)

aO - - 1.4T2295 x lo3 b. - + 8.345967 x 10' 00 - - 1.5843o5 a0 -2

- + 1.041136 I lo Y - . 5.211158 x 10' b, - - 3.034916 x 10' 0, - + 5.885583 x 10-1 a1 - - 3.eoo183 x 10-3

l

2 - - 1.691419 x lo2 b2 - l 9.803754 02 - - 1.8862&l x 10-l a2 . . 1.206967 x 10 -3

*3 - . 1.665932 1 10' b 3 - - 9.742681 x 10-l o3 - + 1.675247 x 1O-2 0 3 - - 1.202226 x 10 -4

(25)

Aeronomic problems of oxygen photodissociation-VI 483

Slooo - 5o5oo om-1 (2 L 10 km; I 6 5 x 102' m-2; f 6 3; dir. 6 1.51)

a0 - - 9.560019 x 102 b. - l 5.392383 x 10' OO - - 1.022666 do - l 6.514690 x lo-

3

Ol - - 5.296268 x lo2 bl - . 2.818473 x 10' Cl - - 4.973404 x 10-l d, - + 2.908988 x lO-3 a2 - + 1.940443 x lo2 b2 - - 1.05oo58 x 10' c2 - l 1.887738 x 10-l d2 - - 1.127272 x 10-3

l

3 - - 2.717083 x 10' b3 - l 1.481919 c

3

- - 2.607078 x 10-2 d

3

- l 1.621203 x 10 -4

50500 - 5oooo cm-' (2 L 10 km; Y s 5 x 102' om-2; t L 1.25; dlf. L 1.51)

40 - - 1.1182oo I 103 b. - + 6.414120 x 10' CO - - 1.236103 d0 - l 7.967301 I( 10 -3 '1 . - 1.415924 x lo3 b, - + 7.522180 x 10' Cl . - 1.326520 0, - + 7.160752 x 10 -3 a2 . l 6.336393 x lo2

10'

b2 - - 3.42ul57 x 10' c2 - l 6.140398 x 10-l a2 - - 3.664583 x lO-3

a 3 - - 8.601104 x b3 . . 4.669416 O3 - - 8.433310 x lo-2 d - -4

3 + 5.067235 x 10

5oooo - 49500 cm-' (2 L 10 km Y 6 5 I 102' am-z* f s 0.9: dlf. s 0.5s)

l

0 - - 2.025389 x lo3 bO - + 1.132121 x 10' =0 - - 2.12U739 d0 - t 1.330079 x to+

l

1 - + 2.152763 x 10~ bl . - 1.434OO2 x 10' 0, - + 3.112480 x 10-l 41 . - 2.212265 x lO-3 '2 - l 6.739102 b2 - + 2.394632 x 10-l =2 - - 1.633299 x lO-2 1.773461 -4

-1

d2 . + x 10

L, - - 6.1719l6 b 3 - l 3.106584 I 10 O3 - - 4.484990 x 10-3 d 3 . . 1.954261 x lo -5

TABLE 7a.

camwus0~ BETWEEN DETAILED CALCULATION AND PARAMETRIC FORMULA

t,t,e. n*“h* ,e,.r 1(02, -r -r

. . Dlff. 7 r DI(f. ,nr LII .I“.

<t-a .n,,. (C.‘z, C*lcul*tion ,...“I. I C.LC. I.,.. I 0.LS. I.,.. I

11,oo . I(

6.20 I 10 -3 1.53 I 10 .‘

1.11 10 .2

,.e, 10 -3 V.89 . 10 .*

I.20 10 -2

?.(I . Z.bO9

5.M 0 1.779

II

I. 16 ,.,I 1.01 2.)‘ . 1.1 0 0 0 ,.,,a a..,. ,.‘I, t.11*

0 -1

L.

. 0.3 . 1.2

- 0..

. 1.8 _ 0.6 . 0.4

1.67 8.79

z.se I.,, 1.1, 4.42

.

0.1

. t.1

. 0.3 . 0.r

0 - 0.1

2.009 1.7?1

1 .?OO 1.17s

. ..I.

t ..L.

0.01.

9 .‘.I

. . .

(.I . . .

. - ..,

. 0.a - 0.4 . 0.1 - ..l

Références

Documents relatifs

The photodissociation of nitric oxide in the mesosphere and stratosphere depends on the absorption by the Schumann-Runge bands of molecular oxygen. The unit

Molecular oxygen was detected 1 in the coma of 67P by the on- board Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)–Double Focusing Mass Spectrometer (DFMS)

Time dependent models of surface grain chemistry in molecular clouds predict an abundanceof a few 101. percent of O 2 relative to H 2 Oon icy grains at timescalesof &gt;10 6

Expression (1) is only rigorously valid for the absorption cross section resulting from a single line and it reflects the variation of the relative intensity of the various lines in

In a few cases where the wave- number of an O 2 rotational line differs only by a fraction of a cm -1 from the wavenumber of a silicon line at which the measurement takes

In order to perform calculations of the solar flux penetration and of the various photodissociation rates, O2 absorption cross sections based on recent

The minimum which is observed near 75 km in the ozone concentration by Hays and Roble (27) is due to the action of atomic hydrogen; the net effect of the action of

Calculations based on a Voight profile of the 0 2 rotational lines have led to simple formulas for atmospheric applications taking into account that the total